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1. Introduction

The notion of statistical convergence was first introduced in the year 1951 inde-
pendently by Fast [10] and Steinhaus [29] in connection with summability theory.
Following them, the concept was investigated by Fridy [11, 12], Salat [25] and
many others from the sequence space point of view. Various applications of
statistical convergence can be found in [2, 3, 19, 20, 30].

Generalizing the concept of statistical convergence in 2001, Kostyrko et al.
introduced the idea of I−convergence in [17] where the ideal I basically rep-
resents a set of subsets of N which satisfy some specific conditions. As this
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concept was the generalization of so many known convergence methods, even-
tually it becomes a very interesting area of research. Several works related to
I−convergence can be found in [1, 8, 14, 18, 22, 24, 26].

In [27], Savas and Das generalized the idea of I−convergence to I−statistical
convergence. Several investigation in this direction was done by Das and Savas
[4], Debnath and Debnath [6], Mursaleen et al. [7], Et et al. [9] and many others
[13, 15, 32, 31].

An Orlicz function (see [23]) is defined as a map φ : R → R which satisfies
the following criterion:

(i) φ(−x) = φ(x) ∀x ∈ R, i.e. φ is an even function.

(ii) φ
′

(x) ≥ 0 ∀x ∈ R
+, i.e. φ is non-decreasing on R

+.

(iii) φ(x) = 0 if and only if x = 0.

(iv) φ is continuous on entire R.

(v) x → ∞ implies φ(x) → ∞.

Further, an Orlicz function φ is said to fulfil the condition 42, if there exists
an positive real number M satisfying the condition φ(2x) ≤ M · φ(x) ∀x ∈ R

+.

In [23], Rao and Ren describes some important applications of Orlicz func-
tions in many areas such as economics, stochastic problems etc. Few examples
of Orlicz functions are given below:

Example 1.1.

(i) For a fixed q ∈ N, the function φ : R → R defined as φ(x) = |x|q is an
Orlicz function.

(ii) The function φ : R → R defined as φ(x) = x5 is not an Orlicz function.

(iii) The function φ : R → R defined as φ(x) = x2 is an Orlicz function satisfy-
ing the 42 condition.

(iv) The function φ : R → R defined as φ(x) = e|x|− | x | −1 is an Orlicz
function not satisfying the 42 condition.

The idea of φ−convergence was introduced by Khusnussaadah and Supama
[16]. Recently, it was generalized to I−statistically φ−convergence by Debnath
and Choudhury [5] and Lacunary statistically φ−convergence by Savas and Deb-
nath [28].

Mursaleen, Debnath and Rakshit [21] introduced the concepts of I−statistical
limit superior and I−statistical limit inferior. In the present paper we gener-
alized it and introduced I−statistical φ-limit superior and I−statistical φ-limit
inferior and studied some of their properties for sequence of real numbers.

2. Definitions and Preliminaries

Definition 2.1. [18] Let X is a non-empty set. A family of subsets I ⊂ P (X) is
called an ideal on X if and only if

(i) ∅ ∈ I;



On I−Statistical φ−Limit Superior and Inferior 281

(ii) for each A,B ∈ I implies A ∪B ∈ I;

(iii) for each A ∈ I and B ⊂ A implies B ∈ I.

Definition 2.2. [18] Let X is a non-empty set. A family of subsets F ⊂ P (X) is
called a filter on X if and only if

(i) ∅ /∈ F ;

(ii) for each A,B ∈ F implies A ∩B ∈ F ;

(iii) for each A ∈ F and B ⊃ A implies B ∈ F .

An ideal I is called non-trivial if I 6= ∅ and X /∈ I. The filter F =
F(I) = {X −A : A ∈ I} is called the filter associated with the ideal I. A
non-trivial ideal I ⊂ P (X) is called an admissible ideal in X if and only if
I ⊃ {{x} : x ∈ X}.

