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defect with relative (k,n) Valiron defect from the view point of integrated moduli of
logarithmic derivative of entire and meromorphic functions where k and n are two
non-negative integers.

Keywords: Entire function; Meromorphic function; Integrated moduli of logarithmic
derivative of entire and meromorphic functions; Relative (k, n) Nevanlinna defect; Rel-
ative (k,n) Valiron defect.

1. Introduction, Definitions and Notations

Let f be a non constant meromorphic function defined in the open complex
plane C. For o € CU {00}, let n(t, «; f ) denote the number of roots of f = «
in |z| < t, the multiple roots being counted according to their multiplicities and

N(t,a; f) is defined in the usual way in terms of n(t, «; f ). Similarly, n(t, o; f)
denotes the number of distinct roots of f = « in |z| < ¢ and N(t, «; f) is also

defined in the usual way in terms of n(t, a; f).

The Nevanlinna defect §(«; f) and the Valiron defect A(a; f) of « are respec-
tively defined in the following manner:

5(a;f) =1 liiris;ip% B .raloo %

" (r.0:) (r.0:)
N(r,a; f m(r, a;
Aa, f) =1 — liminf —"—** = limsup———>-~.
@S =Ry T TG )
Milloux [5] introduced the concept of absolute defect of ‘@’ with respect to the
derivative f’. Later Xiong [10] extended this definition. He introduced the term

. (k)
5g)(a;f) =1 —lifris;}p% for k=1,2,3,....
and called it the relative Nevanlinna defect of ‘a’ with respect to f*). Xiong [10]
has shown various relations between the usual defects and the relative defects.
Singh [7, 8] introduced the term relative defect for distinct zeros and poles and
established various relations between it, relative defects and the usual defects.
In the paper we call the following two terms

) N (r,a;f(k))
(R (. p\ — .
R(S(n)(a, fi=1 hfn sup (r, f(”))

and

®) (o £) — 1 — Jim i N0 L)
R (e ) = 1=t oy
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respectively the relative (k,n) Nevanlinna defect and the relative (k,n) Valiron
defect of ‘e’ with respect to f(*) for k = 1,2,3,.... and n = 0,1,2,3,... and
prove various relations between them. For n = 0, the above definitions coincide
with the relative Nevanlinna defect and the relative Valiron defect respectively.

The term S(r, f) denotes any quantity satisfying S(r, f) = o{T(r, )} as
r — oo through all values of r if f is of finite order and except possibly for
a set of r of finite linear measure otherwise. We do not explain the standard
definitions and notations of the value distribution theory and the Nevanlinna
theory as those are available in [3].

The following definitions are well known.

Definition 1.1. The order py of a meromorphic function f is defined as

= limsu log T'(r, /) T(r. )
Pr= r—)oop IOgT ’

If f is entire, one can easily verify that

o s 108 M (1, f)
= 1ams —
Pr= T logr

If py < oo then f is of finite order.

Definition 1.2. The lower order Ay of a meromorphic function f are defined as

logT
A = liminf 08 L)
r—oo  logr
If [ is entire, it can easily verify that
log!® M
A = liminf 08 M S)
r—00 logr

We may now recall the following definition.
If f is a meromorphic function in the complex plane, then the integrated
moduli of the logarithmic derivative I(r, f) is defined by

27
== [

for 0 < r < +oo (see [9]).
We now define the following two terms by using the concept of I (r, f)

£ (re?)
(rei?) d9

. N(r,a; f*)
8% (q: f) =1 —lim sup ———=2
10y ( f) T‘—)EO ('I’, fn)
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and ( o
N(r,a; f

) (q: ) =1 — lim inf 2274 7/

IAn (CL, f) 1 hmrglgo I(?”, fn) .
These are respectively known as relative (k,n) Nevanlinna defect and relative
(k,n) Valiron defect with respect to I (r, f). In this paper we obtain different
kind of relative (k,n) deficiencies of entire and meromorphic functions under
the flavour of their integrated moduli of logarithmic derivative. Further, the
estimations are sharper as ensured by suitable examples and counter examples.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [8] Let f be a meromorphic function of finite order such that
Za;éood(a; f) =1 and 6(co; f) = 1. Then for any non negative integer k,

T f®)
e )

Lemma 2.2. [1] For any meromorphic function f of finite order such that

D arecd(a; f) =1 and 6(c0; f) =1,

Gy
A )~ ¥

where k and n are any two non negative integers.

Lemma 2.3. [1] Let f be a meromorphic function of finite order with
> azood(a; f) = 6(cc; f) = 1. Then for any o/,

. £ (k)
3583 (o; f) = liminfM

r—oo T (7”7 f(")) (3)

Lemma 2.4. [1] If f be a meromorphic function of finite order with
> azod(@; f) =6(00; f) = 1. Then for any ‘o,

. plk
RAK) (; f) = limsupm (r,a,f( ))

(n) X TT(r, ) (4)

Lemma 2.5. [9] Let f be a meromorphic function with finite lower order X in the
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complex plane and f (0) = 1. If

N(r,f)—i—N(r,%)

v = limsup

T—00 T(Tv .f) ’
then we have
lim inf Ir, f)
r—oo  T(r, f)
240\ [s1+2y) 42 (5)
v (2 +log (8 + 8)))
<(1+X) 3 BTy + : )
Alog (1 + (1_”))
when X\ > 0, and
lim inf I(r, f) < 12 n 37 (2+ log12) (6)

5 log (2)

when A = 0.

Lemma 2.6. [9] If for any entire function f of finite order 'p’ has no zeros in C,

then Itr. )
71’
M Gy = (7)
and Ir )
r, -
TG,y ®)

Lemma 2.7. If 37, 6(a; f) =1 and 6(cc; f) = 1, where f is an entire function
of finite order with f has no zeros in C. Then for any non negative integer k,
I(r, f®)

B TP T )

Proof. In view of Lemma 2.2 and by using Equations (1), (7) and (8) we get
that

L) [I(r,f““)) | T(r,f““))}
S T Y O CY)
I fB) TG )
BT BT )
. T(r, &Y T 7,
=T { ;(r{f)) | zﬁifi]
TG fY) | T(n)

= . 1' .
BT ) oI (1, f)
1
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This completes the proof. ]

Lemma 2.8. If f is an entire function of finite order such that f has no zeros
in Cand 3, ,..6(a; f) =1 and 6(co; f) = 1. Then for any two non negative
integer k and n,

I )
Hm ) T b (10)
We omit the proof of Lemma 2.8 because it can be carried out in the line of

Lemma 2.7.

