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Abstract. In the present paper, we study a new subclasses of harmonic univalent func-
tions by using differential operator in the unit disc U = {z € C : |z| < 1}. Also we
obtain the coefficient bounds, convex combination, extreme points and convolution

conditions.
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1. Introduction

Let A denote the class of analytic functions f(z) of the form

f2) =2+ s (1)
=2
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defined in the unit disc U = {z € C : |z| < 1} with normalization f(0) =
f2(0) =1 = 0. Let the class of all normalized analytic univalent functions in the
unit disc U is denoted by S.

A continuous complex valued function f = wu + v defined in the simply
connected domain D C C (Complex plane) is said to be harmonic in D if both
uw and v are real harmonic in D. Clunie and Shiel-Small [8] showed that in
any simple connected domain D, we can write f = h + g, where both h and
g are analytic in D. We call h the analytic part and g the co-analytic part of
f- A necessary and sufficient condition for f to be locally univalent and sense-
preserving in D is that |h/(z)] > |¢'(2)| in D ([8]).

The class of functions f(z) = h(z) + g(z) which are harmonic univalent and
sense-preserving in the unit disc U = {z € C : |z| < 1} for which f(0) =
f2(0) —1 =0 1is denoted by Si. Each f(z) € Sy, can be written as

f(z) = h(z) +9(2), (2)

where
(oo} oo
h(z):z—FZalzl, g(z)szlzl,|b1| <1
1=2 =1

are analytic in U.

If we take g(z) = 0in (2), then the class Sy reduces to the class S. Also S is
subclass of Sy consisting of function that map U onto starlike domain. In 1984,
Clunie and Sheil-Small [8] investigated the class Sy and its geometric subclasses
and obtain some coefficient bounds. Since then, many authors Sheil-Small [§],
Silverman [16], Silverman and Silvia [17], and Jahangiri [8] have studied the sub-
classes of harmonic univalent functions. Ahuja [1] presented a systematic and
unified study of harmonic univalent functions. Recently, many authors investi-
gated various subclasses of harmonic univalent functions [2, 6, 7, 16]. Further-
more we refer to Duren [8], Ponnusamy [13] and their references for basic result
on the subject.

In 2016, Makinde [12] introduced the differential operator F™ : 4 — A and
defined as

I

F"f(z) =2+ chmalzla Cim = ma

=2

m € No = NU {0}.

Later, Bharavi Sharma et al. [5] defined the differential operator F™ : Sy — Sg
as

F"f(z) = F™h(z) + (—1)"F™g(z),m € Ny, (3)
where

F"h(z)=2z+ Z Crmar2', Fg(z2) = Z Cimbi2t.
=1

=2
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In 2001, Rosy et al. [15] defined the subclass G (8) consisting of harmonic uni-
valent functions f(z) of the form (2), and f(z) satisfies the following condition:

/

Re{(l—l—em)M —em} >pB, 0<fB<l,aeR,zel.
f(2)

In 2012, Patak et al.[14] defined the subclass Gy (m, A, p, 8) consist of harmonic

univalent functions f(z) of the form (2), and f(z) satisfies the condition

o DY (2) :
Re (1+pela)AT—peza}>ﬁ,0§ﬁ<1,p20,a6R,zEU,
e B

where DY operator defined by Al-Shaksi and Darus [3], and is given by
DY f(z) = DX'h(z2) + (=1)"D3'g(2), m, A € No.

Motivated from this work, we defined the subclass Gy (m, p, 8) consist of har-
monic univalent functions f(z) of the form (2), and f(z) satisfies the condition

) Ferlf(Z) ) }
Re (1 + pe*?)———=———= — pe'* ; > [, 4
{aspem SIE -, 0
form € Ng,0< 8<1,p>0,a € R, (z € U), where F™ f(2) is defined by (3).
Let G (m, p, B) denote the subclass of G (m,p, 8) consisting of harmonic
functions of the form

fm(2) = h(2) + gm(2), (5)
where

(o] oo
h(z)=z— Z lai|zt and gm(z) = (-1)™ Z by |2
1=2 1=1
For p = 0, the class Gy (m, p, 8) reduced to the class By(m, (), studied by
Bharavi Sharma et al. ([5]). Also, for p = 1,m = 0, the class Gy (m,p, 8)
reduced to the class Gy (8), studied by Rosy ([15]).

