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1. Introduction

The notion of statistical convergence was first introduced in the year 1951 inde-
pendently by Fast [10] and Steinhaus [29] in connection with summability theory.
Following them, the concept was investigated by Fridy [11, 12], Salat [25] and
many others from the sequence space point of view. Various applications of
statistical convergence can be found in [2, 3, 19, 20, 30].

Generalizing the concept of statistical convergence in 2001, Kostyrko et al.
introduced the idea of Z—convergence in [17] where the ideal Z basically rep-
resents a set of subsets of N which satisfy some specific conditions. As this
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concept was the generalization of so many known convergence methods, even-
tually it becomes a very interesting area of research. Several works related to
T—convergence can be found in [1, 8, 14, 18, 22, 24, 26].

In [27], Savas and Das generalized the idea of Z—convergence to Z—statistical
convergence. Several investigation in this direction was done by Das and Savas
[4], Debnath and Debnath [6], Mursaleen et al. [7], Et et al. [9] and many others
13, 15, 32, 31].

An Orlicz function (see [23]) is defined as a map ¢ : R — R which satisfies
the following criterion:

(i) ¢(—x) = ¢p(x) Vx € R, i.e. ¢ is an even function.

(i) ¢ (z) > 0Vz € RT, ie. ¢ is non-decreasing on R.
(iii) ¢(x) =0 if and only if z = 0.
(iv) ¢ is continuous on entire R.

)

(v) = — oo implies ¢(z) — 0.
Further, an Orlicz function ¢ is said to fulfil the condition A, if there exists
an positive real number M satisfying the condition ¢(2z) < M - ¢(x) Vo € RT.
In [23], Rao and Ren describes some important applications of Orlicz func-
tions in many areas such as economics, stochastic problems etc. Few examples
of Orlicz functions are given below:

Example 1.1.
(i) For a fixed ¢ € N, the function ¢ : R — R defined as ¢(x) = |z|? is an
Orlicz function.
(i) The function ¢ : R — R defined as ¢(x) = 2% is not an Orlicz function.
(iii) The function ¢ : R — R defined as ¢(z) = 22 is an Orlicz function satisfy-
ing the As condition.
(iv) The function ¢ : R — R defined as ¢(z) = el*l— | 2 | —1 is an Orlicz
function not satisfying the As condition.

The idea of ¢p—convergence was introduced by Khusnussaadah and Supama
[16]. Recently, it was generalized to Z—statistically ¢—convergence by Debnath
and Choudhury [5] and Lacunary statistically ¢—convergence by Savas and Deb-
nath [28].

Mursaleen, Debnath and Rakshit [21] introduced the concepts of Z—statistical
limit superior and Z—statistical limit inferior. In the present paper we gener-
alized it and introduced Z—statistical ¢-limit superior and Z—statistical ¢-limit
inferior and studied some of their properties for sequence of real numbers.

2. Definitions and Preliminaries

Definition 2.1. [18] Let X is a non-empty set. A family of subsets T C P(X) is
called an ideal on X if and only if

(i) 0 eZ;
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(ii) for each A,B € T implies AUB € ZI;
(iii) for each A€ T and B C A implies B € T.

Definition 2.2. [18] Let X is a non-empty set. A family of subsets F C P(X) is
called a filter on X if and only if

(i) 0 ¢ F;
(ii) for each A,B € F implies AN B € F;
(iii) for each A € F and B D A implies B € F.

An ideal Z is called non-trivial if Z # () and X ¢ Z. The filter F =
F(I) = {X —A:AecT} is called the filter associated with the ideal Z. A
non-trivial ideal Z C P(X) is called an admissible ideal in X if and only if
Io>{{z}:ze X}

Definition 2.3. [27] A sequence x = (xy,) is said to be T— statistically convergent
to xo if for every e > 0 and every § > 0,

1
{nEN:E|{k§nz|xk—x0 |2€}|25}EI.

xo is called T—statistical limit of the sequence (z,,) and we write, T — stlimx,, =
xXo-

Definition 2.4. [21] Let Z be an admissible ideal of N and let x = (x,,) be a real
sequence. Let B, denote the set

Bmz{bGR:{nEN:l|{k<n:xk>b}|>5}¢1}.
n
Similarly,

1
Am:{aeR: {nEN:—|{k§n:xk<a}|>5}¢I}.
n
Then T— statistical limit superior of x is given by,

sup By if By #0,

7 — stlimsupx = .
P {—oo if By =0.

