Southeast Asian Bulletin of Mathematics © SEAMS. 2023

On \mathcal{I} -Statistical ϕ -Limit Superior and \mathcal{I} -Statistical ϕ -Limit Inferior

Ekrem Savas Department of Mathematics, Uşak University, Uşak, Turkey Email: ekremsavas@yahoo.com

Shyamal Debnath and Chiranjib Choudhury Department of Mathematics, Tripura University, Agartala, India Email: shyamalnitamath@gmail.com; chiranjib.mathematics@tripurauniv.in

Received 9 October 2020 Accepted 10 April 2021

Communicated by W.S. Cheung

AMS Mathematics Subject Classification(2020): 40A35, 40D25

Abstract. In this paper, we have extended the concepts of \mathcal{I} -statistical limit superior and \mathcal{I} -statistical limit inferior to \mathcal{I} -statistical ϕ -limit superior and \mathcal{I} -statistical ϕ -limit inferior and studied some of their properties for sequence of real numbers.

Keywords: \mathcal{I} -statistical limit superior; \mathcal{I} -statistical limit inferior; \mathcal{I} -statistical ϕ -convergence.

1. Introduction

The notion of statistical convergence was first introduced in the year 1951 independently by Fast [10] and Steinhaus [29] in connection with summability theory. Following them, the concept was investigated by Fridy [11, 12], Salat [25] and many others from the sequence space point of view. Various applications of statistical convergence can be found in [2, 3, 19, 20, 30].

Generalizing the concept of statistical convergence in 2001, Kostyrko et al. introduced the idea of \mathcal{I} -convergence in [17] where the ideal \mathcal{I} basically represents a set of subsets of \mathbb{N} which satisfy some specific conditions. As this

concept was the generalization of so many known convergence methods, eventually it becomes a very interesting area of research. Several works related to \mathcal{I} -convergence can be found in [1, 8, 14, 18, 22, 24, 26].

In [27], Savas and Das generalized the idea of \mathcal{I} -convergence to \mathcal{I} -statistical convergence. Several investigation in this direction was done by Das and Savas [4], Debnath and Debnath [6], Mursaleen et al. [7], Et et al. [9] and many others [13, 15, 32, 31].

An Orlicz function (see [23]) is defined as a map $\phi : \mathbb{R} \to \mathbb{R}$ which satisfies the following criterion:

- (i) $\phi(-x) = \phi(x) \ \forall x \in \mathbb{R}$, i.e. ϕ is an even function.
- (ii) $\phi'(x) \ge 0 \,\forall x \in \mathbb{R}^+$, i.e. ϕ is non-decreasing on \mathbb{R}^+ .
- (iii) $\phi(x) = 0$ if and only if x = 0.
- (iv) ϕ is continuous on entire \mathbb{R} .
- (v) $x \to \infty$ implies $\phi(x) \to \infty$.

Further, an Orlicz function ϕ is said to fulfil the condition Δ_2 , if there exists an positive real number M satisfying the condition $\phi(2x) \leq M \cdot \phi(x) \, \forall x \in \mathbb{R}^+$.

In [23], Rao and Ren describes some important applications of Orlicz functions in many areas such as economics, stochastic problems etc. Few examples of Orlicz functions are given below:

Example 1.1.

- (i) For a fixed $q \in \mathbb{N}$, the function $\phi : \mathbb{R} \to \mathbb{R}$ defined as $\phi(x) = |x|^q$ is an Orlicz function.
- (ii) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined as $\phi(x) = x^5$ is not an Orlicz function.
- (iii) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined as $\phi(x) = x^2$ is an Orlicz function satisfying the Δ_2 condition.
- (iv) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined as $\phi(x) = e^{|x|} |x| 1$ is an Orlicz function not satisfying the Δ_2 condition.

The idea of ϕ -convergence was introduced by Khusnussaadah and Supama [16]. Recently, it was generalized to \mathcal{I} -statistically ϕ -convergence by Debnath and Choudhury [5] and Lacunary statistically ϕ -convergence by Savas and Debnath [28].

Mursaleen, Debnath and Rakshit [21] introduced the concepts of \mathcal{I} -statistical limit superior and \mathcal{I} -statistical limit inferior. In the present paper we generalized it and introduced \mathcal{I} -statistical ϕ -limit superior and \mathcal{I} -statistical ϕ -limit inferior and studied some of their properties for sequence of real numbers.