The aim of the present paper is, to obtain sufficient condition for functions
f(z) € Gu(m,p,B) of the form (2) and to obtain the necessary and sufficient
condition for functions f,,,(2) € Gg(m,p, 3) of the form (5). Also, the aim is
to obtain convolution, Convex combination and extreme points for functions
fm(2) € Gg(m, p, B) of the form (5).

2. Main Results

Theorem 2.1. Let f(z) = h(z) + g(2) be given by (2). If

[t =m| =B+ (Il = m| = 1)p] Cim|a|

- (6)

+ ) (lt=m|+ B+ (Il = m| + 1)p] Cim|bi| <1 - B,
=1
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where 0 < S <1,m e Ny=NU{0},a € R,p >0 and Cp,, = ﬁ Then f is
sense-preserving, harmonic uniwalent in U and [ € Gy (m, p, B).

Proof. If z1 # z2, then

‘f(zl) —flz2)] o |9(a) —9(z2)
h(zl) — h(ZQ) - h(zl) — h(ZQ)
> bi(zh — 2b)
—1_ =1
(21— 22) + IZQ ay(2) — 25)
> b
>1- 4=
13 la
=2
i": [l1=m|+B+(ll=m]|+1)p]Cim|by]
>1- = =
- _ o [i=ml = (l=m|=1)p]Cpma]
1 lg 1_5 1 1
> 0.

Hence, f(z) is univalent in U. f(z) is sense-preserving in U because

B(2) = 1= lallz!
1=2

1 - [|l—m|—5+(|11—m|—1)P]Clm|al|
1=2 —p
o 5 = ml+ 84 (1=l + 1pl i
1-5
=1
— [l =m|+ B+ (|l = m| + 1)p] Ci ba]|2]'
> =3

Il
—

Ubill2' 1 = 19 (2)]-

NE

>

Il
—

Now, we show that f(z) € Gu(m,p,B), using the fact that Re(a) > f if and
only if |1 — 8+ a| > |1+ 8 — al. It is suffices to show that

P f(2)
Frf(z)

Ff(z)

e e et > 0.
gy

1= B+ (1+ pe™) — pe*| = |14 B— (1+ pe™®)
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Now,

(1= B = pe'®)F™ f(2) + (1 + pe'®) F"HLf(2)]
—|(1+ B+ pe'®)F™ f(2) — (1 + pe'®) F" L f(2)]

= 1@~ B)z+ 3 [l ml + L~ mlpe® + (1 = B~ pe'®)] Cimar2!
=2

(|1 = m| + |l = m|pe’™ — (1 = B — pe')] Cimbi2!|

Mg

(="

1

—|8z — Z (|l = m|+ |l — m|pe™™ — (1L + B + pe'®)] Crmar 2!
1=2
(o)

—1)" ST [l =ml | = mlpe’® + (1+ B+ pe')] Cmbi |
=1

&

o0

(2= B)lz = Y[l =m| + [l =mlp+ (1= 5~ p)] Cim|a] |2

=2

=t =m|+ |l =mlp— (1= B = p)] Cimlbu]|2]
=1

oo

—Blzl =Y [l =m|+ [l =mlp = (1+ B+ p)] Cim| a2/
=2

v

Mg

(11— m| + [l = m|p+ (1 + B+ p)] Cunlbu] |2
l

1
e}

= (2= D)zl = 2D [ll = m| = B+ (|l = m| = 1)p] Cun a2
=2

=2 [l = m| + B+ (Il = m| + 1)p] Cuum|br] 2|

=1

2(1—-5) 2| [1 - i Il —m[ -5+ (I —17ﬁ|ﬁ— 1)p] Cirmlau||2]

[t —ml+ B+ (|t = m| + 1)p] Cim|bull2|"""
1-p
(since z € U, |z] < 1)

Qu_5>P_iiw—nu—ﬁ+q:gu—nmam@|
=2

[l —m| + B+ ([T = m| + 1)p] Cip 1]
1-3 '

Last expression is non-negative by (6), therefore the proof is complete.

=2

Mz

I
-

\%

Mg

l

1
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If we plug p = 0 in Theorem 2.1, then Corollary 2.2 is obtained.