Lemma 2.9. For any entire function f of finite order such that it has no zeros
in C with 3, ,..0(a; f) = 6(c0; f) = 1. Then for any'o/,

W (4L _om(ryon f9)
15<n>(0"f)—<1 Wp>+hrr2£f Ty

Proof. Using Equations (1), (2), (7), (8), (9), (10) and in view of the Lemma
2.3 we get that

N (7" o f(k))
®) (@ f) = 1 — lim sup =2/
Ié(n)(047 hH=1 11£Ii>b£p 1 (7“7 f(n))
N . f(k) (k)
=1- hmsupM . lim EAGY A
rooo 1 (7"7 f(k)) r=o0 [ (7, f(n))
N - f(k) (k)
= 1 — hmsupM . hm T(T7 f ) . T(T; f)
rooe T f0) roe XU T ) I f)
N - f(k) (k)
frd ]_ _ hmsupw . lm M . lm T('f', f)

roe T (r f®)  roee T f) rooel(r, f0)

U N(esf®) (T I f)

= - lmswo— sy (m, N I<nf<">))
. r(k)

= 1—limsup7N (T,a,f ) - lim T f) - lim I(r. /)

rooo 1 (7”7 f(k)) r—oo I (r, f) r—ooI(r, f(n))
N (rya; f®) 1

=1 1' 3 - - . .1
N T (r,f®) mp

B 1 1 N (r, o f)

(k) (n)
(1—i) —l—iliminfm(r’a’f ) li I(r, /™)

wp e I (r, fM) rheT(r, )

B 1 1o om(ra; fR) (e f™) I(r, f)
= (1__)+7T_phfi£f T (r, /) '33&( I(r, f) 'T(r,f<k>))
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- (1 - L) BN AT ) I (G SO B (Y )

mp r—oo | (r7f(n)) o I(r, f) T—>ooT(7" f(k))
m(ras /M) T f0) L T S)

7T_p r—oo | (7’*7'}(‘(")) ' r—00 I(’I“, f) TLYEOT(T‘, f(k))
1 m (r,a; f*)) 1. lim <I(T,f) T(rf) )

+ —lim inf

(1-5)
1
) Tmp e 10 fm) e \T( ) T f®)
1 m (r,a; f0)) I(r, f) T(r,f)
=(1—-— —liminf————= - i ’ -1 ’
( 7'rp) + P Lrgg.} I (ﬁf(")) rggoT(r, f) rLr&T(r, f(k))
=(1- L + —liminfm(r7a7f ) ~mp-1
mp)  wp r=ee I (r, fM)
0)
= (1 — i) + limin m(r,a,f )
T r—oo (7«, f(n))
Thus the lemma, is established. [

Lemma 2.10. Let f be an entire function of finite order such that f has no zeros
in C with },,..0(a; f) = 6(cc; f) = 1. Then for any ‘o,

- (k)
(k) X _ i i . m (T, Qg f )
1Ay (a5 f) = <1 7T/)> + llgsgpil(r,f(")) .

3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f be an entire function of non-zero finite order 'p' (i.e., 0 <
p < 00) such that f has no zeros in C. Then for any two positive integers k and
n?

1
205 )+ 109 (a; £+ AP (00; f) + — < 1A (00; )+ 1AF) (05 1)+ 1,
(n) (n) () ™ () ()

where ‘a’ is any non zero finite complexr number.

Proof. Let us consider the following identity

f—a f®
BCRE

a
f
Since m (r, %) <m (r, %) + O(1), we get from the above identity
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Now by Nevanlinna’s first fundamental theorem and Milloux’s theorem in [3,
pp. 55] it follows from Eq. (11) that
- N < - ) +S(r, f)

1 f-
n(ng) <7 () - (e

Then we have

1 (k) —
m (r, ?) <T (r, ff—a) - N (r,%) + S(r, f).

(k) _
m <7", %) <N <7", ff_ a) - N <r, %) + 50, ). (12)

In view of [3, p. 34] it follows from Eq. (12) that

m (r, %) < N(r, f®) + N (r, - ! a) _N(r, f —a)
N (r, ﬁ) +S(r ). (13)

Thus,

Then we have

i fo}é))

{N(nf“”) N (“ﬁ)} M=

IN

I(r, f0)) T (r, f™) B 1 (r, f0V)

N(r,f(k)) — lim inf —————— N(r. /)
(T,f(n)) r—oo [ (7’ f n))
N
(

li
+ lfgbip I(Tf )

lim inf
™00

A

lim inf ————+~
™00

1
T, f(k))

N (r75)
. P f-a
S ey TS Gy

Thus,
500 - (1- %) < - e} - (1- 150 o)
—{1= AR O: H+ {1 = 150 (@ )}

Then we have
1
15(21) 0; f)+ 15(2) (a; f)+ IA(:,) (003 f)+— < IA(?} (005 f) + IA(? (0;f)+1
(n) (n) (n) T (n) (n)

This proves the theorem. ]
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Remark 3.2. The sign ’ <’ in Theorem 3.1 can not be replaced by ’ <’ only as
we see in the following example.

Ezample 3.3. Let f(z) = expz. Then N(r, f) =0 and

211 21T
= — i + 6 — i + | _ret?
T(r,f) = N(r,f)+m(r, f) = 2H/log ‘f(re )|d9— 2H/log e
0 0
) 211 . 1
_ = +/ _rcosf - . _ L
= 2H/1og (e )df STl /rc050d0 o
0 -3
Now,
27 4 60 2 retf 0
r f (7“6 ) r e .re' g
I = — S A . ,
0 2m Jo | f(re??) “ 2”/0 ere’ a6
27 27 2 27
:L/ }rew-i}dOZL/ (T)d@:r—/ do
2 Jo 2m Jo 2 Jo
2
= — 97 =172 #0.
T
and
: logT'(r; f) _ . log =
p = limsup———————= = limsup—= =1
=00 logr rooo logr
Thus,
O (o 1Y = 1 — T inf ) ) (0 £) —
1A (00 f) =1 hmrglgoj(nf(n)) =1, 18,)(0: /) =1
and
1800: ) = 1AF (c0r f) = 1.
Also
O oy — (1 LY Ly g maf)
15(n)(a, f) = (1 7rp> +hmr13cf>ol(r,f("))
= 1_i +lim inf (Tva;f)_ I(va)
T r—00 I (7” f) T (71’ f(n))
1 ... m(ra;f)
=1-— 1 f
(175 e 7
= (1—i>+1im inf T = (1—l>
TP r—00 T T
So,

1A (00 /) + 1AW (0 /) +1=1+1+1=3



336 S.K. Datta et al.

and

1800 f) + 16 (as f) + 1A<k>(oo;f):1+<1_l>+1+l:3

Then
AR (003 ) + 1AW (03 ) =3 = 160)(0: ) + 100 (as /) + 1A (003 f).

Remark 3.4. The condition p > 0 in Theorem 3.1 is necessary as we see from
the following example.