Definition 2.3. [27] A sequence x = (xn) is said to be I−statistically convergent
to x0 if for every ε > 0 and every δ > 0,

{

n ∈ N :
1

n
| {k ≤ n :| xk − x0 |≥ ε} | ≥ δ

}

∈ I.

x0 is called I−statistical limit of the sequence (xn) and we write, I−st limxn =
x0.

Definition 2.4. [21] Let I be an admissible ideal of N and let x = (xn) be a real
sequence. Let Bx denote the set

Bx =

{

b ∈ R :

{

n ∈ N :
1

n
| {k ≤ n : xk > b} | > δ

}

/∈ I

}

.

Similarly,

Ax =

{

a ∈ R :

{

n ∈ N :
1

n
| {k ≤ n : xk < a} | > δ

}

/∈ I

}

.

Then I−statistical limit superior of x is given by,

I − st lim supx =

{

sup Bx if Bx 6= ∅,

−∞ if Bx = ∅.
.

Also, I−statistical limit inferior of x is given by,

I − st lim inf x =

{

inf Ax if Ax 6= ∅,

∞ if Ax = ∅.
.
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Definition 2.5. [16] Let φ : R → R be an Orlicz function. A sequence x = (xn)
is said to be φ−convergent to x0 if lim

n
φ(xn − x0) = 0.

In this case, x0 is called the φ−limit of (xn) and denoted by φ− limx = x0.

Remark 2.6. If we take φ(x) =| x |, then φ−convergent concepts coincide with
usual convergence. Also it is easy to check, if x = (xn) is φ−convergent to x0,
then any of its subsequence is φ−convergent to x0 as well.

Definition 2.7. Let φ : R → R be an Orlicz function. A sequence x = (xn) is
said to be statistically φ−convergent to x0 if for each ε > 0,

lim
n

1

n
| {k ≤ n : φ(xk − x0) ≥ ε} |= 0.

x0 is called the statistical φ− limit of the sequence (xn) and we write S −
φ lim x = x0 or xk → x0(S − φ). We shall also use S − φ to denote the set of
all statistically φ−convergent sequences.

Remark 2.8. If we take φ(x) =| x |, then S − φ convergence concepts coincide
with statistically convergence.

We introduce the following definition as a generalization of I−statistical con-
vergence. Throughout the paper we consider I as an admissible ideal.

Definition 2.9. [5] Let φ : R → R be an Orlicz function. A sequence x = (xn)
is said to be I−statistically φ− convergent to x0 if for every ε > 0 and every
δ > 0,

{

n ∈ N :
1

n
| {k ≤ n : φ (xk − x0) ≥ ε} | ≥ δ

}

∈ I.

x0 is called I−statistical φ− limit of the sequence (xn) and we write, IS −
φ lim xn = x0.

Remark 2.10. If we take φ(x) =| x |, then IS − φ convergent coincide with IS−
convergent. Thus IS − φ convergence is a generalization of IS convergence.

3. Main Results

Definition 3.1. Let I be an admissible ideal of N. For a real sequence x = (xn),
let

Bx =

{

b ∈ R :

{

n ∈ N :
1

n
| {k ≤ n : φ(xk) > b} | > δ

}

/∈ I

}

and

Ax =

{

a ∈ R :

{

n ∈ N :
1

n
| {k ≤ n : φ(xk) < a} | > δ

}

/∈ I

}

.
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We define I−statistical φ−limit superior of x by

I − st φ− lim supx =

{

sup Bx if Bx 6= ∅,

−∞ if Bx = ∅.
.

Also I−statistical φ−limit inferior of x by

I − st φ− lim inf x =

{

inf Ax if Ax 6= ∅,

∞ if Ax = ∅.
.

Theorem 3.2. If β = I − stφ− lim supx is finite, then for every positive number
ε,

{

n ∈ N :
1

n
| {k ≤ n : φ(xk) > β − ε} | > δ

}

/∈ I

and
{

n ∈ N :
1

n
| {k ≤ n : φ(xk) > β + ε} | > δ

}

∈ I.