Corollary 2.2. [5] Let f(z) = h(z) + g(z) be given by (2). If

> {1t =m| = B Cimlar| + >[Il = m| + B] Crm|bs| <1 -8
=1

=2

A

where 0 < 8 < 1,m € Ny = NU {0} and Cy,, = =D Then f is sense-
preserving, harmonic univalent in U and f € By (m, (8).

The harmonic function given below shows that the coefficient bound given
by (6) is sharp.

”; [=m[ =B+ (L —m— 1Dp]Cim
+§ l—m|+ B8+ (l —m| + 1)p] Com

where m € Ng = NU{0},p>0and Y ,_,|w|+ >, |u| =1
The above defined harmonic function is in Gy (m, p, 8). We have

[ll—m|—5+(|z—m|_1)p]clm|al|
; = m|+ B8+ (L= ml + V] Cim —1+Z|uz|+;|vl|—2.
1-5

The following theorem shows that, the necessary condition for the function
fm(2) = h(2) + gm(z) of the form (5) is the condition (6).

Theorem 2.3. Let function fm(z) = h(z)+ gm(z) be given by (5). Then fn(z) €
G (m, p, B) if and only if

Z ([l —=m| =B+ (|l =m|—1)p] Cim|ai
= (7)
+ ) (lt=m|+ B+ (|l = m| + 1)p] Cim|bi| <1 - B.

=1

Proof. 1t is easy to prove the 'if part’, since fy,(2) € Gz (m, p, B) C Gu (m, p, B).
Now, we prove the ’only if’ part of Theorem 2.3. Let f,,(2) = h(2) + gm(2) €
Gz (m, p, B). Then the condition (4) is equivalent to

Fmf(z)

me(z) - (pem + 6)} >0

Re{(l + pei®)
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implies that,

Re{ (1+ peia)Fm+1f;szjfei“ + B)F™ f(z) } > 0.

Therefore,

(1 + pet@) {z — l; Cim+1y ||zt + (=1)2m+1 121 Ciim+1) |bl|;:|

z — E Clm|al|zl + E Clm|bl|g
Re =2 =1

(pe’® + B)) [Z — 3 Cimlar] 2t + (-1)*™ 3 Clm|bl|?}
1=2 =1

o0 oo J—
z — C’lm|al|zl + E C’lm|bl|zl
1=2 =1

Let H = (1—8) = Y2, [ll—m| =B+ (Il —m|—1)pe’®] Cipmlai|z'~1.  After
simplification, we get

H = 2(=12 3 [l m| + 8+ (I = m] + )pei=] Cim o7
Re l:io = >0. (8)
1-— Z Clm|al|zl*1 + g Z Clm|bl|zl71

=2 =1

The condition (8) must hold for all values of z on the positive real axis, 0 <
|z| = r < 1. Choose the values of z on positive real axis, where 0 < |z| =7 < 1.
Now we have

{H_em [Z [[l—=m|—1] pClm ;|7 =1+ [ll—m|+1] psz|bl|rl1] }
Re =2 =1

oo > > 0.
L—=3" Cimlarrt=" + 37 Cipn [br|r' =1
1=2 =1

Since Re(—e!®) > —|e’¥| = —1, the above inequality become
(1=8) =D _[lt—=m| =B+ (It = m| = 1)p] Cirma|r'~*
1=2

(11— m|+ B+ (|l = m| + 1)p] Cum|bu]r'~*

Re—— =1 _ _ >0. (9
TS, Ot T 4 5, G [l ®)

If condition (7) is not satisfied, then numerator in (9) is negative for r sufficient
close to 1. This contradicts the condition for f,,(2) € G (m,p, 5). Therefore
proof is complete. ]
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3. Convolution

For harmonic functions

_Z—Z|al|z +( Z|bl|zl
and

—Z—Z|Al|z -l- Z|Bl|2l~

We define the convolution of two harmonic function f,,(z) and F,,(z) as

oo oo

(fn * Fru)(2) = fin(2) # Fn(2) = 2 = Y laAil2! + (=)™ Y [ Byl=l. (10)

1=2 =1

Theorem 3.1. For 0 < 1 < B2 < 1, let f(2) € G (m,p,B2) and Fp(z) €
gﬁ (mapaﬁl)' Then fm(Z) * Fm(z) € gﬁ (mapaﬁQ) - gI:I (m7p7 ﬁl) .