Also, T—statistical limit inferior of x is given by,

nf Ay if Ag #0,

7 — stliminfx = .
00 if Ay =0.
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Definition 2.5. [16] Let ¢ : R — R be an Orlicz function. A sequence x = ()
is said to be ¢p—convergent to xo if lim ¢(xz, — x) = 0.

In this case, g is called the ¢p—Ilimit of (x,,) and denoted by ¢ —limxz = xg.

Remark 2.6. If we take ¢(x) =| = |, then ¢—convergent concepts coincide with
usual convergence. Also it is easy to check, if x = (z,,) is ¢—convergent to xo,
then any of its subsequence is ¢p—convergent to o as well.

Definition 2.7. Let ¢ : R — R be an Orlicz function. A sequence x = (x,) is
said to be statistically ¢— convergent to xg if for each € > 0,

1
limﬁ [{k <n:o¢(xr —x0) >e}|=0.

xo is called the statistical p— limit of the sequence () and we write S —
¢ lim x = zg or xx — xo(S — @). We shall also use S — ¢ to denote the set of
all statistically ¢— convergent sequences.

Remark 2.8. If we take ¢(z) =| x |, then S — ¢ convergence concepts coincide
with statistically convergence.

We introduce the following definition as a generalization of Z—statistical con-
vergence. Throughout the paper we consider Z as an admissible ideal.

Definition 2.9. [5] Let ¢ : R — R be an Orlicz function. A sequence x = (x,,)
is said to be T—statistically ¢p— convergent to xq if for every e > 0 and every
6 >0,

1
{nEN: E|{k§n:¢(xk—xo)25}|25} eT.
xo is called T—statistical p— limit of the sequence (x,,) and we write, Tg —

¢ lim x, = zg.

Remark 2.10. If we take ¢(x) =| x |, then Zg — ¢ convergent coincide with Zg—
convergent. Thus Zg — ¢ convergence is a generalization of Zg convergence.

3. Main Results

Definition 3.1. Let 7 be an admissible ideal of N. For a real sequence v = (),
let

Bm:{beR:{nEN:%|{k§n:¢(xk)>b}|>5}géI}

and

Am:{aeR:{neN:%|{k<n:¢(xk)<a}|>6}¢I}.
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We define T—statistical p—limit superior of x by

BT ) BT b)
T —st¢p—limsupzx = Sup Pa Zf w70 .

—00 if By =0.
Also T—statistical ¢p—limit inferior of x by

nf Ay if Ay #0,

I—st¢—liminfx:{oo i A =0

Theorem 3.2. If B =T — st¢—limsup x is finite, then for every positive number
&

{neN:%|{k§n:(b(xk)>ﬁ—s}|>5}¢1

and
{neN:%|{k§n:¢(xk)>ﬁ+s}|>5}el

Similarly, if « =7 — st ¢ — liminf x is finite, then for every positive number

&
1
{nEN:E|{k§n:¢(xk)<a+e}|>5}géI
and )
{nGN:E|{k<n:¢(a€k)<a—s}|>5}EI.
Proof. Tt follows from the definition. ]

Theorem 3.3. Let ¢ be an Orlicz function. Then for any real number sequence
(xn), T —st¢—liminfx, <T—std—limsupx,.

Proof. If T — st ¢ — limsup x,, = —oo, then we have B, = (. So for every b € R,
{neN:L[{k<n:¢(xy)>0b}|>d} €Z, which implies {n € N: L|{k <n:
P(xr) > b} <6} € F(Z) ie, {fn e N: L|{k <n: ¢(zx) < b} > 6} € F(I).

So for every a € R, {n € N: 2[{k <n:¢(xy) <a}| >0} ¢ I. Hence, T —
st ¢ — liminf x,, = —oo (since A, = R).

If T — st ¢ — limsup x,, = oo, then it is obvious.

Let 8 =7 — st ¢ — limsupx, is finite and o = Z — st ¢ — liminfz,. So
fore >0,6 >0, {neN:L[{k<n:¢(xx)>pB+e}|>d} € Z which implies
{neN:L|{k<n:¢(xx) <B+e}|>6} € F(I)ie, {n € N: 2[{k < n:
oxg) <B+e}| >} ¢I. Sof+e € A,. Since ¢ is arbitrary and by definition
a =inf A,. Therefore a < 8 + . This proves that o < . [ ]

Definition 3.4. Let ¢ be an Orlicz function. The real number sequence x = (x,)
is said to be T—st ¢p—bounded if there is a positive number G such that
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{neN:I[{k<n:¢(x) >G}| >4} €L

Remark 3.5. If a sequence is Z—st ¢—bounded then Z — st ¢ — limsup and
T — st ¢ — liminf of the sequence are finite.