2. Definitions and Preliminaries

Definition 2.1. [18] Let X is a non-empty set. A family of subsets $\mathcal{I} \subset P(X)$ is called an ideal on X if and only if

(i) $\emptyset \in \mathcal{I}$;

On \mathcal{I} -Statistical ϕ -Limit Superior and Inferior

- (ii) for each $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$;
- (iii) for each $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$.

Definition 2.2. [18] Let X is a non-empty set. A family of subsets $\mathcal{F} \subset P(X)$ is called a filter on X if and only if

- (i) $\emptyset \notin \mathcal{F};$
- (ii) for each $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$;
- (iii) for each $A \in \mathcal{F}$ and $B \supset A$ implies $B \in \mathcal{F}$.

An ideal \mathcal{I} is called non-trivial if $\mathcal{I} \neq \emptyset$ and $X \notin \mathcal{I}$. The filter $\mathcal{F} = \mathcal{F}(\mathcal{I}) = \{X - A : A \in \mathcal{I}\}$ is called the filter associated with the ideal \mathcal{I} . A non-trivial ideal $\mathcal{I} \subset P(X)$ is called an admissible ideal in X if and only if $\mathcal{I} \supset \{\{x\} : x \in X\}$.

Definition 2.3. [27] A sequence $x = (x_n)$ is said to be \mathcal{I} -statistically convergent to x_0 if for every $\varepsilon > 0$ and every $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : |x_k - x_0| \ge \varepsilon\} | \ge \delta \right\} \in \mathcal{I}.$$

 x_0 is called \mathcal{I} -statistical limit of the sequence (x_n) and we write, \mathcal{I} -st lim $x_n = x_0$.

Definition 2.4. [21] Let \mathcal{I} be an admissible ideal of \mathbb{N} and let $x = (x_n)$ be a real sequence. Let B_x denote the set

$$B_x = \left\{ b \in \mathbb{R} : \left\{ n \in \mathbb{N} : \frac{1}{n} | \{k \le n : x_k > b\} | > \delta \right\} \notin \mathcal{I} \right\}.$$

Similarly,

$$A_x = \left\{ a \in \mathbb{R} : \left\{ n \in \mathbb{N} : \frac{1}{n} | \{k \le n : x_k < a\} | > \delta \right\} \notin \mathcal{I} \right\}.$$

Then \mathcal{I} -statistical limit superior of x is given by,

$$\mathcal{I} - st \limsup x = \begin{cases} \sup B_x & \text{if } B_x \neq \emptyset, \\ -\infty & \text{if } B_x = \emptyset. \end{cases}$$

Also, \mathcal{I} -statistical limit inferior of x is given by,

$$\mathcal{I} - st \liminf x = \begin{cases} \inf A_x & \text{if } A_x \neq \emptyset, \\ \infty & \text{if } A_x = \emptyset. \end{cases}$$

Definition 2.5. [16] Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. A sequence $x = (x_n)$ is said to be ϕ -convergent to x_0 if $\lim_{n \to \infty} \phi(x_n - x_0) = 0$.

In this case, x_0 is called the ϕ -limit of (x_n) and denoted by ϕ -lim $x = x_0$.

Remark 2.6. If we take $\phi(x) = |x|$, then ϕ -convergent concepts coincide with usual convergence. Also it is easy to check, if $x = (x_n)$ is ϕ -convergent to x_0 , then any of its subsequence is ϕ -convergent to x_0 as well.

Definition 2.7. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. A sequence $x = (x_n)$ is said to be statistically ϕ -convergent to x_0 if for each $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \mid \{k \le n : \phi(x_k - x_0) \ge \varepsilon\} \mid = 0.$$

 x_0 is called the statistical ϕ - limit of the sequence (x_n) and we write $S - \phi \lim x = x_0$ or $x_k \to x_0(S - \phi)$. We shall also use $S - \phi$ to denote the set of all statistically ϕ -convergent sequences.

Remark 2.8. If we take $\phi(x) = |x|$, then $S - \phi$ convergence concepts coincide with statistically convergence.