Proof. Let fm(z) = 2 — 312, |a|z! + (=)™ 32, bilz! € G (m, p, B2) and
Fo(z) = 2 = Y02, A2 + (1™ Y2, | Bil2! € G (m,p, 1), then the con-
volution (f, * Fin)(z) is given by (10). We wish to show that the coefficient
of (fm * Fi,)(z) satisfies the required condition given in Theorem 2.3. For
Fi(2) € Gz (m,p,B1), we note that |C;| < 1 and |D;| < 1. Now, for the co-
efficient of (f,, * Fi,)(2), we have

|:[|l _m| _61 + (|l _m| - 1)p] Clm|alAl|:|

1=2 1-5
. [[ll—ml +61+1(|l—m| +1)p] CmblBl@
Z — B
— [l =m| =81+ (Il = m| = 1)p] Cim,
= lzz: [ 1—-5 |al|]
| (SRRl
- my)
B3| SLELEEL R L
z 15
+Z [ |l—m|+62+(|l—m|+1)p]Clm|bl|] <1
I=1 1-p
Since 0 < f1 < B2 < 1 and fin(2) € G (M, p,B2). Thus fn(z) * Frn(z) €
Gy (m, p, B2) C Gy (m, p, B1) . Therefore proof of theorem is complete. [
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4. Convex Combination

Let the functions f,,,(z) be defined, for i =1,2,3,---,4,--- by

fmi (2 —Z—Z|a“|z + ( Z|blz|zl (11)

Theorem 4.1. Let the functions fum,(z) of the forms (11) belong to the class
Gz (m,p,B) for every i = 1,2,3,---,j. Then the functions t;(z) defined by
ti(z) = 3! difmi(2),0 < d; < 1 are also in the class Gz (m,p, 3), where
I di=1
1=1"" :

Proof. By the definition of ¢;(z), we can write

t:(2) —Z—Z(Zd|a“|>z+ mi(idiwl,iozl

=2 \i=1 =1

On comparing above equation with (5), we obtain |a;| = (Zle di|al,i|) and
|bi| = ( zzl di|bl,i|). In order to prove t;(z) € G (m, p, B), we show that the

condition (7) satisfies. Consider

[M]8

[l =m[ =B+ ([l = m| = 1)p] Cipm ||

||
N

+> [[L=m|+ B+ (Il = m| + 1)p] Cim|bi]
=1

(|l =m| =B+ (|l =m| =1)p] Cim <Z diI@l@l)

J
[t —m| + B+ (11— m]| +1)p] Cu (Z di|bl,i|>
=1

ol

I|
N

+
nMg

=1

di <Z ([l =m| =B+ ([l =m| —1)p] Cimlai |

=2

Il
&, B

K3

+ ) lll=ml+ B+ (|l —m|+1)p] sz|b1,¢|>

1

l
<3 4201 - 8) <21 ).

=1

Since fim, (2) are in Gg (m, p, 8) for every i =1,2,3,---
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Therefore by Theorem 2.3, t;(2) € Gz (m, p, 3) and so the proof is complete.
m

5. Extreme Points

Theorem 5.1. Let f,(z) be given by (5). Then fm(2) € Gi (m, p, B) if and only
if
fm(z) = Z [Nlhl(z) + MGm, (Z)] ) (12)
=1
where

_ _ 1-8 L —
hi(z) = z,h(z) = 2z — (Hl*m‘fﬂ+(\l7m\fl)p]c'lm) 2 0=23 -

_ m 1-p 17—
gm () = 2+ (D" (i) 2= 123,

and Y2, (i +m) = L > 0,m > 0. In particular, the extreme points of
Gy (m, p, B) are {hi(2)} and {gm,(2)}.

Proof. For functions f,,(z) of the form (12), we have

oo

Fu2) = 3 ltuha2) + g (2)]

=1

N Ks 1-5 ,
_;(M-f-m)z ;[|l—m|—B+(|l—m|—1)p]0lmmz

1-p5

+(_1)m ; [|l — m| 1A+ (|l _ m| + l)p] Cim

mzt.