Definition 3.6. Let ¢ be an Orlicz function. An element £ is said to be an
T —statistical ¢— cluster point of a sequence x = (x,,) if for each € >0 and 6 > 0
the set

{nGN:%|{k<n:¢(xk—§)>5}|<5}§él'.

Theorem 3.7. Let ¢ be an Orlicz function. If a T—statistically ¢— bounded
sequence has one cluster point then it is T—statistically ¢— convergent.

Proof. Let (z,,) be a T—statistically ¢—bounded sequence which has one cluster
point. ie, M = {neN:1[{k<n:¢(xr)>G}|>6} € Z. So there exist a
set M = {n; <na < ...} C Nsuch that M’ ¢ T and (x,,) is a statistically
bounded sequence.

Now since (z,,) has only one cluster point and (z,, ) is a statistically bounded
subsequence of (z,), so (z,,) also has only one cluster point. Hence (z,, ) is
statistically ¢ convergent.

Let st-¢ limz,, = & Then for any ¢ > 0 and 6 > 0 we have the inclusion,
{nEN: %|{k§n:¢(xk—§)2€}| 25} C M U A € 7 where A is a finite set.
That is, (z,,) is Z—statistically ¢— convergent to &. |

Theorem 3.8. Let ¢ be an Orlicz function. For a T—st ¢—bounded sequence (),
(¢(xy)) is T—st convergent if and only if T—st¢p—liminf x,, = T—st¢p—limsup z,,.

Proof. Let (¢(zy)) be Z—statistically convergent, say to z. Then for any
e > 0,60 >0, {neN:L{k<n:¢y)—z|>e}|>6} € I. So,
{neN:L|{k<n:¢(xx)>a+e}| >0} € I, which means that T — st ¢ —
liminfx, <z +e.

We have also {n € N: L|{k <n:¢(xp) <z—c}|>6} €T, ie. T—stp—
limsupxz, > x —¢.

For the converse, let us assume Z—st¢—liminf x,, = T—st¢p—limsup z,,. Now
for any € > 0, 6 > 0, we have {n e N: L|[{k <n:¢(xx) >a+e}| >0} €T
and {n € N: L|{k <n:¢(zx) <2 —e}| >3} €Z. Theseimplies that {n € N :
L{k <n:¢(xp) —z|>e} >0} =AUBET where A={neN: [{k<n:
d(xp) >z +e}| >0} and B={neN:1{k<n:¢(zx) <z —e}| >4}

This means (¢(x,,)) is T—statistically convergent to x. n

Theorem 3.9. Let ¢ be an Orlicz function. If (xy,), (yn) are two T—st ¢p—bounded
sequences, then
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(i) Z—st¢p—limsup (zp, +yn) <Z—st ¢ —limsupxz, +Z — st ¢ — limsup y,.
(ii) Z — st ¢ — liminf (x, + ypn) > Z — st ¢ — liminf x,, + T — st ¢ — lim inf y,,.

Proof. (i) Let Iy = T — st ¢ — limsupx,, and ly = Z — st ¢ — limsupy,. So
{nEN:%|{k§n:¢(xk)>l1—|—§}|>5 € Z and {n € N : %|{k < n:
d(yr) > la+ 5} >0t €Z. Now {neN: s|{{k <n:o(xr+yp) >l +la+e}| >
StCc{neN:L{k<n:¢(@e)>h+5}H>00U{neN: 1{k <n:o(y) >
lo+ 5} >0} S0, {neN: 2{k<n:¢(xr+yr) >l +1la+c} >0} €T

If ¢ € B(y4y), then by definition {n € N: 1|{k < n: ¢(zp +yx) > c}| > 0} ¢
T

We show that ¢ < 1 + lp + e. If ¢ > 1l +1s + ¢ then
{nEN:%|{k§n:¢(xk+yk)>c}|>5} g{nEN:%|{k§n:¢(xk—|—yk)>
Iy + 1z + €} > d}. Therefore {nEN: %|{k§n:¢(mk+yk)>c}|>5} cI
which is a contradiction. Hence, ¢ < Iy +Iz2+e¢. As this is true for all ¢ € B(,,),
50, T—st¢— lim sup (z +y) =sup Biy) <l +12 +e.

Since € > 0 is arbitrary, so Z—st ¢—lim sup (z,, + yn) < Z—st ¢—lim sup
Ty +Z—st ¢p—lim sup y,.

