Subclass of Harmonic Univalent Functions Associated with the Differential Operator

D. D. Bobalade
Department of Science and Humanities, Rajarambapu Institute of Technology, Shivaji
University, Sakharale, MS-415414, India
Email: dnyaneshwar.boblade@gmail.com
N. D. Sangle
Department of Mathematics, D.Y. Patil College of Engineering and Technology, Kasaba Bawada, Kolhapur (M.S.), India 416006
Email: navneet_sangle@rediffmail.com
S. N. Yadav
Department of Science and Humanities, Rajarambapu Institute of Technology, Shivaji University, Sakharale, MS-415414, India
Email: sunilnyadavmath@gmail.com

Received 29 June 2020
Accepted 2 September 2022
Communicated by Peichu Hu

AMS Mathematics Subject Classification(2020): 30C45, 30C50

Abstract

In the present paper, we study a new subclasses of harmonic univalent functions by using differential operator in the unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also we obtain the coefficient bounds, convex combination, extreme points and convolution conditions.

Keywords: Harmonic functions; Univalent functions; Differential operator.

1. Introduction

Let \mathcal{A} denote the class of analytic functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{l=2}^{\infty} a_{l} z^{l} \tag{1}
\end{equation*}
$$

defined in the unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ with normalization $f(0)=$ $f_{z}(0)-1=0$. Let the class of all normalized analytic univalent functions in the unit disc \mathbb{U} is denoted by S .

A continuous complex valued function $f=u+i v$ defined in the simply connected domain $D \subset \mathbb{C}$ (Complex plane) is said to be harmonic in D if both u and v are real harmonic in D. Clunie and Shiel-Small [8] showed that in any simple connected domain D, we can write $f=h+\bar{g}$, where both h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sensepreserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in $D([8])$.

The class of functions $f(z)=h(z)+\overline{g(z)}$ which are harmonic univalent and sense-preserving in the unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ for which $f(0)=$ $f_{z}(0)-1=0$ is denoted by S_{H}. Each $f(z) \in S_{H}$, can be written as

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)} \tag{2}
\end{equation*}
$$

where

$$
h(z)=z+\sum_{l=2}^{\infty} a_{l} z^{l}, \quad g(z)=\sum_{l=1}^{\infty} b_{l} z^{l},\left|b_{1}\right|<1
$$

are analytic in \mathbb{U}.
If we take $g(z)=0$ in (2), then the class S_{H} reduces to the class S. Also S_{H}^{*} is subclass of S_{H} consisting of function that map \mathbb{U} onto starlike domain. In 1984, Clunie and Sheil-Small [8] investigated the class S_{H} and its geometric subclasses and obtain some coefficient bounds. Since then, many authors Sheil-Small [8], Silverman [16], Silverman and Silvia [17], and Jahangiri [8] have studied the subclasses of harmonic univalent functions. Ahuja [1] presented a systematic and unified study of harmonic univalent functions. Recently, many authors investigated various subclasses of harmonic univalent functions [2, 6, 7, 16]. Furthermore we refer to Duren [8], Ponnusamy [13] and their references for basic result on the subject.

In 2016, Makinde [12] introduced the differential operator $F^{m}: \mathcal{A} \rightarrow \mathcal{A}$ and defined as

$$
F^{m} f(z)=z+\sum_{l=2}^{\infty} C_{l m} a_{l} z^{l}, \quad C_{l m}=\frac{l!}{|(l-m)|!}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

Later, Bharavi Sharma et al. [5] defined the differential operator $F^{m}: S_{H} \rightarrow \mathcal{S}_{H}$ as

$$
\begin{equation*}
F^{m} f(z)=F^{m} h(z)+(-1)^{m} \overline{F^{m} g(z)}, m \in \mathbb{N}_{0} \tag{3}
\end{equation*}
$$

where

$$
F^{m} h(z)=z+\sum_{l=2}^{\infty} C_{l m} a_{l} z^{l}, \quad F^{m} g(z)=\sum_{l=1}^{\infty} C_{l m} b_{l} z^{l}
$$

In 2001, Rosy et al. [15] defined the subclass $\mathcal{G}_{H}(\beta)$ consisting of harmonic univalent functions $f(z)$ of the form (2), and $f(z)$ satisfies the following condition:

$$
\operatorname{Re}\left\{\left(1+e^{i \alpha}\right) \frac{z f^{\prime}(z)}{f(z)}-e^{i \alpha}\right\} \geq \beta, \quad 0 \leq \beta<1, \alpha \in \mathbb{R}, z \in \mathbb{U}
$$