We introduce the following definition as a generalization of \mathcal{I} -statistical convergence. Throughout the paper we consider \mathcal{I} as an admissible ideal.

Definition 2.9. [5] Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. A sequence $x = (x_n)$ is said to be \mathcal{I} -statistically ϕ - convergent to x_0 if for every $\varepsilon > 0$ and every $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k - x_0) \ge \varepsilon\} | \ge \delta \right\} \in \mathcal{I}.$$

 x_0 is called \mathcal{I} -statistical ϕ - limit of the sequence (x_n) and we write, $\mathcal{I}_S - \phi \lim x_n = x_0$.

Remark 2.10. If we take $\phi(x) = |x|$, then $\mathcal{I}_S - \phi$ convergent coincide with $\mathcal{I}_S - \phi$ convergent. Thus $\mathcal{I}_S - \phi$ convergence is a generalization of \mathcal{I}_S convergence.

3. Main Results

Definition 3.1. Let \mathcal{I} be an admissible ideal of \mathbb{N} . For a real sequence $x = (x_n)$, let

 $B_x = \left\{ b \in \mathbb{R} : \left\{ n \in \mathbb{N} : \frac{1}{n} | \{ k \le n : \phi(x_k) > b \} | > \delta \right\} \notin \mathcal{I} \right\}$

and

$$A_x = \left\{ a \in \mathbb{R} : \left\{ n \in \mathbb{N} : \frac{1}{n} | \left\{ k \le n : \phi(x_k) < a \right\} | > \delta \right\} \notin \mathcal{I} \right\}.$$

We define \mathcal{I} -statistical ϕ -limit superior of x by

$$\mathcal{I} - st \phi - \limsup x = \begin{cases} \sup B_x & \text{if } B_x \neq \emptyset, \\ -\infty & \text{if } B_x = \emptyset. \end{cases}$$

Also \mathcal{I} -statistical ϕ -limit inferior of x by

$$\mathcal{I} - st \phi - \liminf x = \begin{cases} \inf A_x & \text{if } A_x \neq \emptyset, \\ \infty & \text{if } A_x = \emptyset. \end{cases}$$

Theorem 3.2. If $\beta = \mathcal{I} - st \phi - \limsup x$ is finite, then for every positive number ε ,

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > \beta - \varepsilon\}| > \delta\right\} \notin \mathcal{I}$$

and

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > \beta + \varepsilon\} | > \delta \right\} \in \mathcal{I}.$$

Similarly, if $\alpha = \mathcal{I} - st \phi - \liminf x$ is finite, then for every positive number

$$\varepsilon,$$

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < \alpha + \varepsilon\} | > \delta \right\} \notin \mathcal{I}$$

and

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < \alpha - \varepsilon\} | > \delta \right\} \in \mathcal{I}.$$

Proof. It follows from the definition.

Theorem 3.3. Let ϕ be an Orlicz function. Then for any real number sequence (x_n) , $\mathcal{I} - st \phi - \liminf x_n \leq \mathcal{I} - st \phi - \limsup x_n$.

Proof. If $\mathcal{I} - st \phi - \limsup x_n = -\infty$, then we have $B_x = \emptyset$. So for every $b \in \mathbb{R}$, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > b\} | > \delta\} \in \mathcal{I}$, which implies $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > b\} | < \delta\} \in \mathcal{F}(\mathcal{I})$ i.e., $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < b\} | > \delta\} \in \mathcal{F}(\mathcal{I})$.

So for every $a \in \mathbb{R}$, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \leq n : \phi(x_k) < a\} | > \delta\} \notin \mathcal{I}$. Hence, $\mathcal{I} - st \phi - \liminf x_n = -\infty$ (since $A_x = \mathbb{R}$).

If $\mathcal{I} - st \phi - \limsup x_n = \infty$, then it is obvious.

Let $\beta = \mathcal{I} - st \phi - \limsup x_n$ is finite and $\alpha = \mathcal{I} - st \phi - \liminf x_n$. So for $\varepsilon > 0$, $\delta > 0$, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > \beta + \varepsilon\} | > \delta\} \in \mathcal{I}$ which implies $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < \beta + \varepsilon\} | > \delta\} \in \mathcal{F}(\mathcal{I})$ i.e., $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < \beta + \varepsilon\} | > \delta\} \notin \mathcal{I}$. So $\beta + \varepsilon \in A_x$. Since ε is arbitrary and by definition $\alpha = \inf A_x$. Therefore $\alpha < \beta + \varepsilon$. This proves that $\alpha \le \beta$.

