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Abstract. In the present paper, let X be a class of functions represented by Dirichlet

series analytic in the half plane. Various results on the topological structure in terms

of continuous linear functionals on X and continuous linear operator T
′ from X to

X have been established. Further the conditions under which a base in X becomes a

proper base have been characterised. Also the results on Frechet space and Total set

are discussed.
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1. Introduction

Let X be a class of functions represented by Dirichlet series

f(z) =

∞
∑

k=1

ak e
<λk,z>, z ∈ C

n (1)
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where {λk}; λk = (λk1 , λ
k
2 , ..., λ

k
n), k = 1, 2, ... be a sequence of complex vectors

in Cn and < λk, z >= λk1z1+λ
k
2z2+ ....+λ

k
nzn. Also {λk}′s satisfy the condition

|λk| → ∞ as k → ∞. If ak
′s ∈ C satisfy

lim sup
k→∞

log |ak|

|λk|
≤ −B (2)

where B is assumed to be a given positive number and

lim sup
k→∞

log k

|λk|
= 0 (3)

then for each f(z) ∈ X ,

σc(f) = σa(f) = − lim sup
k→∞

log |ak|

|λk|
,

where σc(f) and σa(f) denote the abscissa of convergence and the abscissa of
absolute convergence of f respectively. Suppose that (1) converges absolutely in
the left half plane r < B, where r is the real part of z. Then X includes all the
analytic functions represented by series (1). If

f(z) =
∞
∑

k=1

ake
<λk,z> and g(z) =

∞
∑

k=1

bke
<λk,z>

Define the binary operations defined in X as

f(z) + g(z) =
∞
∑

k=1

(ak + bk)e
<λk,z>,

ξ.f(z) =

∞
∑

k=1

(ξ.ak)e
<λk,z>.

Obviously X forms a vector space with usual pointwise addition and scalar
multiplication. Now for each f(z) ∈ X , define

‖f‖r =

∞
∑

k=1

|ak|e
r
∑

n
s=1

|λk
s | (4)

for every r < B. Clearly ‖f‖r exists on account of (2) and defines a norm on X ,
for each r < B. We denote by X(r), the space X equipped with the norm ‖.‖r.

Let D be the topology generated by the family of norms {‖f‖r : r < B}.
This topology is equivalent to the topology generated by the invariant metric d,
where

d(f, g) =

∞
∑

k=1

1

2k
‖f − g‖rk

1 + ‖f − g‖rk
, (Frechet Combination),

where, {rk} is a sequence such that r1 < r2 < ... < rk . . . ; rk → B as k → ∞.
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In the previous years immense research has been carried out in the field
of Dirichlet series of one and several complex variables. Recently Kumar and
Manocha in [5] generalised the condition of weighted norm for a Dirichlet series
of one variable given by

∑∞
n=1 ane

λns and thus proved some results. For the
same series, Kumar and Manocha in [6] considered a class of entire functions,
established it to be a locally convex topological linear space and thus proved it
to be a complex FK-space and a Frechet space. Very recently Akanksha and
Srivastava in [1] studied the spaces of vector-valued Dirichlet series in a half-
plane and thereby proved many important results. Kong and Gan in [4] and
Kong in [3] studied various results on order and type of Dirichlet series.

The origin of Dirichlet series with complex frequencies f(z) =
∑∞

k=1 ak

× e<λk,z> can be traced from the fact that every entire function in Cn as well as
each holomorphic function in a convex domain of Cn can always be represented
in the form of Dirichlet series with complex frequencies. It finds its numerous
applications in the theory of functional equations.

Khoi in [2] studied the coefficient multipliers for some classes of Dirichlet
series with complex frequencies including those that define entire functions in
Cn.

In the present paper, the space X of functions defined by (1) and analytic in
the half-plane are considered. Initially it is shown that the space X equipped
with certain locally convex topology D becomes a Frechet space. The form of
continuous linear functionals on X and continuous linear operator T ′ from X
to X is then characterized. Further the conditions under which a base in X
becomes a proper base, in terms of semi-norms which generate the topology D
on X , have been discussed. Lastly the result on total set is also studied. The
purpose of this paper is to widen the scope of the study of Dirichlet series with
complex frequencies.

2. Basic Definitions

The following definitions are required to prove the main results. For the defini-
tions of terms used refer [9]–[8].