Now, on comparing above equation with (5), we obtain |a =

1-5 — 1-4 ;
T=m=pr(i—m-Dalc . 2nd bl = s mmaes, M- For proving
fm(2) € G (m, p, B) we show that condition (7) satisfies. Consider,

3 {[Il —m| -5 +1(|i—5m| —1p] sz} al

pu—muﬂ+uwwm+nmamhw

[N}

[M]8

+ 1-8

l

1

Y m=1—m <1.
=1

)

Therefore by Theorem 2.3, f,,(2) € Gz (m, p, B).
Conversely, suppose that f,(z) € G (m, p, 5). Set
[l —m| =B+ (l—m[—1)p|Cim
1-p

[ V)

My = |al|70§ﬂl§17l:2a37"'a
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and

(|t =m[+ B+ (|l =m|+1)p] Cim
1-p

and p1 =1— "5 — Y0y m- Then f,,(z) can be written as

= [bi,0<m; <1,1=1,2,3,---,

oo oo

fnl2) =2 =3l + (D)™ Y [l

=1

=2
< (1-5) l
- ;“l—m|—5+(|l—m|—1)p]szmz

1)m = (1 _ﬁ)
[l =ml+ B+ (|l —m|+1)p] Cim

~

+ (= mzt

—~

=2

(hi(2) = 2)pu1 + Z<gml (2)
ha(z) +ngz z)m + 2 (1 - Zuz Zm)

[ hi(2) 1 + Gomy ()1

I
i
WK

N
||
N

I|
N

%8

I
-

so the proof is complete. ]

Theorem 5.2. Each member of G (m, p, ), (0 < 8 < 1) maps U onto a starlike
domain.

Proof. We only need to show that, if f,,,(2) € Gz (m, p, §), then
’ VRSN
o (O @)
h(z) + gm(z)

Using the fact that Re(a) > 0 if and only if |1 + «f > |1 — . It is suffices to
show that

B(z) + gm(2) + 21 (2) = 290, 2)|

_ ‘h(z)+gm—(z)—zh( )+zgm(2)‘

= 22= Y (14 D]al! = (=)™ (1= 1)bs
1

=2

1=
Zl—1|al|z—|— le+1|bl|zl
1= =1
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. (z|z|—z<z+1>|al||zv—za—uwlnzv)
=2 =1
_ (Z(z a0 1>|bl||zv)
=2 =1

2|z l1 — < la|2|" +21|bl||z|“>]
=2

=1

Y

2|z {1 =Y [lt=m| =B+ (Il = m| = 1)p] Cipulas]

1=2

=D llt=ml+ B+ (|l = m| + 1)p] szIbz|}

=1
> 202[1 — (1 - B)] = 2/218 > 0.

Hence proof is complete. ]

Theorem 5.3. Let f,(z) be given by (5) belong to the class Gy (m,p,3) and
¢ is any real number with ¢ > —1. Then the function L.(fm(z)) defined as
Le(fn(2)) = <4 foz t L fin (t)dt, ¢ > —1, is also belong to the class Gz (m, p, B).

2C

Proof. From definition of L.(f,(2)), it follows that

Le(fm(2)) = C;;l /0 L () dt

+1 z B o0 . oo _
- CZC / et <t—Z|al|tl+(—1) 'Z“’l“l) dt
0 1=1

=2

oo

c+1 . c+1 =
= —E —1’"E by| 2!
’ 1=2 C+l|al|z ey =1 c+l| .

oo

=z A+ (=)™ ) |BifE
=2

=1
Now,on comparing the above equation with (5), we obtain |a;| = |A;| = ‘;ﬁ |
and |b| = |B| = Ccﬁ|bl| In order to prove L.(fm(2)) € G (m,p, ), we need

to show that condition (7) satisfies. Consider,

> ([l—=m|—=B4+(l—m|—1)p]Cim C+1|a|
< 1-8 cr 1

+§:[|l—m|+5+(|l—m|+1)/)]clm (C+1 )

V)

b
1-3 il

1
< S [Lomos o 1G]

1=

~

=2
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S [[Il—m|+6+(|l—m|+1>p]czm bl <1
=1

1-p

Since fm(z) € Gg(m,p,B). Therefore by Theorem 2.3, L.(fm(z)) €
Gz (m, p, B). Proof is complete. [
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