Definition 3.4. Let ϕ be an Orlicz function. The real number sequence $x = (x_n)$ is said to be \mathcal{I} -st ϕ -bounded if there is a positive number G such that

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(x_k) > G\right\}| > \delta \right\} \in \mathcal{I}.$$

Remark 3.5. If a sequence is \mathcal{I} -st ϕ -bounded then $\mathcal{I} - st \phi$ - lim sup and $\mathcal{I} - st \phi$ - lim inf of the sequence are finite.

Definition 3.6. Let ϕ be an Orlicz function. An element ξ is said to be an \mathcal{I} -statistical ϕ -cluster point of a sequence $x = (x_n)$ if for each $\varepsilon > 0$ and $\delta > 0$ the set

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k - \xi) \ge \varepsilon\} | < \delta\right\} \notin \mathcal{I}.$$

Theorem 3.7. Let ϕ be an Orlicz function. If a \mathcal{I} -statistically ϕ - bounded sequence has one cluster point then it is \mathcal{I} -statistically ϕ -convergent.

Proof. Let (x_n) be a \mathcal{I} -statistically ϕ -bounded sequence which has one cluster point. i.e., $M = \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > G\} | > \delta\} \in \mathcal{I}$. So there exist a set $M' = \{n_1 < n_2 < ...\} \subset \mathbb{N}$ such that $M' \notin \mathcal{I}$ and (x_{n_k}) is a statistically bounded sequence.

Now since (x_n) has only one cluster point and (x_{n_k}) is a statistically bounded subsequence of (x_n) , so (x_{n_k}) also has only one cluster point. Hence (x_{n_k}) is statistically ϕ convergent.

Let st- $\phi \lim x_{n_k} = \xi$. Then for any $\varepsilon > 0$ and $\delta > 0$ we have the inclusion, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k - \xi) \ge \varepsilon\} | \ge \delta\} \subseteq M \cup A \in \mathcal{I}$ where A is a finite set. That is, (x_n) is \mathcal{I} -statistically ϕ - convergent to ξ .

Theorem 3.8. Let ϕ be an Orlicz function. For a \mathcal{I} -st ϕ -bounded sequence (x_n) , $(\phi(x_n))$ is \mathcal{I} -st convergent if and only if \mathcal{I} -st ϕ -lim inf $x_n = \mathcal{I}$ -st ϕ -lim sup x_n .

Proof. Let $(\phi(x_n))$ be \mathcal{I} -statistically convergent, say to x. Then for any $\varepsilon > 0, \ \delta > 0, \ \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : | \ \phi(x_k) - x | > \varepsilon\} | > \delta\} \in \mathcal{I}$. So, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > x + \varepsilon\} | > \delta\} \in \mathcal{I}$, which means that $\mathcal{I} - st \ \phi - \liminf x_n \le x + \varepsilon$.

We have also $\left\{ n \in \mathbb{N} : \frac{1}{n} | \left\{ k \leq n : \phi(x_k) < x - \varepsilon \right\} | > \delta \right\} \in \mathcal{I}$, i.e. $\mathcal{I} - st \phi - \lim \sup x_n \geq x - \varepsilon$.

For the converse, let us assume $\mathcal{I} - st\phi - \liminf x_n = \mathcal{I} - st\phi - \limsup x_n$. Now for any $\varepsilon > 0$, $\delta > 0$, we have $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > x + \varepsilon\} | > \delta\} \in \mathcal{I}$ and $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < x - \varepsilon\} | > \delta\} \in \mathcal{I}$. These implies that $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : | \phi(x_k) - x | > \varepsilon\} | > \delta\} = A \cup B \in \mathcal{I}$ where $A = \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > x + \varepsilon\} | > \delta\}$ and $B = \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) < x - \varepsilon\} | > \delta\}$. This means $(\phi(x_k))$ is \mathcal{I} , statistically convergent to x.

This means $(\phi(x_n))$ is \mathcal{I} -statistically convergent to x.