In 2012, Patak et al.[14] defined the subclass $\mathcal{G}_{H}(m, \lambda, \rho, \beta)$ consist of harmonic univalent functions $f(z)$ of the form (2), and $f(z)$ satisfies the condition

$$
\operatorname{Re}\left\{\left(1+\rho e^{i \alpha}\right) \frac{D_{\lambda}^{m+1} f(z)}{D_{\lambda}^{m} f(z)}-\rho e^{i \alpha}\right\}>\beta, 0 \leq \beta<1, \rho \geq 0, \alpha \in \mathbb{R}, z \in \mathbb{U}
$$

where D_{λ}^{m} operator defined by Al-Shaksi and Darus [3], and is given by

$$
D_{\lambda}^{m} f(z)=D_{\lambda}^{m} h(z)+(-1)^{m} \overline{D_{\lambda}^{m} g(z)}, m, \lambda \in \mathbb{N}_{0}
$$

Motivated from this work, we defined the subclass $\mathcal{G}_{H}(m, \rho, \beta)$ consist of harmonic univalent functions $f(z)$ of the form (2), and $f(z)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+\rho e^{i \alpha}\right) \frac{F^{m+1} f(z)}{F^{m} f(z)}-\rho e^{i \alpha}\right\}>\beta \tag{4}
\end{equation*}
$$

for $m \in \mathbb{N}_{0}, 0 \leq \beta<1, \rho \geq 0, \alpha \in \mathbb{R},(z \in \mathbb{U})$, where $F^{m} f(z)$ is defined by (3).
Let $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ denote the subclass of $\mathcal{G}_{H}(m, \rho, \beta)$ consisting of harmonic functions of the form

$$
\begin{equation*}
f_{m}(z)=h(z)+\overline{g_{m}(z)} \tag{5}
\end{equation*}
$$

where

$$
h(z)=z-\sum_{l=2}^{\infty}\left|a_{l}\right| z^{l} \text { and } g_{m}(z)=(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l}\right| z^{l}
$$

For $\rho=0$, the class $\mathcal{G}_{H}(m, \rho, \beta)$ reduced to the class $\mathcal{B}_{H}(m, \beta)$, studied by Bharavi Sharma et al. ([5]). Also, for $\rho=1, m=0$, the class $\mathcal{G}_{H}(m, \rho, \beta)$ reduced to the class $\mathcal{G}_{H}(\beta)$, studied by Rosy ([15]).

The aim of the present paper is, to obtain sufficient condition for functions $f(z) \in \mathcal{G}_{H}(m, \rho, \beta)$ of the form (2) and to obtain the necessary and sufficient condition for functions $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$ of the form (5). Also, the aim is to obtain convolution, Convex combination and extreme points for functions $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$ of the form (5).

2. Main Results

Theorem 2.1. Let $f(z)=h(z)+\overline{g(z)}$ be given by (2). If

$$
\begin{align*}
& \sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right| \tag{6}\\
& +\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right| \leq 1-\beta
\end{align*}
$$

where $0 \leq \beta<1, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \alpha \in \mathbb{R}, \rho \geq 0$ and $C_{l m}=\frac{l!}{\mid(l-m)!!}$. Then f is sense-preserving, harmonic univalent in \mathbb{U} and $f \in \mathcal{G}_{H}(m, \rho, \beta)$.

Proof. If $z_{1} \neq z_{2}$, then

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
& =1-\left|\frac{\sum_{l=1}^{\infty} b_{l}\left(z_{1}^{l}-z_{2}^{l}\right)}{\left(z_{1}-z_{2}\right)+\sum_{l=2}^{\infty} a_{l}\left(z_{1}^{l}-z_{2}^{l}\right)}\right| \\
& >1-\frac{\sum_{l=1}^{\infty} l\left|b_{l}\right|}{1-\sum_{l=2}^{\infty} l\left|a_{l}\right|} \\
& \geq 1-\frac{\sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right|}{1-\beta}}{1-\sum_{l=2}^{\infty} \frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right|}{1-\beta}} \\
& \geq 0 .
\end{aligned}
$$

Hence, $f(z)$ is univalent in $\mathbb{U} . f(z)$ is sense-preserving in \mathbb{U} because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{l=2}^{\infty} l\left|a_{l}\right||z|^{l-1} \\
& >1-\sum_{l=2}^{\infty} \frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right|}{1-\beta} \\
& \geq \sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right|}{1-\beta} \\
& >\sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right||z|^{l-1}}{1-\beta} \\
& \geq \sum_{l=1}^{\infty} l\left|b_{l}\right||z|^{l-1} \geq\left|g^{\prime}(z)\right| .
\end{aligned}
$$