Similarly, if α = I − st φ− lim inf x is finite, then for every positive number
ε,

{

n ∈ N :
1

n
| {k ≤ n : φ(xk) < α+ ε} | > δ

}

/∈ I

and
{

n ∈ N :
1

n
| {k ≤ n : φ(xk) < α− ε} | > δ

}

∈ I.

Proof. It follows from the definition.

Theorem 3.3. Let φ be an Orlicz function. Then for any real number sequence
(xn), I − st φ− lim inf xn ≤ I − st φ− lim supxn.

Proof. If I − st φ− lim supxn = −∞, then we have Bx = ∅. So for every b ∈ R,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > b} | > δ

}

∈ I, which implies {n ∈ N : 1
n
|{k ≤ n :

φ(xk) > b}| < δ} ∈ F(I) i.e, {n ∈ N : 1
n
|{k ≤ n : φ(xk) < b}| > δ} ∈ F(I).

So for every a ∈ R,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) < a} | > δ

}

/∈ I. Hence, I −
st φ− lim inf xn = −∞ (since Ax = R).

If I − st φ− lim supxn = ∞, then it is obvious.

Let β = I − st φ − lim supxn is finite and α = I − st φ − lim inf xn. So
for ε > 0, δ > 0,

{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > β + ε} | > δ

}

∈ I which implies
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) < β + ε} | > δ

}

∈ F(I) i.e., {n ∈ N : 1
n
|{k ≤ n :

φ(xk) < β + ε}| > δ} /∈ I. So β + ε ∈ Ax. Since ε is arbitrary and by definition
α =inf Ax. Therefore α < β + ε. This proves that α ≤ β.

Definition 3.4. Let φ be an Orlicz function. The real number sequence x = (xn)
is said to be I−st φ−bounded if there is a positive number G such that
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{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > G} | > δ

}

∈ I.

Remark 3.5. If a sequence is I−st φ−bounded then I − st φ − lim sup and
I − st φ− lim inf of the sequence are finite.

Definition 3.6. Let φ be an Orlicz function. An element ξ is said to be an
I−statistical φ−cluster point of a sequence x = (xn) if for each ε > 0 and δ > 0
the set

{

n ∈ N :
1

n
| {k ≤ n : φ(xk − ξ) ≥ ε} | < δ

}

/∈ I.

Theorem 3.7. Let φ be an Orlicz function. If a I−statistically φ− bounded
sequence has one cluster point then it is I−statistically φ−convergent.

Proof. Let (xn) be a I−statistically φ−bounded sequence which has one cluster
point. i.e., M =

{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > G} | > δ

}

∈ I. So there exist a
set M ′ = {n1 < n2 < ....} ⊂ N such that M ′ /∈ I and (xnk

) is a statistically
bounded sequence.

Now since (xn) has only one cluster point and (xnk
) is a statistically bounded

subsequence of (xn), so (xnk
) also has only one cluster point. Hence (xnk

) is
statistically φ convergent.

Let st-φ limxnk
= ξ. Then for any ε > 0 and δ > 0 we have the inclusion,

{

n ∈ N : 1
n
| {k ≤ n : φ(xk − ξ) ≥ ε} | ≥ δ

}

⊆ M ∪ A ∈ I where A is a finite set.
That is, (xn) is I−statistically φ− convergent to ξ.

Theorem 3.8. Let φ be an Orlicz function. For a I−st φ−bounded sequence (xn),
(φ(xn)) is I−st convergent if and only if I−stφ−lim inf xn = I−stφ−lim supxn.

Proof. Let (φ(xn)) be I−statistically convergent, say to x. Then for any
ε > 0, δ > 0,

{

n ∈ N : 1
n
| {k ≤ n :| φ(xk)− x |> ε} | > δ

}

∈ I. So,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > x+ ε} | > δ

}

∈ I, which means that I − st φ −
lim inf xn ≤ x+ ε.

We have also
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) < x− ε} | > δ

}

∈ I, i.e. I − st φ −
lim supxn ≥ x− ε.