Ezample 3.5. Let f(z) = z. Then N (r, f) = 0 and

2 o
T(r,[f) Zm(r,f)Z%/o 10g+|f(rei9)‘d0=%/o log™ |re?| df

1 [Z 1 [~ %
= — log (r cos 6) df — Py / log (r cos 6) df
0

2m J, T

_ L[ 1og(rc059)d0+2i/2 log (7 cos 6) df

27T 0 T 0
1 [3 1 2 2
= —/ log (rcos0)df = — - 27 log (r_) =2log <r_) # 0.
T Jo m 2 2
Now,
, log®® M (r, f) logm 1
p =lim sup ————= = lim sup = lim sup =0
r—00 10g7” r—00 1 r—00 10g7”
Thus,
I f ( 7 ro 2 | ret? g
df = —— df=—-2m=r#0.
I f)= 27r/ f (rei?) 27r/o Tret? ’ w2
Hence

00 < 1A (005 ) + 1AL (05 f) +

which is contrary to the assumptions of Theorem 3.1.

In the following theorem we may obtain somewhat a different estimation for
meromorphic f under suitable conditions.

Theorem 3.6. If f be any meromorphic function with finite lower order A and
f(0) = 1, then for any non zero finite complex number ‘a’ and for any two
positive integers k and n,

A O3 0) + 18 (005 ) + 1800 (@i £) + 7 < 1AL (001 f) 4+ 1A{) (0 f) +
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holds where

A:(1+)\)(2+)\))‘{8(1+2)\)+7(2+10g(8+8)\))}

) B+ Nog (14 1)

and

N f)+ N (r})
TR

Proof. In view of Lemma 2.10 we obtain that

N (7" «; f(k))
(k) X o T . s Cby
rAy(esf) = 1~ liminf—7eris

(N (e %) T )
= W P T R TP IO

N (ras f®) T, f)
< 1= lminf = ey it =y -

Now in view of Lemma 2.5 and by using Eq. (5) we get that

N . f(k)
(AW (o f) <1 —liminf (r,0: /) 1

(n) r—00 T’(r7 f‘(n)) ' Z,
where
A
A=(1+)\)(2+)\) 8(1+2>\)+7(2+10g(8+8)\))
A BH4N " Nog (1+ i)
and
L N@DN(n)
TR
Thus,

1A (a3 f) <
N . f(k)

41 | tim e Y (0 1)
r—00 T(r7 f(n))

o m(no:s®)
1£H_>S£p T(T’, f(n))

lim sup <m (r’ Q; f(k)) L(r, /™) )

roeo \ I(r, f0) T T(r, f0)
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1 1 m(r,a;f(k))
1- = T lmsup———2"" /. A
( A>+A35§°I@Jmn

IN

1 m (r,a; f(k))
=(1-— limsup——~—+
(1 5) ™ 5

. (k)
(k) [ LY o m(ras f)
IA(n) (Oév f) < (1 A> =+ llgsgp I(’I“, f(n))

On dividing Eq. (13) by I(r, f(™) we get that
m(r,4)
limsup———%
T ()

Ny N M) N (k)
< h?fip (r, ™) - T(r ™) T (. f™) +11£n_>5£p T(r f™)

Then we have
m (n2)
lim supif
r—00 I (’I“,f(n’))

)
< lim supiN (T’ / ) — lim infiN(r7 1))
r—oo I (1, f(M) r—oo [ (r, f(0)

_ N(ne) N (r )
—lim inf ———* + lim sup——>———~".
r—oo | (r7f(")) r—00 I( f("))
From Eq. (14) we obtain that
1
1AW (0; f) ~ (1—;) < {1— 180000 )} = {1 = 1AL (00 )}

—{1— AR+ {1 = 180) (0 N}

Therefore,

Thus,

AR5 £)+ 1800) (00 ) + 10 (@ ) + 5 < 1AL (001 ) + 1AL (0:F) +1

Thus the theorem is established. [ |

Remark 3.7. In Theorem 3.6, the inequality ’ <’ can not be removed by 7 <’
only as is evident from the following example.

Example 3.8. Let f = —5 and k = n = 0. Then as \eTlJrl\ < Til — 0 for
r — oo, we get for all 1arge values of r that
1
logt ————— =0

|rei? + 1|



Some Results on Relative (k,n) Valiron Defects 339

and therefore

1 2m n 1
m('f",f):%/o 10g md@zo,

for all sufficiently large values of r.

Also,
N (r, f) =/ —n(t’f)dt =logr
0 t
and
rn|(t,
N<r,1> :/ ( f)dt:O
f 0 t
Therefore,
T(r,f)=m(r,f)+N(r,f)=logr+0(1).
Now,
2w 7“’ 2 2
r (re’9+1)2 r r
(rvf) 277_/0 m 27T 7,,2_|_1/ 7,2_’_1#07
A = lim g 28T HOM) —0,
r—00 logr
N f)+ N (r, %)
= 1. ]
7=l s 7
Thus,
A(O) (0;f) =1— lim mf ( 1) =1
T2 () - r—00 r f") ’
15(0)(oo;f) = 1— lim sup N (. f) —1— lim HPLO(I):L
r—00 ( ) r—00 logr
Ié(n)(a f) (OO,f) = IA%Z))(O;f) =1.

Hence from Eq. (5) we get that
1
A O 1) + 18 (005 f) + 185 (@i f) + 5 =1+1+1+0=3

and
G003 )+ AR O /) +1=1+1+1=3.

Therefore,

AR (03 )+ 1600 (005 )+ 180) (0 )+ =3 = 1A (005 )+ 1AL (05 F)+1
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Theorem 3.9. If for any entire function [ of finite order ’'p’ with no zeros in C,
then for any two positive integers k and n,

1800 )+ 180 (003 1) < 1AR (0 £) + 180 (001 1),

Proof. Since f = f® L we get

T

m(r, f) < m(r,f(k)) +m (r, %) . (15)

Now by Nevanlinna’s first fundamental theorem and Milloux’s theorem on [3,
pp. 55] we obtain from Eq. (15) that

m(r, f) <m(r, f®)+T <7", %) - N <7”, %) .

Then we have

(k)
Thus,
(k)
mMﬁ<mmﬂW+N0¢%>—N(f@)+ﬂ(ﬂ (16)

Now in view of [3, p. 34] it follows from Eq. (16) that

mmﬁ<mmﬂ%+Nmﬂ%+N0§)

N ) - (rﬁ%)+svjy

Then we have

m(r, f) . N(r, f®)  N(r, f) N (r, ﬁ)
hrrggff(r Fony = hrrgg'}f{ I(r, f00)  I(r, f0)  I(r, f0)

N 7l
N LE N

rooo | I(r, f))  I(r, f()

1
NG £ N(r, ) N (7 )
< liminf 7 B2~ lmint T — i inf o0
N(r % (k)
+lim sup ( f) +11msupm( nS) (17)

r—00 I('I’,f( )) T—>00 I( f(n)
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and
1
100 (003 f) — (1— W—p) < {1— AR (005 )Y = {1 = 1AL} (003 )}
—{1— 1AL )} + {1 = 13()(0: 1)}
. 1

+1A8?)(00;f) - <1 - 7T_p) .