Now, we show that $f(z) \in \mathcal{G}_{H}(m, \rho, \beta)$, using the fact that $\operatorname{Re}(\alpha)>\beta$ if and only if $|1-\beta+\alpha| \geq|1+\beta-\alpha|$. It is suffices to show that
$\left|1-\beta+\left(1+\rho e^{i \alpha}\right) \frac{F^{m+1} f(z)}{F^{m} f(z)}-\rho e^{i \alpha}\right|-\left|1+\beta-\left(1+\rho e^{i \alpha}\right) \frac{F^{m+1} f(z)}{F^{m} f(z)}+\rho e^{i \alpha}\right| \geq 0$.

Now,

$$
\begin{aligned}
& \left|\left(1-\beta-\rho e^{i \alpha}\right) F^{m} f(z)+\left(1+\rho e^{i \alpha}\right) F^{m+1} f(z)\right| \\
& -\left|\left(1+\beta+\rho e^{i \alpha}\right) F^{m} f(z)-\left(1+\rho e^{i \alpha}\right) F^{m+1} f(z)\right| \\
& =\mid(2-\beta) z+\sum_{l=2}^{\infty}\left[|l-m|+|l-m| \rho e^{i \alpha}+\left(1-\beta-\rho e^{i \alpha}\right)\right] C_{l m} a_{l} z^{l} \\
& -(-1)^{m} \sum_{l=1}^{\infty}\left[|l-m|+|l-m| \rho e^{i \alpha}-\left(1-\beta-\rho e^{i \alpha}\right)\right] C_{l m} \overline{b_{l} z^{l}} \mid \\
& -\mid \beta z-\sum_{l=2}^{\infty}\left[|l-m|+|l-m| \rho e^{i \alpha}-\left(1+\beta+\rho e^{i \alpha}\right)\right] C_{l m} a_{l} z^{l} \\
& +(-1)^{m} \sum_{l=1}^{\infty}\left[|l-m|+|l-m| \rho e^{i \alpha}+\left(1+\beta+\rho e^{i \alpha}\right)\right] C_{l m} \overline{b_{l} z^{l}} \mid \\
& \geq(2-\beta)|z|-\sum_{l=2}^{\infty}[|l-m|+|l-m| \rho+(1-\beta-\rho)] C_{l m}\left|a_{l}\right||z|^{l} \\
& -\sum_{l=1}^{\infty}[|l-m|+|l-m| \rho-(1-\beta-\rho)] C_{l m}\left|b_{l}\right||z|^{l} \\
& -\beta|z|-\sum_{l=2}^{\infty}[|l-m|+|l-m| \rho-(1+\beta+\rho)] C_{l m}\left|a_{l}\right||z|^{l} \\
& -\sum_{l=1}^{\infty}[|l-m|+|l-m| \rho+(1+\beta+\rho)] C_{l m}\left|b_{l}\right||z|^{l} \\
& =(2-\beta)|z|-2 \sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right||z|^{l} \\
& -2 \sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right||z|^{l} \\
& =2(1-\beta)|z|\left[1-\sum_{l=2}^{\infty} \frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right||z|^{l-1}}{1-\beta}\right. \\
& \left.-\sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right||z|^{l-1}}{1-\beta}\right] \\
& \text { (since } z \in \mathbb{U},|z|<1 \text {) } \\
& >2(1-\beta)\left[1-\sum_{l=2}^{\infty} \frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right|}{1-\beta}\right. \\
& \left.-\sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right|}{1-\beta}\right] .
\end{aligned}
$$

Last expression is non-negative by (6), therefore the proof is complete.

If we plug $\rho=0$ in Theorem 2.1, then Corollary 2.2 is obtained.

Corollary 2.2. [5] Let $f(z)=h(z)+\overline{g(z)}$ be given by (2). If

$$
\sum_{l=2}^{\infty}[|l-m|-\beta] C_{l m}\left|a_{l}\right|+\sum_{l=1}^{\infty}[|l-m|+\beta] C_{l m}\left|b_{l}\right| \leq 1-\beta
$$

where $0 \leq \beta<1, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $C_{l m}=\frac{l!}{\mid(l-m)!!}$. Then f is sensepreserving, harmonic univalent in \mathbb{U} and $f \in \mathcal{B}_{H}(m, \beta)$.