Theorem 3.9. Let ϕ be an Orlicz function. If $(x_n), (y_n)$ are two \mathcal{I} -st ϕ -bounded sequences, then

(i) $\mathcal{I} - st \phi - \limsup (x_n + y_n) \leq \mathcal{I} - st \phi - \limsup x_n + \mathcal{I} - st \phi - \limsup y_n$. (ii) $\mathcal{I} - st \phi - \liminf (x_n + y_n) \geq \mathcal{I} - st \phi - \liminf x_n + \mathcal{I} - st \phi - \liminf y_n$.

Proof. (i) Let $l_1 = \mathcal{I} - st \phi - \limsup x_n$ and $l_2 = \mathcal{I} - st \phi - \limsup y_n$. So $\left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(x_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \in \mathcal{I}$ and $\left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(x_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \in \mathcal{I}$. Now $\left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(x_k + y_k) > l_1 + l_2 + \varepsilon\right\} | > \delta\right\} \subset \left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(x_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \cup \left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(y_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \cup \left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(y_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \cup \left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : \phi(y_k) > l_1 + \frac{\varepsilon}{2}\right\} | > \delta\right\} \in \mathcal{I}$.

If $c \in B_{(x+y)}$, then by definition $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k + y_k) > c\} | > \delta\} \notin \mathcal{I}.$

We show that $c < l_1 + l_2 + \varepsilon$. If $c \ge l_1 + l_2 + \varepsilon$ then $\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k + y_k) > c\} | > \delta\right\} \subseteq \left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k + y_k) > l_1 + l_2 + \varepsilon\} | > \delta\right\}$. Therefore $\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k + y_k) > c\} | > \delta\right\} \in \mathcal{I}$ which is a contradiction. Hence, $c < l_1 + l_2 + \varepsilon$. As this is true for all $c \in B_{(x+y)}$, so, \mathcal{I} -st ϕ - lim sup (x + y) = sup $B_{(x+y)} < l_1 + l_2 + \varepsilon$.

Since $\varepsilon > 0$ is arbitrary, so \mathcal{I} -st ϕ -lim sup $(x_n + y_n) \leq \mathcal{I}$ -st ϕ -lim sup $x_n + \mathcal{I}$ -st ϕ -lim sup y_n .

(ii) Similar to above technique of proof.

-

Definition 3.10. Let ϕ be an Orlicz function. A sequence (x_n) is said to be \mathcal{I} -st ϕ -convergent to $+\infty$ $(or-\infty)$ if for every real number G > 0, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) \le G\} | > \delta\} \in \mathcal{I}(or, \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) \ge -G\} | > \delta\} \in \mathcal{I}).$

Theorem 3.11. Let ϕ be an Orlicz function. If $\mathcal{I} - st \phi - \limsup x = l$, then there exists a subsequence of x which is $\mathcal{I} - st \phi -$ convergent to l.

Proof. Case-I: If $l = -\infty$ then $B_x = \emptyset$.

So for any real number G > 0, $\left\{ n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) \ge -G\} | > \delta \right\} \in \mathcal{I}$ i.e., $\mathcal{I} - st \phi - \lim x = -\infty$.

Case-II: If $l = +\infty$, then $B_x = \mathbb{R}$. So for any $b \in \mathbb{R}$, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > b\} | > \delta\} \notin \mathcal{I}$. Let x_{n_1} be arbitrary member of x. Then, $A_{n_1} = \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > x_{n_1} + 1\} | > \delta\} \notin \mathcal{I}$. Since \mathcal{I} is an admissible ideal, so A_{n_1} must be an infinite set. That is, $d(\{k \le n : \phi(x_k) > x_{n_1} + 1\}) \neq 0$. We claim that there is at least $k \in \{k \le n : \phi(x_k) > x_{n_1} + 1\} \subseteq \{1, 2, ..., n_1, n_1 + 1\}$, i.e., $d(\{k \le n : \phi(x_k) > x_{n_1} + 1\}) \leq d(\{1, 2, ..., n_1, n_1 + 1\}) = 0$, which is a contradiction.