Thus,
600: 1)+ 189 (00 £) < 1A 0;1) + 1AL (00 ).

Thus the theorem is established. [ |

Remark 3.10. The inequality ’ <’ in Theorem 3.9 can not be removed by ' <’
only as is evident from the following example.

Ezample 3.11. Let us suppose that f = z2. Then N(r, f) = 0.
So,

1 211 ) 211
T(rf)=m(rf) =55 / log™ [(re*")] df = - / log™ || d
0 0
1 y 1
— +1,.2 _ + 1.2 _ + 1.2
—ﬁlog |r|/d0—ﬁlog |r|-27r—1og |r|7é0,
0
I(rf) = o~ ) d@:i/% 2
, 2m Jo | f(re?) 27 Jo | r? e

r 2w r 2
= — 2ld = — -2 df =2 0.
27r/0 12 2m /0 r#

Then
1300 f) = 16(0) (005 f) =1
and
1AW 05 ) = 1AL (00 f) = 1.
Thus,

10 05 ) + 150003 ) = 2= 1AL (0 f) + 1AL (003 f).

Theorem 3.12. Let a,b be any two distinct finite complex numbers. Then for
any two positive integers k and n,

k k 1 1
1A O D)+ 1A (05 )1 2 1AL (001 f)+ 180 (s D)+ 5 100 (5 )+ 5
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where f is an entire function of non-zero finite order 'p’ (i.e., 0 < p < 00) such
that f has no zeros in C.

Proof. Considering the identity
b—a_f(k) f—a f—0
f—a f—al f®  fm [
we obtain in view of Milloux’s theorem [3, p. 55],
b—a f—a )
n(n5=5) <m (i) o () st
Then we have
b—a f—a f—a
n(ry=s) <1 () - ()

+T(“%>‘N( ff<k>b>+5< Ny

Since m ( - a) <m ( T, %) +0M)and T'(r, f) =T (7", %) +0O(1), it follows
from Eq. (18) that

1 f) f—a &)
m(r,f_a> < N(r’f—a> —N(r, 7 >—|—N(r,f_b>
b
- (n L) st 19
In view of [3, p. 34] we get from Eq. (19) that

m(r,fia) < N(r,f(k))—FN(r,ﬁ) —N(r, f —a)
N <7", %) N f®) 4 N <7", ﬁ) — N f—b)

Then we have

m (7
lim inf
r—00 (

' f—a
fm)

N (7, e
< 2{11m1nf (r fJf ) HminfM—liminf N(r, f) }

r—00 ) r—00 I(’r, f(n)) r—00 I(r7 f("))

I(r,
+lim supN (7“, a) + lim sup w
r—00 ('f', f n)) r—00 I('f', f(n)) '
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Thus,
- (1- =)
14
< 21— ;AW (oo )} —2{1 — 1AL (0: )} — 2{1 — 1AL (001 £)}
H1 = 180 (@ )} + {1 = 1000 )}
Thus,
2 1600 (ai f) + Wip
<2 1 A00; ) +2 1AL (005 £) = 2 1AW (003 1) = 160 (b ) + 1.
Then we have

IAR (0 f) + 1AL (00 f) +1

1 1
> IAEZ))(oo;f)—i- 1522))(61#)4- 3 158))(5; f)+ 2mp

This proves the theorem. ]

Remark 3.13. The condition that ‘a’ and 'b’ be any two distinct finite complex
numbers in Theorem 3.12 is essential as we see from the following examples.

Ezample 3.14. Let f = expz? and a = b= 0. Then N (r, f) =0,

1 o + 6
T f) = mf) = 5= [ log* |f (re)] s

1 2 2 2i0 1 2w 2 (o8 20-+i sin 20
= 2_ 10g+ el e do = 2_/ 10g+ e’ (cos 20+ sin 20) do
™ Jo ™ Jo
1 27 1 27 2
= — log™ (erz cos 29) do = — / r2 cos 20d0 =
2m Jo 2 Jo T
and
. log[z] M (r, f) . log[z] e’ . 2logr
p = lim sup ——— = = lim sup = lim sup =2.
r—00 IOgT r—00 IOgT r—o00 logT
Thus,
ro 7 f (re®) ro [ et |2i7ﬁ2€2w|
I(raf):_/ T i0) = o- 2520 do
2r Jo | f(re?) 27 Jo |ere
27 _r2cos26 | ,ccos20 3 2m
_ . 2T2/ € _ 620 do — 7"_ / ecosQOde
e'f‘ COSs T
0 0

3% ‘;ﬂﬁ

1 A 3 2 3
__/ e dny = T 4rly (1) = 25 1o (1) #£ 0.
2 0 2 m
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where I, (z) is the Modified Bessel Function of the first kind such that

1 [7 )
In () = —/ e*<% . cosnfdf.
T Jo
So,
Z))(O )= (oo =1
and p
180 (001 f) = 18(,)(0: f) = 1.
Therefore,
AE:,;(O?JC%L IAE%(OO;J”)+1=1+1+1:3
and
(k) ) 1 . l i - § i
1AG) (005 f) + Ié(n)(,f)+2 ( )+ _1+1+2+4W_2+47T,

which is contradictory to Theorem 3.12.

Ezample 3.15. Let f = expz,a = o0 and b = 0. Then N (r, f) =0, I (r, f) =
r2#0and p=1.

So,
1AW (0: 1) = 1AL (00i f) =1
and
AR (005 f) = 180) (003 f) = 10005 f) = 1.
Thus,
AP0 )+ 1A (00 ) +1=1+1+1=3
and
*) . 0) ©) (. 1 1 _ 5 1
1A (00 )+ 100y (00 )+ 5 10 (0 )+ =1+ 1+ 5+~ =2+,

which is a contradiction.

Ezample 3.16. Let f = expz,a =0and b = co. Then N (r, f) =0, I (r, f) =
r2#0and p=1.

So,
AE?) (0; f) = IAE%(OO;J“) =1
and
gfz))( ) =1 (n)(o )= (oo f) =1
Thus,

IA( (05 ) + IA( (oo f)+1=1+1+1=3
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and

1 1 5 1
A(k) . ©) (. - =141 4=
I (n)(oo,f)—i— Ié(n)(o,f)+ 5 (oo f)+ + + 5 + — 5 = 3 + in

So, we arrive at a contradiction.

Remark 3.17. The following example ensures the necessity of the condition p > 0
in Theorem 3.12.