(i) Similar to above technique of proof. ]

Definition 3.10. Let ¢ be an Orlicz function. A sequence (zy,)
is said to be I—st ¢—convergent to +oo (or—o0) if for ev-
ery real number G > 0, {neN:Li[{k<n:¢(xx) <G} >6} €
Z(or,{n e N: 2| {k <n:¢(zy) > -G} | > 6} € I).

Theorem 3.11. Let ¢ be an Orlicz function. If T —st¢—limsupx = [, then there
exists a subsequence of x which is T—st ¢— convergent to .

Proof. Case-I: If | = —co then B, = (.

So for any real number G > 0, {n e N: L|{k <n:¢(zx) > -G} | >0} €T
ie, L —st¢p—limzr=—o0.

Case-1I: If | = +oo, then B, = R So for any b € R,
{neN:L|{k<n:¢(xx)>0b}|>6} ¢ I. Let z,, be arbitrary member of
z. Then, A,, = {neN: 1|{k <n:¢(xy) >z, +1}| >3} ¢ Z. Since T is an
admissible ideal, so A,, must be an infinite set. That is, d({k < n : ¢(xy) >
Tn, +1}) # 0. We claim that there is at least k € {k < n : ¢(x) > xn, + 1} such
that k > ny + 1, for otherwise {k <n: ¢(xr) > xn, +1} C {1,2,..n1,n1 + 1},
ie, d({k <mn:¢(xk)>xn, +1}) <d({1,2,..n1,n1 + 1}) = 0, which is a con-
tradiction.

We call this k as no, thus x,, > z,, + 1. Proceeding in this way we ob-
tain a subsequence {z,,} of x with x,, > x,, , + 1. Since for any G > 0,
{neN:L|{k<n:¢(xx) <G} >6} €, s0o IT—st ¢— lim z,,, = +o0.

Case-11I: —o0 <1 < +00.

So, {neN:L[{k<n:¢(xy)>1+3}|>6} € ZTand {n € N: L|{k <
n: ¢(ag) > 1 —1} > 6} ¢ Z. So there must be a m in this set for which
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Li{k<m:g(zr)>1—1}|>6and L|{k <m:¢(ap) <I+3}]>0.

For otherwise {n € N: L[{k <n:¢(z)) >1—-1}|>6} C{neN: L|{k <
n: ¢(xy) > 1+ 3} > 6} € Z, which is a contradiction.

Now for maximum k < m will satisfy ¢(zx) > — 1 and ¢(z)) < 1+ 3 so we
must have a ny for which I — 1 < ¢(xy,,) <1+ % <l+1.

Next we proceed to choose an element ¢(x,,,) from ¢(z), ne > n, such that I—
1 < P(an,) <l+3. Now{neN:1[{k<n:¢(x;) >1—1}|> 6} is aninfinite
set. So, d ({k <n: ¢(xy) > l - —}) # 0. We observe that there is at least one
k > ny for which ¢(zx) > , for otherwise d({k <n:o(xk)>1— —})
d({1,2,...n1}) = 0 which is a contradlctlon

Let E,, = {k‘gn:k‘>n1,¢(xk) >l—%} # 0. If k € E,, always im-
plies xzp, > [ + % then, E,, C {k <n:o(xg) >0+ %}, ie, d(E,) <
d({k‘gn:qb(xk) >l+%}) =0.

Since {neN:L[{k<n:¢(x)>1+3}| <} € F(I), thus {k<n:
d(zp) > 1 — 3} C {1,2,..m} U E,,. So, d({k<n:g¢(xy)>1-3}) <
d({1,2,..n1}) + d(E,,) <0, which is a contradiction.

This shows that there is a na > mn; such that [ — % < P(xn,) < 1+ %
Proceeding in this way we obtain a subsequence ¢(x.,, ) of ¢(x), ny > ni_1 such
that | — 1 < ¢(zp,) < |+ ¢ for each k. This subsequence {¢(zy,)} ordinarily
converges to [ and thus Z—st ¢— convergent to [. ]

Theorem 3.12. If T—st ¢p— lim inf x = [, then there exists a subsequence of x
which is T—st ¢— convergent to .

Proof. The proof is similar to Thm. 3.11 and so omitted. ]

Theorem 3.13. Let ¢ be an Orlicz function. Every T—st ¢— bounded sequence x
has a subsequence which is T—st ¢—convergent to a finite real number.

Proof. The proof follows from Remark 3.5 and Thm. 3.11. ]
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