The harmonic function given below shows that the coefficient bound given by (6) is sharp.

$$
\begin{aligned}
f(z)= & z+\sum_{l=2}^{\infty} \frac{1-\beta}{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}} u_{l} z^{l} \\
& +\sum_{l=1}^{\infty} \frac{1-\beta}{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}} \overline{v_{l} z^{l}}
\end{aligned}
$$

where $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \rho \geq 0$ and $\sum_{l=2}\left|u_{l}\right|+\sum_{l=1}\left|v_{l}\right|=1$.
The above defined harmonic function is in $\mathcal{G}_{H}(m, \rho, \beta)$. We have

$$
\sum_{l=i}^{\infty}\left[\begin{array}{c}
\frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}{1-\beta}\left|a_{l}\right| \\
+\frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}{1-\beta}\left|b_{l}\right|
\end{array}\right]=1+\sum_{l=2}\left|u_{l}\right|+\sum_{l=1}\left|v_{l}\right|=2
$$

The following theorem shows that, the necessary condition for the function $f_{m}(z)=h(z)+\overline{g_{m}(z)}$ of the form (5) is the condition (6).

Theorem 2.3. Let function $f_{m}(z)=h(z)+\overline{g_{m}(z)}$ be given by (5). Then $f_{m}(z) \in$ $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ if and only if

$$
\begin{align*}
& \sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right| \\
& +\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right| \leq 1-\beta \tag{7}
\end{align*}
$$

Proof. It is easy to prove the 'if part', since $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta) \subset \mathcal{G}_{H}(\underline{m, \rho, \beta})$. Now, we prove the 'only if' part of Theorem 2.3. Let $f_{m}(z)=h(z)+\overline{g_{m}(z)} \in$ $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$. Then the condition (4) is equivalent to

$$
\operatorname{Re}\left\{\left(1+\rho e^{i \alpha}\right) \frac{F^{m+1} f(z)}{F^{m} f(z)}-\left(\rho e^{i \alpha}+\beta\right)\right\} \geq 0
$$

implies that,

$$
\operatorname{Re}\left\{\frac{\left(1+\rho e^{i \alpha}\right) F^{m+1} f(z)-\left(\rho e^{i \alpha}+\beta\right) F^{m} f(z)}{F^{m} f(z)}\right\} \geq 0
$$

Therefore,

$$
\operatorname{Re}\left\{\begin{array}{c}
\frac{\left(1+\rho e^{i \alpha}\right)\left[z-\sum_{l=2}^{\infty} C_{l(m+1)}\left|a_{l}\right| z^{l}+(-1)^{2 m+1} \sum_{l=1}^{\infty} C_{l(m+1)}\left|b_{l}\right| \overline{z^{l}}\right]}{z-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| z^{l}+\sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| \overline{z^{l}}} \\
-\frac{\left.\left(\rho e^{i \alpha}+\beta\right)\right)\left[z-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| z^{l}+(-1)^{2 m} \sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| \overline{z^{l}}\right]}{z-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| z^{l}+\sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| \overline{z^{l}}}
\end{array}\right\} \geq 0
$$

Let $H=(1-\beta)-\sum_{l=2}^{\infty}\left[|l-m|-\beta+(|l-m|-1) \rho e^{i \alpha}\right] C_{l m}\left|a_{l}\right| z^{l-1}$. After simplification, we get

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{H-\frac{\bar{z}}{z}(-1)^{2 m} \sum_{l=1}^{\infty}\left[|l-m|+\beta+(|l-m|+1) \rho e^{i \alpha}\right] C_{l m}\left|b_{l}\right| \overline{z^{l-1}}}{1-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| z^{l-1}+\frac{\bar{z}}{z} \sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| \overline{z^{l-1}}}\right\} \geq 0 \tag{8}
\end{equation*}
$$

The condition (8) must hold for all values of z on the positive real axis, $0 \leq$ $|z|=r<1$. Choose the values of z on positive real axis, where $0 \leq|z|=r<1$. Now we have

$$
\operatorname{Re} \frac{\left\{H-e^{i \alpha}\left[\sum_{l=2}^{\infty}[|l-m|-1] \rho C_{l m}\left|a_{l}\right| r^{l-1}+\sum_{l=1}^{\infty}[|l-m|+1] \rho C_{l m}\left|b_{l}\right| r^{l-1}\right]\right\}}{1-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| r^{l-1}+\sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| r^{l-1}} \geq 0
$$

Since $\operatorname{Re}\left(-e^{i \alpha}\right) \geq-\left|e^{i \alpha}\right|=-1$, the above inequality become

$$
\operatorname{Re} \frac{\left[\begin{array}{l}
(1-\beta)-\sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right| r^{l-1} \tag{9}\\
-\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right| r^{l-1}
\end{array}\right]}{1-\sum_{l=2}^{\infty} C_{l m}\left|a_{l}\right| r^{l-1}+\sum_{l=1}^{\infty} C_{l m}\left|b_{l}\right| r^{l-1}} \geq 0 .
$$

If condition (7) is not satisfied, then numerator in (9) is negative for r sufficient close to 1 . This contradicts the condition for $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$. Therefore proof is complete.