Ezample 3.18. Let f (z) = 22 and a = b = 0. Then N (r, f) = 0,

2m | ¢ (.0 27,2 .2i0 o
r f (re ) r e .2
(’I’, f) o7 f (T@le) 2 7“2627’0
r. 27
27T 0
and
) log[Q] M (r, f) ) log[Q] r? 2
p = lim sup ——— = =lim sup =lim sup ——<- =0
r—00 10g7“ r—00 10g7“ r—00 1Og( )
So,
1AW (0; 1) = 1AL (00s f) =1
and i
1AL (001 ) = 180)(03 f) = 18) (005 f) = 1.
Thus,

AR )+ 1AL (005 f) +1 2 oo,

which is contrary to Theorem 3.12.

If we consider f to be a meromorphic function in Theorem 3.12 we have the
next theorem.

Theorem 3.19. Let f be a meromorphic function of finite lower order '\ with
f(0) =1 and'd')V be any two distinct finite complex numbers. Then for any
two positive integers k and n,

A (@ )+ 2+ 180005 )+ 160 (@ )+ 10005 ) +

gfl))(o f)+2 IA(n)(OOQf)"’ 1,

where

B 24 M\ ) 8(14+2\) v (2+1log(8+8)\)
A—(1+>\)( A ) (3+4)) /\IOg(1+(1Jer)
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and

N f)+ N (r})
TR

Proof. On dividing Eq. (20) by I (r, f(")) we obtain that
Nos®) N(ndtn)  Nep

1
mir, F—a
lim sup(if) < 2lim sup - —
T—>00 I(’I’, f(n)) T—r00 I(’I’, f(n)) I(T’, f(n)) I(’f’, f(n))

N (7", %) N (7", l )
+ lim sup4 + lim sup Y L, .
T—00 I(T’, f(n)) T—00 I(T’, f(n))

That is,

m (7", f+)
limsup———>—=+

oo I(r, V)

1
N(r, f®) N (7”7 ﬁ)
< 2¢ lim supM — lim inf N lim inf

r—o00 I(rhf(")) I(r, f(”)) r—00 I(’r, f(”))

T—>00
N(r,—i ) N(r,—i )
+lim sup4 + lim sup 4.
r—00 I(T'y f(n)) r—00 I(T'y f(n))

By using Eq. (14) we get that

1A (a5 f) = (1 - %)
< 2{1— 15 (005 )} =21 = 1AL} (0: )} = 2{1 = 1AL (001 )}
1= 10 (e )} + {1 = 1) (B )}
That is,
1A (a5 f) +2+ 1000 (00 ) + 100 (@i f) + 1600 (b f)+%
<2 AP0 )+ 2+ AR (00 f) + 1.

This completes the proof. ]

Remark 3.20. The sign ' <’ in Theorem 3.19 can not be replaced by ' <’ only
as we see in the following example.

Ezample 3.21. Let f(z) = T{H Then m (r, f) =0, N(r, f) = logr + O(1) and
N (1.4) = 0.80, T(r. ) = logr + O(1).
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Also,I(r,f)—QT_H;éO A=0and y=1.
Now,

1AV (@ f) = 160 (005 £) = 1600 (@ f) = 1600 (b: ) = 1
and
AU (03 f) = 1AQ) (005 f) = 1.

Hence, we have
1
A0 @ f) 2 15000 )+ 100 @ )+ 00 b )+ = =

= 2. IA(n (0 f) +2- IA(n) (OO; f) + 1.

Theorem 3.22. Let f be an entire function of non-zero finite order’p’ (i.e., 0 <
p < 00) such that f has no zeros in C. Then for any three positive integers n, k
and p with n > k

k n n k 0
1AW (003 F) + 1ADO; F)+1 > 1AD (005 £) + 1600 (ai ) + 1600y (a; f) + —
where 'a’ is any finite non zero complex number.

Proof. From the identity

1 1( f® fB) —q f)
f—a_E{f—a_ fm 'f—a}'
and by Milloux’s theorem [3, p. 55] we get that

(k) _
m <7", ﬁ) <m (r, %) + S(r, ). (22)

Now by Nevanlinna’s first fundamental theorem it follows from Eq. (22),

(k) _ (k) _

m(rgma) < (n Fert) - () s
(n) (k) _

= m (r, fia> <T (r, 7f(£) —a) - N <7n7 ff(n) a) + S(r, f)

(n) (k) _
=m (r, ﬁ) <N (r, ﬁ) - N (r, ! 0 a) +S(r, f). (23)

Now in view of [3, p. 34] we obtain from Eq. (23) that

1
m <7", ﬁ) <N(r, f™)+ N (r, m) — N(r, f® —a)

N< f(n)) +5(r, f).

(24)
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mA\T 7=a (n) (k) N(r, =L
liminfM < liminf N(r, f™) . N(r, ') . ( £ ))

r—00 I(ryf(ln)) ~ rooo I(r, f(P)) I(r, f(P)) I(r, f(P )

1
N (7”, m)

lim s
+ lflibolip I(T’, f(p))
Then
m(r7a) N(r, f™) N(r, /)
liminf ——— % < liminf——~—~ —liminf —~—~
r—00 I(ryf(ln)) r—00 ( f ) r—o00 I(T"f(P))
1 f ( f(n)) 1. ] N (’r) f(Tl—(L)
—limin I(r, f®) + lim sup I(r, f®)
And so

13 (@ f) - (1—i) < {1— AR (00 )Y — {1 = 1AL (003 f)}

TP
—{1= AR O: ))} + {1 = 150 (@ )}

Thus,
k n
1AM (005 £)+ 1Al (05 ) +1
> (AU (00 f)+ 1800 (as )+ 160 (a; f) + —
Thus the theorem is established. [ |

Remark 3.23. The condition that “a’ any finite non zero complex number in
Theorem 3.22 is necessary as we see in the following examples.

Example 3.24. Let f =expz and a = 0. Also let n =3,k =2 and p = 1. Then
N(r,f)=0,I(r,f)=r>+#0and p=1.

Now,
1000 ) = 18(1)(05 ) = 1.
Thus i
IAR (00s f)+ (A0 ) =1+1=2
and

PG (00 f) + 180) (0:) + 13 (0:f) =141+ 1=3,

which is contrary to the conclusion of Theorem 3.22.
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Ezxample 3.25. Let f =expz and a = co. Also let n =3,k =2 and p = 1. Then
N(?”,f):O,I(T,f):TQ#Oandpzll

Now,
1A (00 f) = 1AR)(0:f) = 1A (00 ) =1
and
S (00i ) = 107) (005 f) = 1.
Thus
AR (00i f) + AR (0 f) =1+1=2,
and

1) (00 f) + 18(,) (003 f) + 18(,) (00 f) =1+ 141=3,

which is contrary to Theorem 3.22

Remark 3.26. The condition p > 0 in Theorem 3.22 is necessary as we see below.
Considering f (2) =2,a=0,n=3,k=2and p=1,
we see that N (r, f) =0, I (r, f)—210g( ) # 0 and p = 0.
So,
A (005 f) = 1A (05 ) = 1A (005 f) =1
and
(1)(00 )= (1)(00 f)=1

Thus,

k n
1A (001 )+ 1AL (05 f) +1 > oo,

So we arrive at a contradiction.