We call this k as n_2 , thus $x_{n_2} > x_{n_1} + 1$. Proceeding in this way we obtain a subsequence $\{x_{n_k}\}$ of x with $x_{n_k} > x_{n_{k-1}} + 1$. Since for any G > 0, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) \le G\} | > \delta\} \in \mathcal{I}$, so \mathcal{I} -st ϕ - lim $x_{n_k} = +\infty$. Case-III: $-\infty < l < +\infty$.

So, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > l + \frac{1}{2}\} | > \delta\} \in \mathcal{I}$ and $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > l - 1\} | > \delta\} \notin \mathcal{I}$. So there must be a *m* in this set for which

 $\frac{1}{m} |\{k \le m : \phi(x_k) > l - 1\}| > \delta \text{ and } \frac{1}{m} |\{k \le m : \phi(x_k) \le l + \frac{1}{2}\}| > \delta.$

For otherwise $\left\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > l-1\} | > \delta\right\} \subset \{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > l + \frac{1}{2}\} | > \delta\} \in \mathcal{I}$, which is a contradiction.

Now for maximum $k \le m$ will satisfy $\phi(x_k) > l-1$ and $\phi(x_k) \le l + \frac{1}{2}$ so we must have a n_1 for which $l-1 < \phi(x_{n_1}) \le l + \frac{1}{2} < l+1$.

Next we proceed to choose an element $\phi(x_{n_2})$ from $\phi(x)$, $n_2 > n_1$ such that $l - \frac{1}{2} < \phi(x_{n_2}) < l + \frac{1}{2}$. Now $\left\{ n \in \mathbb{N} : \frac{1}{n} | \left\{ k \le n : \phi(x_k) > l - \frac{1}{2} \right\} | > \delta \right\}$ is an infinite set. So, $d\left(\left\{ k \le n : \phi(x_k) > l - \frac{1}{2} \right\} \right) \neq 0$. We observe that there is at least one $k > n_1$ for which $\phi(x_k) > l - \frac{1}{2}$, for otherwise $d\left(\left\{ k \le n : \phi(x_k) > l - \frac{1}{2} \right\} \right) \le d\left(\{1, 2, ... n_1\} \right) = 0$ which is a contradiction.

Let $E_{n_1} = \{k \le n : k > n_1, \phi(x_k) > l - \frac{1}{2}\} \neq \emptyset$. If $k \in E_{n_1}$ always implies $x_k \ge l + \frac{1}{2}$ then, $E_{n_1} \subseteq \{k \le n : \phi(x_k) > l + \frac{1}{2}\}$, i.e., $d(E_{n_1}) \le d(\{k \le n : \phi(x_k) > l + \frac{1}{2}\}) = 0$.

Since $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : \phi(x_k) > l + \frac{1}{2}\} | < \delta\} \in \mathcal{F}(\mathcal{I})$, thus $\{k \le n : \phi(x_k) > l - \frac{1}{2}\} \subseteq \{1, 2, ..., n_1\} \cup E_{n_1}$. So, $d(\{k \le n : \phi(x_k) > l - \frac{1}{2}\}) \le d(\{1, 2, ..., n_1\}) + d(E_{n_1}) \le 0$, which is a contradiction.

This shows that there is a $n_2 > n_1$ such that $l - \frac{1}{2} < \phi(x_{n_2}) < l + \frac{1}{2}$. Proceeding in this way we obtain a subsequence $\phi(x_{n_k})$ of $\phi(x)$, $n_k > n_{k-1}$ such that $l - \frac{1}{k} < \phi(x_{n_k}) < l + \frac{1}{k}$ for each k. This subsequence $\{\phi(x_{n_k})\}$ ordinarily converges to l and thus \mathcal{I} -st ϕ - convergent to l.

Theorem 3.12. If $\mathcal{I}-st \phi - \lim \inf x = l$, then there exists a subsequence of x which is $\mathcal{I}-st \phi - \text{ convergent to } l$.

Proof. The proof is similar to Thm. 3.11 and so omitted.

Theorem 3.13. Let ϕ be an Orlicz function. Every \mathcal{I} -st ϕ - bounded sequence x has a subsequence which is \mathcal{I} -st ϕ -convergent to a finite real number.

Proof. The proof follows from Remark 3.5 and Thm. 3.11.