For the converse, let us assume I−stφ−lim inf xn = I−stφ−lim supxn. Now
for any ε > 0, δ > 0, we have

{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > x+ ε} | > δ

}

∈ I

and
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) < x− ε} | > δ

}

∈ I. These implies that {n ∈ N :
1
n
|{k ≤ n :| φ(xk) − x |> ε}| > δ} = A ∪ B ∈ I where A = {n ∈ N : 1

n
|{k ≤ n :

φ(xk) > x+ ε}| > δ} and B = {n ∈ N : 1
n
|{k ≤ n : φ(xk) < x− ε}| > δ}.

This means (φ(xn)) is I−statistically convergent to x.

Theorem 3.9. Let φ be an Orlicz function. If (xn), (yn) are two I−st φ−bounded
sequences, then
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(i) I − st φ− lim sup (xn + yn) ≤ I − st φ− lim supxn + I − st φ− lim sup yn.

(ii) I − st φ− lim inf (xn + yn) ≥ I − st φ− lim inf xn + I − st φ− lim inf yn.

Proof. (i) Let l1 = I − st φ − lim supxn and l2 = I − st φ − lim sup yn. So
{

n ∈ N : 1
n
|
{

k ≤ n : φ(xk) > l1 +
ε
2

}

| > δ
}

∈ I and {n ∈ N : 1
n
|{k ≤ n :

φ(yk) > l2 +
ε
2}| > δ} ∈ I. Now {n ∈ N : 1

n
|{k ≤ n : φ(xk + yk) > l1 + l2 + ε}| >

δ} ⊂ {n ∈ N : 1
n
|{k ≤ n : φ(xk) > l1 +

ε
2}| > δ} ∪ {n ∈ N : 1

n
|{k ≤ n : φ(yk) >

l2 +
ε
2}| > δ}. So, {n ∈ N : 1

n
|{k ≤ n : φ(xk + yk) > l1 + l2 + ε}| > δ} ∈ I.

If c ∈ B(x+y), then by definition {n ∈ N : 1
n
|{k ≤ n : φ(xk + yk) > c}| > δ} /∈

I.

We show that c < l1 + l2 + ε. If c ≥ l1 + l2 + ε then
{

n ∈ N : 1
n
| {k ≤ n : φ(xk + yk) > c} | > δ

}

⊆ {n ∈ N : 1
n
|{k ≤ n : φ(xk + yk) >

l1 + l2 + ε}| > δ}. Therefore
{

n ∈ N : 1
n
| {k ≤ n : φ(xk + yk) > c} | > δ

}

∈ I
which is a contradiction. Hence, c < l1+ l2+ε. As this is true for all c ∈ B(x+y),
so, I−stφ− lim sup (x+ y) =sup B(x+y) < l1 + l2 + ε.

Since ε > 0 is arbitrary, so I−st φ−lim sup (xn + yn) ≤ I−st φ−lim sup
xn + I−st φ−lim sup yn.

(ii) Similar to above technique of proof.

Definition 3.10. Let φ be an Orlicz function. A sequence (xn)
is said to be I−st φ−convergent to +∞ (or−∞) if for ev-
ery real number G > 0,

{

n ∈ N : 1
n
| {k ≤ n : φ(xk) ≤ G} | > δ

}

∈

I(or,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) ≥ −G} | > δ

}

∈ I).

Theorem 3.11. Let φ be an Orlicz function. If I−stφ− lim supx = l, then there
exists a subsequence of x which is I−st φ− convergent to l.

Proof. Case-I : If l = −∞ then Bx = ∅.

So for any real number G > 0,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) ≥ −G} | > δ

}

∈ I
i.e., I − st φ− limx = −∞.