Theorem 3.22 may take an alternative shape under meromorphic f as we see
below.

Theorem 3.27. If f be any meromorphic function with finite lower order A and
f(0) = 1, then for any finite non zero complex number 'a’ and for any three
positive integers n,k and p with n > k,

A0 @ )+ 10 (00 )+ 10 (@ )+ < A (oo )+ 1AL (0 )+ 1

where

B 240\ ) 8(14+2\) v (2+1log(8+8)\)
A_(HA)( ) ) B+an) Nog (1+ 75y

and

N f)+N(r})
TR
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Proof. From Eq. (24) we get that

1
70 g

m (7“, fia> < N(r, fM)+ N (r, ) — N(r, f® —q)

—-N (r, %) + S(r, f)-

That is,
m (1)
limsup¥
7—00 I (’I",f(n’))
O B G o) BT I B G )
< limsup — —
r—00 I (’I", f(n)) I (’I“, f(n)) I (’I", f("))
Himsup (r: v1=2)
imsup——=.
r—>oop I(?",f(n))
Thus,
m(r, 7 . N (7“7 M—a) .. N f® —a)
lim sup < limsup———% — liminf————~
r—00 (’I", f(n)) r—o0 I (7“7f(")) r—00 I (r7f("))
. fN (T, f(lm) L N(ﬁﬁ)
—liminf ———* 4 limsup————~
s T(r, fM) el T (r, )
Then

1AL (a5 )~ (1&) < {1— 160 (003 )} = {1 = rA{) (005 £)}

—{1— AL )Y+ {1 — 160 (as )}

Then
n k 1
IAEgg(a;f) + 15&)3(00; f)+ 15§p))(a;f) +3
< IAEI]:;(oo;f) + IAEZ))(O;f) +1.
This completes the proof. -

Remark 3.28. In Theorem 3.27, the inequality ’ <’ can not be removed by " <’
only as is evident from the following example.

Ezample 3.29. Let f (z) = ﬁ, a=0,n=3k=2andp=1. Thenm(r, f) =

0, N(r, f) =logr+ O(1) and N (r, %) = 0. So, T(r, f) =logr + O(1).
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Also,I(r,f)—5T+17é0 A=0and y=1.

Now,
1A as £) = 100 (00 ) = 1000 (a; f) = 1
and
AN (005 £) = TAL(05f) = 1.
Hence,

(p) (a7 ) 58:) (OO; f) 58?)) (a; f) + =
:3:1Akwoﬁ+zA@muv+L

(»)

Theorem 3.30. If f be an entire function of non-zero finite order 'p’ (i.e., 0 <
p < o) such that f has no zeros in C with 'a’ be a finite complex number
and 'y, ¢ be two distinct non zero complex numbers, then for any two positive
integers k and n,

A0 @ )+ 68 e )+ 168 e )+ — <3

™
Proof. Since ﬁ = J’ff;f(l,c) [3, p. 55] we obtain

! < L S 25
m T,m =m T;W +S(r, f). (25)

Applying Nevanlinna’s first fundamental theorem we get from Eq. (25) that

1
(F)y _

m(nps ) SO <N () + 50 (26)

Now by Nevanlinna’s second fundamental theorem and Lemma 2.2 it follows
from Eq. (26) that

1 = 1 1
n (i) <N (g ) o8 ()
+N (r, W)l_ C) N < f(k)> +8(r f). (27)

Since N( ) N( ) < 0, we obtain from Eq. (27) that

T VAR N A Do)
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Then we have

1
T (k) m\r, T)
< 2lim supM — lim inf ( f-b

f—a
r—00 I(ryf(")) r—00 I(ryf(")) r—00 I(r,f(”))

lim i f_m <r’ f‘k"l)*c)
TR I )

Now by using Lemmas 2.2 and 2.3 we get from Eq. (22) that

1AQ) (a5 f) - <1 - i)

T
2 (k) 1 (k) 1
= T 1 (n)( af)+ ( 7Tp> I (n)(c,f)—i— e
Then we have
k k 1
A s )+ 80 s )+ 180 (e f) + —<s.
This proves the theorem. .

Remark 3.31. The condition that ‘b’ and '¢’ are two distinct non zero complex
numbers in Theorem 3.30 is essential as is evident from the following examples.

Example 3.32. Let f =expz,a=0and b=c=o00. Alsolet n =1 and k = 2.
Then N (r, f) =0, I (r,f) =r*>#0and p = 1.
So,
IAD 05 ) = 1800 (003 ) = 101 (003 f) = 1.
Thus,

0 k k 1 1 1
PAC)0: )+ 180 (005 f) + 18 (00i )+ — =1+ 1+ 14+ — =3+ —.

Hence
1

k k 1
AR (O ) + 100 (003 )+ 18() (005 f) + — = B4 — <3,
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which is contrary to Theorem 3.30.

Example 3.83. Let f =expz,a=0,b=0and ¢ =o00. Alsolet n =1 and k = 2.
Then N (r, f) =0,1(r,f)=r*>#0and p=1
So,
ADL0; F) = 1600(0; f) = 1008) (005 ) = 1.
Thus,

) - &) (). (k) . 1 1 1
186 (03 )+ 10 (0 f) + 100 (003 f) + — =1+ 14+ 14— =3+ —.
Hence 1
(n)(0 f+ 15(n)(0 )+ 15(n)(00 )+ —=3—|——<37
™

So, we arrive at a contradiction.

Example 3.34. Let f =expz,a=0,b=occandc=0. Alsolet n =1 and k = 2.
Then N (r, f) =0,1(r,f) =7>#0and p=1.
So,
IAD (03 ) = 1600 (005 f) = 160 (03 f) = 1.
Thus,
(0) (k) (k) 1 1 1
A5 f) 4+ 16,,5(005 f) + 10,505 f) +—=14+1+14— =3+ —.
(n) (n) (n) = . -
Hence .
IAD (03 f) + 1800 (003 ) + 1800 (0 f) + = = =3+-<3,

which is contradictory to Theorem 3.30.

Remark 3.35. The condition p > 0 is necessary in Theorem 3.30. This is evident
by considering f(z) =2, a=0,b=c=00,n=1and k = 2.

Then we see that N (r, f) =0, I (r, f)—2log( ) #0and p=0.
Now,
IAD (03 f) = 1809 (001 ) = 1600 (05 f) = 1.

Hence,

k k 1
1@ )+ 1))+ 18 ) + = o

which is contrary to Theorem 3.30.

Theorem 3.36. Let [ be an entire function of non-zero finite order'p’ (i.e., 0 <
p < 00) such that f has no zeros in C satisfying >, ,..0(a; f) =1 and §(oc; f) =
1. Then for any two positive integers k and n

1
0 (0: £) + 1AW (s f) + <2
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where 'a’ is a mon zero finite complex number.