3. Convolution

For harmonic functions

$$
f_{m}(z)=z-\sum_{l=2}^{\infty}\left|a_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l}\right| \overline{z^{l}}
$$

and

$$
F_{m}(z)=z-\sum_{l=2}^{\infty}\left|A_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|B_{l}\right| \overline{z^{l}}
$$

We define the convolution of two harmonic function $f_{m}(z)$ and $F_{m}(z)$ as

$$
\begin{equation*}
\left(f_{m} * F_{m}\right)(z)=f_{m}(z) * F_{m}(z)=z-\sum_{l=2}^{\infty}\left|a_{l} A_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l} B_{l}\right| \overline{z^{l}} \tag{10}
\end{equation*}
$$

Theorem 3.1. For $0 \leq \beta_{1} \leq \beta_{2}<1$, let $f_{m}(z) \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{2}\right)$ and $F_{m}(z) \in$ $\mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{1}\right)$. Then $f_{m}(z) * F_{m}(z) \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{2}\right) \subset \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{1}\right)$.

Proof. Let $f_{m}(z)=z-\sum_{l=2}^{\infty}\left|a_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l}\right| \overline{z^{l}} \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{2}\right)$ and $F_{m}(z)=z-\sum_{l=2}^{\infty}\left|A_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|B_{l}\right| \overline{z^{l}} \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{1}\right)$, then the convolution $\left(f_{m} * F_{m}\right)(z)$ is given by (10). We wish to show that the coefficient of $\left(f_{m} * F_{m}\right)(z)$ satisfies the required condition given in Theorem 2.3. For $F_{m}(z) \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{1}\right)$, we note that $\left|C_{l}\right| \leq 1$ and $\left|D_{l}\right| \leq 1$. Now, for the coefficient of $\left(f_{m} * F_{m}\right)(z)$, we have

$$
\begin{aligned}
& \sum_{l=2}^{\infty}\left[\frac{\left[|l-m|-\beta_{1}+(|l-m|-1) \rho\right] C_{l m}}{1-\beta_{1}}\left|a_{l} A_{l}\right|\right] \\
& +\sum_{l=1}^{\infty}\left[\frac{\left[|l-m|+\beta_{1}+(|l-m|+1) \rho\right] C_{l m}}{1-\beta_{1}}\left|b_{l} B_{l}\right|\right] \\
\leq & \sum_{l=2}^{\infty}\left[\frac{\left[|l-m|-\beta_{1}+(|l-m|-1) \rho\right] C_{l m}}{1-\beta_{1}}\left|a_{l}\right|\right] \\
& +\sum_{l=1}^{\infty}\left[\frac{\left[|l-m|+\beta_{1}+(|l-m|+1) \rho\right] C_{l m}}{1-\beta_{1}}\left|b_{l}\right|\right] \\
\leq & \sum_{l=2}^{\infty}\left[\frac{\left[|l-m|-\beta_{2}+(|l-m|-1) \rho\right] C_{l m}}{1-\beta_{2}}\left|a_{l}\right|\right] \\
& +\sum_{l=1}^{\infty}\left[\frac{\left[|l-m|+\beta_{2}+(|l-m|+1) \rho\right] C_{l m}}{1-\beta_{2}}\left|b_{l}\right|\right] \leq 1
\end{aligned}
$$

Since $0 \leq \beta_{1} \leq \beta_{2}<1$ and $f_{m}(z) \in \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{2}\right)$. Thus $f_{m}(z) * F_{m}(z) \in$ $\mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{2}\right) \subset \mathcal{G}_{\bar{H}}\left(m, \rho, \beta_{1}\right)$. Therefore proof of theorem is complete.

4. Convex Combination

Let the functions $f_{m_{i}}(z)$ be defined, for $i=1,2,3, \cdots, j, \cdots$ by

$$
\begin{equation*}
f_{m_{i}}(z)=z-\sum_{l=2}^{\infty}\left|a_{l, i}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l, i}\right| \overline{z^{l}} \tag{11}
\end{equation*}
$$

Theorem 4.1. Let the functions $f_{m_{i}}(z)$ of the forms (11) belong to the class $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ for every $i=1,2,3, \cdots, j$. Then the functions $t_{i}(z)$ defined by $t_{i}(z)=\sum_{i=1}^{j} d_{i} f_{m_{i}}(z), 0 \leq d_{i} \leq 1$ are also in the class $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$, where $\sum_{i=1}^{j} d_{i}=1$.