Definition 2.1. A sequence {ck} ⊂ X will be linearly independent if
∑∞

k=1 akck =
0 implies ak = 0, for all k ≥ 1 that is for all sequences {ak} of complex numbers

for which
∑∞

k=1 akck converges in X.

The sequence {ck} ⊂ X spans a subspace X0 of X, if X0 consists of all linear

combinations
∑∞

k=1 akck, such that
∑∞

k=1 akck converges in X.

A sequence {ck} ⊂ X, which is linearly independent and spans a closed sub-

space X0 of X, will be a base in X0. If ek ⊂ X, ek(z) = e<λk,z>, k ≥ 1 then

clearly {ek} is a base in X.

A sequence {ck} ⊂ X will be a proper base if it is a base and it satisfies the

condition that for all sequences {ak} of complex numbers,
∑∞

k=1 akck converges
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in X if and only if
∑∞

k=1 akek converges in X.

Definition 2.2. Let X be a locally convex topological vector space. A set E′ ⊂ X
is said to be total if and only if for any ψ ∈ X ′ where X ′ denotes the dual of X
with ψ(E′) = 0 we have ψ = 0.

3. Main Results

In this section main results are proved.

Theorem 3.1. The space X is complete with respect to the metric d and hence is

a Frechet space.

Proof. Let fp(z) =
∑∞

k=1 a
(p)
k e<λk,z>; p = 1, 2, .... be a cauchy sequence in X .

Let ε > 0 be given such that

‖fp − fq‖ < ε where p, q ≥ N.

This implies that

∞
∑

k=1

|a
(p)
k − a

(q)
k |er

∑n
s=1

|λk
s | < ε for all p, q ≥ N.

Clearly {a
(p)
k } being a cauchy sequence in the set of complex numbers converges

to some element say ak for every value of k ≥ 1. This implies

∞
∑

k=1

|a
(p)
k − ak|e

r
∑

n
s=1

|λk
s | < ε for p ≥ N.

Also

∞
∑

k=1

|ak|e
r
∑

n
s=1

|λk
s | ≤

∞
∑

k=1

|a
(p)
k − ak|e

r
∑

n
s=1

|λk
s | +

∞
∑

k=1

|a
(p)
k |er

∑
n
s=1

|λk
s |.

Hence
∑∞

k=1 akek ∈ X . Thus fp → f in X , where f(z) ∈ X and this proves the
theorem.

Lemma 3.2. A continuous linear functional η on X(r), is of the form

η(f) =

∞
∑

k=1

ak pk e
r
∑

n
s=1

|λk
s |

if and only if {pk} is a bounded sequence in C, where f(z) is as defined in (1).
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Proof. Let η be a continuous linear functional on X(r). Then

η(f) = η
(

lim
N→∞

f (N)
)

where

f (N)(z) =
N
∑

k=1

ak e
<λk,z>.

Define a sequence {fk} as fk = e−r
∑

n
s=1

|λk
s | e<λk,z> ⊆ X . Then

η(f) = η

(

lim
N→∞

N
∑

k=1

ak e
r
∑n

s=1
|λk

s | fk

)

= lim
N→∞

N
∑

k=1

ak e
r
∑n

s=1
|λk

s | η(fk).

Since η is a linear functional, therefore η(fk) = pk, which implies

η(f) =
∞
∑

k=1

ak pk e
r
∑n

s=1
|λk

s |.

Now |pk| = |η(fk)| ≤ P ′‖fk‖ and ‖fk‖ = 1. This implies |pk| ≤ P ′. Thus {pk} is
a bounded sequence in C.

Conversely, let {pk} be a bounded sequence in C, satisfying

η(f) =
∞
∑

k=1

ak pk e
r
∑

n
s=1

|λk
s |.

Then η is well defined and linear. Also

|η(f)| ≤ P ′
∞
∑

k=1

|ak| e
r
∑

n
s=1

|λk
s | = P ′‖f‖.

Thus, η is a continuous linear functional.

Remark 3.3. A continuous linear functional η on X(r), is of the form

η(f) =

∞
∑

k=1

akwk, where f(z) =

∞
∑

k=1

akek, wk = η(ek)

if and only if
{

|wk|/e
r
∑

n
s=1

|λk
s |
}

is bounded, for all k ≥ 1.