Proof. Considering the identity

a fR k) g fRtD)
N GO

we get in view of Milloux’s theorem [3, p. 55] and Nevanlinna’s first fundamental

theorem,

(k) _
m (7“, %) <m (r, ff(lTl)a) + S(r, f).
Then we have
(k) _ (k) _
()55 S) - () o

(k+1) (k) _
(o) 2 (A - () v

Then we have

(k+1) (k) _
m (r, %) <N (r, 7}0];) — a) - N (7“, 7ff(k+1)04) + S(r, f)-

Now in view of [3, p. 34] it follows from Eq. (28) that

Thus,

m <7", %) < N(r,f(k"’l)) +N (r, f(k)l_ a) - N(r,f(k) —a)

—N (’I’, ﬁ) + S(T’, f)

Then we have

1 1 1
n(3) = Pl ge=a) ¥ (e )

H{N(r, fE) = N(r, f®)} + S(r, ).
Thus,

m ( ;) < N(ros f®) £ N(r. ) + S(r. )

Since d(o0; f) = 1, it follows that

lim N(r, /)

r%mT(r’f(”)) =0

(28)
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and

CON(f) | N f) T(r ™)
rli)rgol( f(")) o rli)rgo T(r,f(”)) - I(r,f(”))

N(r.f) . T(rf™)

= T oy T o
1
=0.— =0.
TP
So from the above we get that
. (k)
lim inf —-2 m(r,0; f) < limian(r’a’f )

r—00 ( f( ) r—00 I(T"f(n)) ’
Then we have
1 k
000 - (1= )+ e <1
Thus,
J0: 1)+ 1A% (@ f) + — <2
(n) I (n) ’ ﬂ—p -7

Thus the theorem is established.

355

Remark 3.37. The condition that 'a’ is a non zero finite complex number in

Theorem 3.36 is essential as is evident from the following examples.

Ezxample 3.38. Let f = expz, k = 2,n = 1 and « = 0. Then N (r

0,I(r,f)=7r>#0and p=1.
So,
100 ) = 1AR 0 f) =1.
Thus,
1000 ) + 1A%

which is contrary to Theorem 3.36.

1 1 1
(n)(a;f)+—:1+1—|——:2—|——>2,
P 7 7

Ezample 3.39. Let f = expz, k = 2,n = 1 and o = oo. Then N (r, f) =

0,I(r,f)=7r2>#0and p=1.
So,
(1)(0 =1 (1)(00 =1
Thus,

1 1
100 (05 ) + IA(k)(oo;f)+7T—:1—|—1+—:2+—>2,



356 S.K. Datta et al.
which is contrary to the assumtion of Theorem 3.36.

/

Remark 3.40. In Theorem 3.36, the inequality ’ <’ can not be removed by " <
only which can be seen from the following example.

Ezample 3.41. Let f = expz. Then N(r, f) =0, I (r,f) =r?#0 and p = 1.
Now,
1552))(0#) =1

Now by Nevanlinna’s second fundamental theorem and in view of above we get
that

IA

T(rnf®) < N (raf®)+5

< T (r )+ ).

A

Then we have

T(r f¥) _ Nira:f®)  Srf®) Iir, f0)
I, f) = I(r, f)  I(r, £ T(r, f)

Thus,

T(r f®) _ T f®) S0 f®) 1(r f0)
I(r, fM) = I(r, f() * I0r, f®) T(r, [

By Lemma 2.8 it follows from above that

N . f(k)
o N0 £9)

LGS )y,
r—00 I(r’f("))

Therefore,
1
AP ()= (1-=].
I (n)(avf) T
Thus,
1
@2@ﬁ+1MSWJH~—=1+@——>+—=2
T

Remark 3.42. The condition p > 0 is essential in Theorem 3.36 as we see by
taking f(z) =2, k=2,n=1 and a = 0.
Then N (r, f) =0, I (r, f) =2log (%) # 0 and p = 0.
Now,
100 f) = 1A (001 ) = 1.
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Hence,
1
18005 ) + 1AD (0 f) + — < 2.
(n) (n) P

Then we have
oo < 2,

which is contradictory to Theorem 3.36.

Theorem 3.43. Let k and n be any two positive integers and’a’ be a finite complex
number. Then for any entire function f of finite order’p’ (i.e., 0 < p < 00) such
that f has no zeros in C and ., 0(a; f) = 6(c0; ) = 1,

1
k k
1A )+ 12 8 )+ 15005 ) +

Proof. Let b # a be a finite complex number. Since

a—b  f f& —b R g
fO—a O —al [ T [
we obtain in view of Milloux’s theorem [3, p. 55] and Nevanlinna’s first funda-
mental theorem,

—b
m <r, h) <m (r, ﬁ) + S(r, f).

Then we have

1 f f
m <7", 7}0(“ — a) <T <7", 7}0(“ — a> - N (r, 7® —a) + S(r, f).

(k) _
m <7", _f(k)l_ a.) <T <7n7 f 7 a) - N (r, 7f(k)f—a) + S(r, f).

Then we have

(k) _
m (r, _f(k)l_ a.> <N (n f ; “) _N (r, 7f(k)f_ a) +S(r, f). (29)

In view of [3, p. 34] it follows from Eq. (29) that

Thus,

m(r,ﬁ) < N(r,f(k)—a)—FN(r,?) — N(r, f)

—N (’I’, ﬁ) + S('f’, f)
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Then we have

.m (T, —f(k}—a) o N(r, f(k)) N(r, f) N (7”, f(Tl_a)
liminf ————% < liminf — —
r—00 I(r7 f(n)) r—00 I(r, f(”)) I(r, f(”)) I(r, f(”))

)
)

—|—11£n_>b£pj(r f(”
Thus,
m 7",+ k
lim infw < lim me — lim infM
r—00 I(r’f(")) r—oo I(r’f(")) r—oo I(T,f("))
o N(ds) L N(rE)
TR ey e ey 0
Since 6(o0; f) =1,
lim 7N(r, /) = lim 7N(T’ f) =0
P T(r, ) e T(r, )
and
o N NS
r~>ooI(’I“ f(” ) I(r7f("))
T—>00
and so
(k) N
N I®) o NG N

oo I(r, f))  roooI(r, f)Y BT (r, FO0)
Thus by Lemma 2.3 it follows from Eq. (30) that
k 1 k
o n - (1-2) < @ -1+ 5ok
Then we have
IAW (a3 £)+ 1> 1800 (@ f) + 160 (0 f) + —

This proves the theorem. ]

Remark 3.44. The condition that 'a’ is a finite complex number in Theorem 3.43
is necessary as we see in the next example.

Ezample 3.45. Let f = expz, k = 2,n = 1 and a = co. Then N (r, ) =
I(r,f)=7>#0and p=1.