Case-II : If l = +∞, then Bx = R. So for any b ∈ R,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > b} | > δ

}

/∈ I. Let xn1
be arbitrary member of

x. Then, An1
=

{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > xn1

+ 1} | > δ
}

/∈ I. Since I is an
admissible ideal, so An1

must be an infinite set. That is, d({k ≤ n : φ(xk) >
xn1

+1}) 6= 0. We claim that there is at least k ∈ {k ≤ n : φ(xk) > xn1
+ 1} such

that k > n1 + 1, for otherwise {k ≤ n : φ(xk) > xn1
+ 1} ⊆ {1, 2, ...n1, n1 + 1},

i.e., d ({k ≤ n : φ(xk) > xn1
+ 1}) ≤ d ({1, 2, ...n1, n1 + 1}) = 0, which is a con-

tradiction.

We call this k as n2, thus xn2
> xn1

+ 1. Proceeding in this way we ob-
tain a subsequence {xnk

} of x with xnk
> xnk−1

+ 1. Since for any G > 0,
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) ≤ G} | > δ

}

∈ I, so I−st φ− lim xnk
= +∞.

Case-III : −∞ < l < +∞.

So,
{

n ∈ N : 1
n
|
{

k ≤ n : φ(xk) > l + 1
2

}

| > δ
}

∈ I and {n ∈ N : 1
n
|{k ≤

n : φ(xk) > l − 1}| > δ} /∈ I. So there must be a m in this set for which
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1
m
| {k ≤ m : φ(xk) > l − 1} | > δ and 1

m
|
{

k ≤ m : φ(xk) ≤ l+ 1
2

}

| > δ.

For otherwise
{

n ∈ N : 1
n
| {k ≤ n : φ(xk) > l − 1} | > δ

}

⊂ {n ∈ N : 1
n
|{k ≤

n : φ(xk) > l + 1
2}| > δ} ∈ I, which is a contradiction.

Now for maximum k ≤ m will satisfy φ(xk) > l − 1 and φ(xk) ≤ l+ 1
2 so we

must have a n1 for which l − 1 < φ(xn1
) ≤ l + 1

2 < l + 1.

Next we proceed to choose an element φ(xn2
) from φ(x), n2 > n

1
such that l−

1
2 < φ(xn2

) < l+ 1
2 . Now

{

n ∈ N : 1
n
|
{

k ≤ n : φ(xk) > l − 1
2

}

| > δ
}

is an infinite

set. So, d
({

k ≤ n : φ(xk) > l − 1
2

})

6= 0. We observe that there is at least one

k > n1 for which φ(xk) > l − 1
2 , for otherwise d

({

k ≤ n : φ(xk) > l − 1
2

})

≤
d ({1, 2, ...n1}) = 0 which is a contradiction.

Let En1
=

{

k ≤ n : k > n1, φ(xk) > l− 1
2

}

6= ∅. If k ∈ En1
always im-

plies xk ≥ l + 1
2 then, En1

⊆
{

k ≤ n : φ(xk) > l + 1
2

}

, i.e., d (En1
) ≤

d
({

k ≤ n : φ(xk) > l + 1
2

})

= 0.

Since
{

n ∈ N : 1
n
|
{

k ≤ n : φ(xk) > l+ 1
2

}

| < δ
}

∈ F(I), thus {k ≤ n :

φ(xk) > l − 1
2} ⊆ {1, 2, ...n1} ∪ En1

. So, d
({

k ≤ n : φ(xk) > l − 1
2

})

≤
d ({1, 2, ...n1}) + d (En1

) ≤ 0, which is a contradiction.

This shows that there is a n2 > n1 such that l − 1
2 < φ(xn2

) < l + 1
2 .

Proceeding in this way we obtain a subsequence φ(xnk
) of φ(x), nk > nk−1 such

that l − 1
k
< φ(xnk

) < l + 1
k
for each k. This subsequence {φ(xnk

)} ordinarily
converges to l and thus I−st φ− convergent to l.

Theorem 3.12. If I−st φ− lim inf x = l, then there exists a subsequence of x
which is I−st φ− convergent to l.

Proof. The proof is similar to Thm. 3.11 and so omitted.

Theorem 3.13. Let φ be an Orlicz function. Every I−st φ− bounded sequence x
has a subsequence which is I−st φ−convergent to a finite real number.

Proof. The proof follows from Remark 3.5 and Thm. 3.11.
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