Theorem 3.4. A sufficient condition that there exists a continuous linear trans-

formation T ′ : X → X with T ′(ek) = ck, k = 1, 2, ... is that for each r < B,

lim sup
k→∞

log ‖ck‖r
|λk|

< B. (5)
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Proof. Let (5) holds and let f(z) =
∑∞

k=1 akek ∈ X . Then there exists an ε > 0,
such that

log ‖ck‖r
|λk|

≤ B − ε, ∀ k ≥ K1(ε)

which further implies

‖ck‖r ≤ e(B−ε)|λk|.

Choose ρ > 0, such that ρ < ε. Then

|ak| ≤ e(−B+ρ)|λk|, ∀ k ≥ K2(ρ).

Thus

|ak|‖ck‖r ≤ e(−B+ρ)|λk| e(B−ε)|λk|

= e(ρ−ε)|λk|

for all k ≥ max(K1,K2). This implies
∑∞

k=1 |ak|‖ck‖r is convergent and as r is
arbitrarily less than B, one obtains that

∑∞
k=1 akck is convergent in X . Thus

there exists a transformation T ′ : X → X such that

T ′(f) =

∞
∑

k=1

akck, for each f(z) ∈ X.

Then T ′ is linear, T ′(ek) = ck, k = 1, 2, ... and for given r < B, there exists
ρ > 0, such that

log ‖ck‖r
|λk|

≤ B − ρ, ∀ k ≥ K

which implies

‖ck‖r ≤ e(B−ρ)|λk|, ∀ k ≥ K

which further implies

‖ck‖r ≤ N ′ e(B−ρ)|λk|, ∀ k ≥ 1.

Thus

‖T ′(f)‖ ≤ N ′
∞
∑

k=1

|ak|e
(B−ρ)

∑
n
s=1

|λk
s |

= N ′‖f‖(B−ρ).

Hence T ′ is continuous. This completes the proof.

Lemma 3.5. Let {ck} ⊂ X. Then the following three properties are equivalent:

(A′) lim supk→∞
log ‖ck‖r

|λk| < B, for all r < B.

(B′) For all sequences {ak} of complex numbers, convergence of
∑∞

k=1 akek im-

plies the convergence of
∑∞

k=1 akck in X.
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(C′) For all sequences {ak} of complex numbers, convergence of
∑∞

k=1 akek im-

plies that {akck} tends to zero in X.

Proof. We have already proved (A′) ⇒ (B′) in the proof of sufficiency part
of Theorem 3.4. Also it is clear that (B′) ⇒ (C′). We need to prove only
(C′) ⇒ (A′).

Assume that (C′) is true and (A′) is false. This implies that, for some r′ < B,

lim sup
k→∞

log ‖ck‖r′

|λk|
≥ B.

Hence there exists a sequence {kn} of positive integers, such that

log ‖ckn
‖r′

|λkn |
≥ B −

1

n
, for all n = 1, 2, . . . .

Define {ak} by-

ak =

{

e−(B− 1

n
)
∑

n
s=1

|λkn
s |, n = 1, 2, ...

0, k 6= kn

So we have

|akn
|er

∑n
s=1

|λkn
s | = e−(B− 1

n
)
∑n

s=1
|λkn

s | er
∑n

s=1
|λkn

s |

= e−(B−(r+ 1

n
))

∑
n
s=1

|λkn
s |.

There exists a n, large enough such that B − (r + 1
n
) > 0. This implies

∞
∑

n=1

|akn
|er

∑
n
s=1

|λkn
s |

converges in X , for all r < B.

But
|akn

|‖ckn
‖r′ ≥ e−(B− 1

n
)
∑

n
s=1

|λkn
s | e(B− 1

n
)|λkn |

9 0.

This implies akn
ckn

does not tend to zero in X , a contradiction and this contra-
dicts (C′). So (C′) ⇒ (A′).

Lemma 3.6. The following three conditions are equivalent for any sequence

{ck} ⊂ X:

(a) limr→B

{

lim infk→∞
log ‖ck‖r

|λk|

}

≥ B.

(b) For all sequences {ak} of complex numbers, convergence of
∑∞

k=1 akck in

X implies the convergence of
∑∞

k=1 akek in X.

(c) For all sequences {ak} of complex numbers, {akck} tends to zero in X
implies the convergence of

∑∞
k=1 akek in X.
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Proof. Clearly (c) ⇒ (b). Now one needs to prove that (b) ⇒ (a) and (a) ⇒ (c).

First let us suppose that (b) holds but (a) doesnot hold. Therefore

lim
r→B

{

lim inf
k→∞

log ‖ck‖r
|λk|

}

< B.