Proof. By the definition of $t_{i}(z)$, we can write

$$
t_{i}(z)=z-\sum_{l=2}^{\infty}\left(\sum_{i=1}^{j} d_{i}\left|a_{l, i}\right|\right) z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left(\sum_{i=1}^{j} d_{i}\left|b_{l, i}\right|\right) \overline{z^{l}}
$$

On comparing above equation with (5), we obtain $\left|a_{l}\right|=\left(\sum_{i=1}^{j} d_{i}\left|a_{l, i}\right|\right)$ and $\left|b_{l}\right|=\left(\sum_{i=1}^{j} d_{i}\left|b_{l, i}\right|\right)$. In order to prove $t_{i}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$, we show that the condition (7) satisfies. Consider

$$
\begin{aligned}
& \sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right| \\
& +\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right| \\
= & \sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left(\sum_{i=1}^{j} d_{i}\left|a_{l, i}\right|\right) \\
& +\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left(\sum_{i=1}^{j} d_{i}\left|b_{l, i}\right|\right) \\
= & \sum_{i=1}^{j} d_{i}\left(\sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l, i}\right|\right. \\
& \left.+\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l, i}\right|\right) \\
\leq & \sum_{i=1}^{j} d_{i} 2(1-\beta) \leq 2(1-\beta) .
\end{aligned}
$$

Since $f_{m_{i}}(z)$ are in $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ for every $i=1,2,3, \cdots$.

Therefore by Theorem $2.3, t_{i}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$ and so the proof is complete.

5. Extreme Points

Theorem 5.1. Let $f_{m}(z)$ be given by (5). Then $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$ if and only if

$$
\begin{equation*}
f_{m}(z)=\sum_{l=1}^{\infty}\left[\mu_{l} h_{l}(z)+\eta_{l} g_{m_{l}}(z)\right] \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{1}(z) & =z, h_{l}(z)=z-\left(\frac{1-\beta}{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}\right) z^{l}, l=2,3, \cdots \\
g_{m_{l}}(z) & =z+(-1)^{m}\left(\frac{1-\beta}{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}\right) \bar{z}^{l}, l=1,2,3, \cdots
\end{aligned}
$$

and $\sum_{l=1}^{\infty}\left(\mu_{l}+\eta_{l}\right)=1, \mu_{l} \geq 0, \eta_{l} \geq 0$. In particular, the extreme points of $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ are $\left\{h_{l}(z)\right\}$ and $\left\{g_{m_{l}}(z)\right\}$.

Proof. For functions $f_{m}(z)$ of the form (12), we have

$$
\begin{aligned}
f_{m}(z)= & \sum_{l=1}^{\infty}\left[\mu_{l} h_{l}(z)+\eta_{l} g_{m_{l}}(z)\right] \\
= & \sum_{l=1}^{\infty}\left(\mu_{l}+\eta_{l}\right) z-\sum_{l=2}^{\infty} \frac{1-\beta}{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}} \mu_{l} z^{l} \\
& +(-1)^{m} \sum_{l=1}^{\infty} \frac{1-\beta}{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}} \eta_{l} \overline{z^{l}}
\end{aligned}
$$

Now, on comparing above equation with (5), we obtain $\left|a_{l}\right|=$ $\frac{1-\beta}{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}} \mu_{l}$ and $\left|b_{l}\right|=\frac{1-\beta}{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}} \eta_{l}$. For proving $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$ we show that condition (7) satisfies. Consider,

$$
\begin{aligned}
& \sum_{l=2}^{\infty}\left[\frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}{1-\beta}\right]\left|a_{l}\right| \\
& +\sum_{l=1}^{\infty}\left[\frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}{1-\beta}\right]\left|b_{l}\right| \\
= & \sum_{l=2}^{\infty} \mu_{l}+\sum_{l=1}^{\infty} \eta_{l}=1-\mu_{1} \leq 1 .
\end{aligned}
$$