Some Results on Relative (k,n) Valiron Defects 359

So,
IAE?)(OO;f) =1
and
1800 (005 f) = 1600) (05 f) = 1.
Thus,

1
10 (00 )+ 100 (0 ) =1+1=2<2+ =

which is contradictory to Theorem 3.43.

Remark 3.46. The condition p > 0 is necessary in Theorem 3.43 as we see
by taking f = z, k = 2,n = 1 and a = co. Then we get that N (r,f) = 0

I(r, f)—210g( )#Oandp 0.

So,
IAEZ))(OO;JC) =1
and
1005 (00 ) = 16(0) (03 f) = 1.
Hence,

2 > oo.

So, we arrive at a contradiction.

Theorem 3.47. Let f be an entire function of mon-zero finite order 'p’
(i.e., 0 <p<o0) such that f has no zeros in C 3_,,  6(a; f) = 0(c0; f) =1
and ay,as,...,aq are all distinct finite complex numbers. Then for any three
positive integers n,k and p with k > n,

MQ

100 (ais )+ 10005 f)

@
I
-

<

‘MQ

1
PA® @i )+ AP0 f) + (g - >(1—7T_p).

=1

Proof. Let F = Z f(,c) for 1=1,2,...,q. Then we get that

Xq:m (r, - m) < m(r, F) + O(1).

=1

Then we have
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1 “ F) _ g, (n)
<n(ngm) 24 () - () o0

- (31)

d k) — g, (n)
(7)< 2 4 (55m) - () + s

q
Zm <7", M) <m (r, ﬁ) +qN(7~,f(k)) +qN (r, ﬁ)

~aN(r ) = N (1 g ) + 50
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Then

q
S (g

hrrr_l}1or01f T(r, f(®)
<MMfW“NWﬂMMW_;N(Nw)
- r5co T(T’, f(P)) T(ryf(P)) (7,’ f )
mir, % qN —
~+lim sup ( £ )) ( e >)

DI T sy T T fo)

Then we have

m (i)
thmf f*
‘ T—00

(r, fP))
.. N(r, f®) ) a
< _
<ol int ey —dlmint gy > i T
( 7 1n ) N(r) n )
+ lim sup i + ¢limsup—————— f( )

rooo T(r, f(P) rooo T(r, fP))°
Since 6(o0; f) = 1,

NG NG
T, f) T e T f)

and -
L N S) e N )
ST ey M TG ey
So -
N f®) . N(rf) L N )
A T 7 I(r, f®) rlggo](r, fe) + krll{gol(T’f(p)) =0.
Similarly

i 20
im
Now by Lemma 2.9 and Lemma 2.10 it follows from Eq. (27) that

(R) (. py o1
5(p)(azvf) Q(l 7Tp)

=0.

NGNS

&
Il
—

( 7f(k) (ll)

361

(32)

Agg(ai;f) a+ IA(P) 0:f) = <1 - 7%) +q{1 - 15(p) 03 1)}
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Then we have

q

D 10 (@i )+ a- r30:)

=1
SN, (n) 1
<3 Al )+ AN+ (1-2).
Thus the theorem is established. ]
Remark 3.48. The condition that ai,as,...,aq are all distinct finite complex

numbers in Theorem 3.47 is necessary as is evident from the following three
examples.

Example 3.49. Let f =expz,q=2,a1 =a2=0,k=3,n=2,and p=1. Then
N(T’,f):O,I(T',f):’r‘z#()andp:]_.
Now

2

q
S Al @i =" 1A @ £) = 1A (a1 /) + 147 (a2 1)

i=1 i=1
1 1 2
= 1A )+ A0 f) = (1 - —) + <1 - —) =20

™ m ™
AM©: ) = 1AZ0: 1) =1,

q 2
3 Iag’;g(al,n =" 16 (@i ) = 105 (azi )+ 183) (az; f)

=1 i=1

1 1 2
5(3)0. 5(3)0. — (12 1—-)=9_2
(1)(7f)+1(1)(7f) T + T 71"
and
10 ) =2+ 003 ) =21 = 2.
Therefore
B 1
> Al + 80+ a1 (1- L)
i=1
:2_E+1+1_l:4_§
T T
and

q

=1

which contradicts Theorem 3.47.
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Ezxample 3.50. Let f =expz, g=2,a1 =0 and as = co. Also let k =3,n =2
and p=1. Then N (r, f) =0,1(r,f) =r>#0and p = 1.
Now

2

q
Z IA(p)(a“f):Z IA(l)(a“f): IA(1)(alvf)+ IAS;(GQ;JC)

i=1 =1

(1)(0 f)+ IA(l)( f)

(=) (-2)2

IAP(0; f) =1 AR (0 ) =1,

2
18, (ai; ) = Z 15Ef§(ai;f) = 15§f;(a1;f) + 15§f;(a2;f)

1 i=1

1080 )+ 16(7) (003 f)

(1) ()

—~~
x>
-

i

and
n 2
0 ) =2 80 f)=21=2.
Therefore
q
S AW (s )+ A0 )+ g-1) (1- —
L IR 180 (U; q -
o Zhipr-loy 3
T
and

q

k 2 2
Zégp))(aﬁf)"'q (p)(Of)—Z——+2—4—;
=11

which is contrary to Theorem 3.47.

Example 3.51. Let f =expz, q=2,a1 = oo and as = 0. Also let k = 3,n =2
and p=1. Then N (r, f) =0,1(r,f) =r>#0and p = 1.
Now

2

S Al as ) =" 1A @i )= AT (a1 )+ 185 (a2 f)

i=1 =1

ENHICE R NI

(1) (D)
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(p)(0 f) = (1)(0 =1
q 2
S i f) =30 18 ) = 165 )+ 153 (02 f)

=1 =1

108 (001 ) + 105)(0: f)

NEIRE R
T T 7’
and ,
q- Ré§g)>(0;f>:2- 16§1§(O;f):2-1=2-
Therefore
q 5 ) 3
S Al n+ apon=2-2+1+@-1(1--)=1-=
— ®) ) 7r 7
and
! (k) 2 2
Zlé(p)(aﬁf)_'_q (p)(o f)_2——+2—4—;

i=1

which contradicts Theorem 3.47.

Remark 3.52. The condition that p > 0 in Theorem 3.47 is necessary as is
evident by considering f =z, ¢=2,a;1 =00, a2 =0,k=3,n=2and p=1.

Here we see that N (r, f) =0, I (r, f)—2log( ) #0and p=0.
Thus .

S 10 @i f) +a- 160 (05 f) + 00 <0,

i=1

which is a contradiction.

4. Future Prospect

In the line of the works as carried out in the paper, one may think of relative
deficiencies of higher index in case of meromorphic functions with respect to
another one on the basis of sharing of values of them. As a consequence, the
derivation of relevant results in this field may be an active area of research to
the future workers of this branch.
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