Since, ‖...‖r increases as r increases, this implies that for each r < B,

lim inf
k→∞

log ‖ck‖r
|λk|

< B, ∀ r < B.

If α be a small positive number, then there exists an increasing sequence {kp},
such that

log ‖ckp
‖r

|λkp |
≤ B − α

which implies

‖ckp
‖r ≤ e(B−α)|λkp |.

Choose ρ < α and define {ak} by-

ak =

{

e−(B−ρ)|λkp | if p = 1, 2, ...,
0 if k 6= kp.

Then for every r < B,

∞
∑

k=1

|ak|‖ck‖r =

∞
∑

p=1

|akp
|‖ckp

‖
r

≤

∞
∑

p=1

e−(B−ρ)|λkp | e(B−α)|λkp |

=

∞
∑

p=1

e(ρ−α)|λkp |

and the last series is convergent since ρ < α. Hence for this sequence {ak},
∑∞

k=1 akck converges in X(r), for each r < B, and hence converges in X . But,

∞
∑

k=1

|ak|e
r
∑

n
s=1

|λk
s | =

∞
∑

p=1

|akp
|er

∑
n
s=1

|λ
kp
s |

≥

∞
∑

p=1

|akp
| er|λ

kp |

=

∞
∑

p=1

e−(B−ρ)|λkp | er|λ
kp |

=
∞
∑

p=1

e(r+ρ−B)|λkp |.
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Given ρ choose r < B such that r + ρ > B, and thus the last series is divergent
for this r. Hence

∑∞
k=1 akek does not converge in X and this contradicts (b).

Thus (b) implies (a).

Now to prove (a) ⇒ (c), assume that (a) is true but (c) is not true. Thus
there exists a sequence {ak} of complex numbers for which {akck} tends to zero
in X , but

∑∞
k=1 akek doesnot converge in X . This implies

lim sup
k→∞

log |ak|

|λk|
> −B.

Hence given δ > 0, there exists a sequence {kn} of positive integers, such that

|akn
| ≥ e(−B+δ)|λkn |.

Now choose a positive number r, such that δ > 2β. (a) being true, one can find
a number r = r(β), such that

lim inf
k→∞

log ‖ck‖

|λk|
≥ B − β.

Hence there exists N = N(β), such that

log ‖ck‖r
|λk|

≥ B − 2β, for all k ≥ N.

Therefore,

|akn
|‖ckn

‖r ≥ e(−B+δ)|λkn | e(B−2β)|λkn |

= e(δ−2β)|λkn | → +∞

as n → ∞, since δ > 2β. This shows that {akck} does not tend to zero in X
which is a contradiction. Thus we conclude that (a) ⇒ (c).

Theorem 3.7. A base in a closed subspace X0 of X is proper if and only if

conditions (A′) and (a) are satisfied.

Theorem 3.8. Let f(z) =
∑∞

k=1 ak e
<λk,z> ∈ X, ak 6= 0, k ≥ 1. Let D ⊂ Cn be

a region having at least one limit point. Define

fτ (z) =

∞
∑

k=1

ak e
−r

∑n
s=1

|λk
s |e<λk,τ+z>. (6)

Then the set Af = {fτ : τ ∈ D} is a total set in X.

Proof. Note first that for all τ ∈ Cn,

‖fτ‖ =

∞
∑

k=1

|ak| e
Re<λk,τ>
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which is clearly convergent.

Let ψ∗ be a continuous linear transformation such that ψ∗(Af ) ≡ 0, that is
ψ∗(fτ ) = 0. Thus by Lemma 3.2,

∞
∑

k=1

{ak e
−r

∑
n
s=1

|λk
s | e<λk,τ> pk}e

r
∑

n
s=1

|λk
s | = 0

which implies
∞
∑

k=1

ak pk e
<λk,τ> = 0, for all τ ∈ C

n. (7)

Define h(z) =
∑∞

k=1 ak pk e
<λk,z>. Since {pk} is a bounded sequence in C and

f(z) =
∑∞

k=1 ake
<λk,z>, we have h(z) also belongs to X . But by (7),

h(τ) =

∞
∑

k=1

ak pk e
<λk,τ> = 0 for all τ ∈ C

n.

Since Cn has a finite limit point, we have h ≡ 0. This further implies ak pk =
0, for all k ≥ 1 and as ak 6= 0 implies pk = 0, for all k ≥ 1. Thus ψ∗ = 0.
This completes the proof.
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