Therefore by Theorem 2.3, $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$.
Conversely, suppose that $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$. Set

$$
\mu_{l}=\frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}{1-\beta}\left|a_{l}\right|, 0 \leq \mu_{l} \leq 1, l=2,3, \cdots
$$

and

$$
\eta_{l}=\frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}{1-\beta}\left|b_{l}\right|, 0 \leq \eta_{l} \leq 1, l=1,2,3, \cdots,
$$

and $\mu_{1}=1-\sum_{l=2}^{\infty} \mu_{l}-\sum_{l=1}^{\infty} \eta_{l}$. Then $f_{m}(z)$ can be written as

$$
\begin{aligned}
f_{m}(z)= & z-\sum_{l=2}^{\infty}\left|a_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l}\right| \overline{z^{l}} \\
= & z-\sum_{l=2}^{\infty} \frac{(1-\beta)}{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}} \mu_{l} z^{l} \\
& +(-1)^{m} \sum_{l=2}^{\infty} \frac{(1-\beta)}{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}} \eta_{l} \overline{z^{l}} \\
= & z+\sum_{l=2}^{\infty}\left(h_{l}(z)-z\right) \mu_{l}+\sum_{l=1}^{\infty}\left(g_{m_{l}}(z)-z\right) \eta_{l} \\
= & \sum_{l=2}^{\infty} h_{l}(z) \mu_{l}+\sum_{l=1}^{\infty} g_{m_{l}}(z) \eta_{l}+z\left(1-\sum_{l=2}^{\infty} \mu_{l}-\sum_{l=1}^{\infty} \eta_{l}\right) \\
= & \sum_{l=1}^{\infty}\left[h_{l}(z) \mu_{l}+g_{m_{l}}(z) \eta_{l}\right],
\end{aligned}
$$

so the proof is complete.

Theorem 5.2. Each member of $\mathcal{G}_{\bar{H}}(m, \rho, \beta),(0 \leq \beta<1)$ maps \mathbb{U} onto a starlike domain.

Proof. We only need to show that, if $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$, then

$$
R e\left\{\frac{z h^{\prime}(z)-\overline{z g_{m}^{\prime}(z)}}{h(z)+\overline{g_{m}(z)}}\right\}>0 .
$$

Using the fact that $\operatorname{Re}(\alpha)>0$ if and only if $|1+\alpha| \geq|1-\alpha|$. It is suffices to show that

$$
\begin{aligned}
& \left|h(z)+\overline{g_{m}(z)}+z h^{\prime}(z)-\overline{z g_{m}^{\prime}(z)}\right| \\
& -\left|h(z)+\overline{g_{m}(z)}-z h^{\prime}(z)+\overline{z g_{m}^{\prime}(z)}\right| \\
= & \left|2 z-\sum_{l=2}^{\infty}(l+1)\right| a_{l}\left|z^{l}-(-1)^{m} \sum_{l=1}^{\infty}(l-1)\right| b_{l}\left|\overline{z^{l}}\right| \\
& -\left|\sum_{l=2}^{\infty}(l-1)\right| a_{l}\left|z^{l}+(-1)^{m} \sum_{l=1}^{\infty}(l+1)\right| b_{l}\left|\overline{z^{l}}\right|
\end{aligned}
$$

$$
\begin{aligned}
\geq & \left(2|z|-\sum_{l=2}^{\infty}(l+1)\left|a_{l}\right||z|^{l}-\sum_{l=1}^{\infty}(l-1)\left|b_{l}\right||z|^{l}\right) \\
& -\left(\sum_{l=2}^{\infty}(l-1)\left|a_{l}\right||z|^{l}+\sum_{l=1}^{\infty}(l+1)\left|b_{l}\right||z|^{l}\right) \\
= & 2|z|\left[1-\left(\sum_{l=2}^{\infty} l\left|a_{l}\right||z|^{l-1}+\sum_{l=1}^{\infty} l\left|b_{l}\right||z|^{l-1}\right)\right] \\
\geq & 2|z|\left\{1-\sum_{l=2}^{\infty}[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}\left|a_{l}\right|\right. \\
& \left.-\sum_{l=1}^{\infty}[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}\left|b_{l}\right|\right\} \\
\geq & 2|z|[1-(1-\beta)]=2|z| \beta \geq 0 .
\end{aligned}
$$

Hence proof is complete.
Theorem 5.3. Let $f_{m}(z)$ be given by (5) belong to the class $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$ and c is any real number with $c>-1$. Then the function $L_{c}\left(f_{m}(z)\right)$ defined as $L_{c}\left(f_{m}(z)\right)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f_{m}(t) d t, c>-1$, is also belong to the class $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$.