References

- M. Arslan and E. Dundar, On *I*-convergence of sequences of functions in 2-normed spaces, *Southeast Asian Bull. Math.* 42 (4) (2018) 491–502.
- [2] R.C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (2) (1953) 335–346.
- [3] R.C. Buck, The measure theoretic approach to density, Amer. J. Math. 68 (4) (1946) 560–580.
- [4] P. Das and E. Savas, On *I*-statistically pre-Cauchy sequences, *Taiwanese J. Math.* 18 (1) (2014) 115–126.
- [5] S. Debnath and C. Choudhury, On *I*-statistically φ-convergence, Proyectiones 40 (3) (2021) 593–604.
- [6] S. Debnath and J. Debnath, On *I*-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation, *Proyecciones* 33 (3) (2014) 277–285.

- [7] S. Debnath and D. Rakshit, On *I* statistical convergence, Iran. J. Math. Sci. Inform. 13 (2) (2018) 101–109.
- [8] K. Dems, On *I*-Cauchy sequences, Real Anal. Exchange **30** (1) (2004/2005) 123– 128.
- [9] M. Et, A. Altaibi, S.A. Mohiuddine, On (Δ^m, *I*)-statistical convergence of order α, Sci. World J. (2014), Art. ID 535419, pp. 5.
- [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (3-4) (1951) 241–244.
- [11] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (4) (1993) 1187– 1192.
- [12] J.A. Fridy, On statistical convergence, Analysis (Berlin) 5 (4) (1985) 301–313.
- [13] M. Gurdal and M.O. Ozgur, A generalized statistical convergence via moduli, *Electron. J. Math. Anal. Appl.* 3 (2) (2015) 173–178.
- [14] M. Gurdal and A. Sahiner, Extremal I-limit points of double sequences, Appl. Math. E-Notes 8 (2008) 131–137.
- [15] M. Gurdal and H. Sari, Extremal A-statistical limit points via ideals, J. Egyptian Math. Soc. 20 (1) (2014) 55–58.
- [16] N. Khusnussaadah and S. Supama, Completeness of sequence spaces generated by an Orlicz function, *Eksakta*. 19 (1) (2019) 1–14.
- [17] M. Kostyrko, M. Macaj, T. Salat, *I*-convergence and extremal *I*-limit points, *Math. Slovaca.* 55 (4) (2005) 443–464.
- [18] M. Kostyrko, W. Wilczynski, T. Salat, On *I*-convergence, *Real Anal. Exchange.* 26 (2) (2000/2001) 669–686.
- [19] M.A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in non convex problems, J. Math. Anal. Appl. 256 (2) (2001) 686–693.
- [20] D.S. Mitrinovic, J. Sandor, B. Crstici, Handbook of Number Theory, Kluwer Acad. Publ., Dordrecht-Boston-London, 1996.
- [21] M. Mursaleen, S. Debnath, D. Rakshit, *I*-statistical limit superior and *I*-statistical limit inferior, *Filomat* **31** (7) (2017) 2103–2108.
- [22] S.K. Pal and P. Malik, On a criterion of weak ideal convergence and some further results on weak ideal summability, *Southeast Asian Bull. Math.* **39** (5) (2015) 685–694.
- [23] M.M. Rao and Z.D. Ren, Applications of Orlicz Spaces, CRC Press, 1 Ed., 2002.
- [24] A. Sahiner, M. Gurdal, T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, *Comput. Math. Appl.* 61 (3) (2011) 683–689.
- [25] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca. 30 (2) (1980) 139–150.
- [26] T. Salat, B.C. Tripathy, M. Ziman, On some properties of *I*-convergence, *Tatra. Mt. Math. Publ.* 28 (2) (2004) 274–286.
- [27] E. Savas and P. Das, A generalized statistical convergence via ideals, App. Math. Lett. 24 (6) (2011) 826–830.
- [28] E. Savas and S. Debnath, Lacunary statistically ϕ -convergence, Note Mat. **39** (2) (2019) 111–119.
- [29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [30] B.C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malaysian Math. Soc. 20 (1997) 31–33.
- [31] U. Yamanci and M. Gurdal, *I*-statistical convergence in 2-normed space, Arab J. Math. Sci. 20 (1) (2014) 41–47.
- [32] U. Yamanci and M. Gurdal, *I*-statistically pre-Cauchy double sequences, *Global J. Math. Anal.* 2 (4) (2014) 297–303.