Proof. From definition of $L_{c}\left(f_{m}(z)\right)$, it follows that

$$
\begin{aligned}
L_{c}\left(f_{m}(z)\right) & =\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f_{m}(t) d t \\
& =\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1}\left(t-\sum_{l=2}^{\infty}\left|a_{l}\right| t^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|b_{l}\right| \overline{t^{l}}\right) d t \\
& =z-\sum_{l=2}^{\infty} \frac{c+1}{c+l}\left|a_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty} \frac{c+1}{c+l}\left|b_{l}\right| \overline{z^{l}} \\
& =z-\sum_{l=2}^{\infty}\left|A_{l}\right| z^{l}+(-1)^{m} \sum_{l=1}^{\infty}\left|B_{l}\right| \overline{z^{l}}
\end{aligned}
$$

Now,on comparing the above equation with (5), we obtain $\left|a_{l}\right|=\left|A_{l}\right|=\frac{c+1}{c+l}\left|a_{l}\right|$ and $\left|b_{l}\right|=\left|B_{l}\right|=\frac{c+1}{c+l}\left|b_{l}\right|$. In order to prove $L_{c}\left(f_{m}(z)\right) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$, we need to show that condition (7) satisfies. Consider,

$$
\begin{aligned}
& \sum_{l=2}^{\infty} \frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}{1-\beta}\left(\frac{c+1}{c+l}\left|a_{l}\right|\right) \\
& +\sum_{l=1}^{\infty} \frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}{1-\beta}\left(\frac{c+1}{c+l}\left|b_{l}\right|\right) \\
\leq & \sum_{l=2}^{\infty}\left[\frac{[|l-m|-\beta+(|l-m|-1) \rho] C_{l m}}{1-\beta}\right]\left|a_{l}\right|
\end{aligned}
$$

$$
+\sum_{l=1}^{\infty}\left[\frac{[|l-m|+\beta+(|l-m|+1) \rho] C_{l m}}{1-\beta}\right]\left|b_{l}\right| \leq 1
$$

Since $f_{m}(z) \in \mathcal{G}_{\bar{H}}(m, \rho, \beta)$. Therefore by Theorem 2.3, $L_{c}\left(f_{m}(z)\right) \in$ $\mathcal{G}_{\bar{H}}(m, \rho, \beta)$. Proof is complete.

References

[1] O.P. Ahuja, Planer Harmonic Univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (4) (2005) 1-18.
[2] A.K. AL-khafaji, W.G. Atshan, S.S. Abed, On the generalization of a class of harmonic univalent functions defined by differential operator, Mathematics 6 (2018), 9 pages.
[3] K. Al-Shaqsi and M. Darus, On harmonic functions defined by derivative operator, Journal of Inequalities and Applications (2008) Art. ID 263413, 10 pages.
[4] H. Bayram and S. Yalin, On a new subclass of harmonic univalent functions, Malaysian Journal of Mathematical Sciences 14 (1) (2020) 63-75.
[5] R. Bharavi Sharma and B. Ravinder, On a Subclass of harmonic univalent functions, J. Phys. Conf. Ser 1000, (2018), 012115.
[6] D.D. Bobalade and N.D. Sangle, Certain subclass of harmonic univalent functions defined by generalized differential operator, Design Engineering 2020 (8) (2021) 7410-7422.
[7] D.D. Bobalade and N.D. Sangle, Subclass of harmonic univalent functions defined by differential operator, Jñānābha 51 (2) (2021) 130-136.
[8] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Series Al. Math. 9 (3) (1984) 3-25.
[9] P. Duren, Harmonic Mapping in the Plane, Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge, 2004.
[10] J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math. 2 (2002) 77-82.
[11] F.F. Aubdulnabi and K.A. Jassim, A class of harmonic univalent functions defined by differential operator and the generalization, Iraqi Journal of Science 61 (6) (2020) 1440-1445.
[12] D.O. Makinde, On a new differential operator, Theoretical Mathematics and Applications 6 (4) (2016) 71-74.
[13] S. Ponnusamy and A. Rasila, Planar harmonic mapping, RMS Mathematics Newsletter 17 (2) (2007) 40-57.
[14] A.L. Pathak, S.B. Joshi, D. Preeti, R. Agarwal, Subclass of harmonic univalent functions associated with the derivative operator, Hacettepe Journal of Mathematics and Statistics 4 (1) (2012) 47-58.
[15] T. Rosy, B.A. Stephen, K.G. Subramanian, J.M. Jahangiri, Goodman-Ronningtype harmonic univalent functions, Kyungpook Math. J. 41 (2001) 45-54.
[16] H. Silverman, Harmonic univalent function with negative coefficients, J. Math Anal. Appl. 220 (3) (1998) 233-289.
[17] H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zeal. J. Math. 28 (1999) 275-284.

