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Abstract. The primary objective of this paper is to validate the existence and unique-

ness of solutions for boundary value problem (BVP) of Caputo-Hadamard fractional

integro-differential equation (CHFIDE) supplemented with nonlocal fractional integral
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boundary conditions. The convergence of the problem has been validated with suitable

examples.

Keywords: Caputo-Hadamard fractional derivative (CHFD); Integrodifferential equa-

tion; Hadamard fractional integral (HFI); Integral boundary conditions; Existence;

Fixed point.

1. Introduction

Ever since the evolution of fractional differential equations (FDEs) there have
been intense efforts to raise the theoretical and application aspects in various
fields like physics, chemistry, biology, engineering sciences etc. Our researchers
have indeed given numerous contributions in these areas, for details we refer the
reader to the papers [11, 12, 13, 19, 20] and references therein. The BVP has
been established in recent years with a strong connection to the development
of classical calculus. Moreover, some analytical results and applications of frac-
tional calculus have been outlined in their historical context, for instance, see
[3, 18, 21, 24, 16, 7, 23, 6, 5] and the references cited therein. It has been seen
that the greater part of the work on the point is concerned about Riemann-
Liouville (RL) or Caputo type FDEs. Other than these fractional derivatives,
another sort of fractional derivatives established in the literature is the fractional
derivative because Hadamard made it known in 1892 [9], which contrasts from
the previously mentioned derivatives as in the kernel of the integral in the delin-
eation of Hadamard fractional derivative (HFD) comprises logarithmic function
of arbitrary exponent. A point by point depiction of HFD and integral have
been discovered in [2, 26, 25]. Recently, much interest has been created in es-
tablishing the existence of solutions for fractional BVP with multipoint, HFI,
RLFI, Erdelyi-Kober fractional integral conditions. Ma et.al in [14] discussed a
Lyapunovtype inequality with the HFD. Similarly, Wang et al. in [27] studied
nonlocal Hadamard fractional BVP with Hadamard integral and discrete bound-
ary conditions. Recently, in [1], the author discussed FDEs involving HFD with
three-point boundary conditions. In 2012, Jarad et al. modified the fractional
derivative of Hadamard type into a more suitable one with physically inter-
pretable initial conditions comparable to the singles in the Caputo setting and
named it fractional derivative Caputo-Hadamard type. Refer to [10] for defining
the properties of the modified derivative. We refer the reader to the articles
of [22, 15, 17, 28, 8, 4] for certain concepts in the theory of Caputo-Hadamard
FDEs, and the references cited therein. In this paper, we introduce nonlocal
integral boundary conditions on the CHFIDE of the form:

C
D

%z(ι) = ξg(ι, z(ι)) + ζHI
ϑ
h(ι, z(ι)), ι ∈ [1, T ],

z(1) = 0, z
′

(1) = 0, z(T ) = ωH
I

ςz(ϕ), 1 < ϕ < T,
(1)

where CD% denotes the CHFD of order 2 < % ≤ 3, HI ϑ, HI ς denotes the HFIs
of order 1 < ϑ, ς < 2, and g, h are given continuous functions and ω is positive
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real constant. The rest of the paper is organised as follows: The Section 2 is
devoted to some fundamental concepts of fractional calculus with basic lemmas
related to the given problem. The existence and uniqueness results, based on
Leray-Schauder nonlinear alternative (LSNA), Krasnoselskii’s fixed point theo-
rem (KFPT), Banach fixed point theorem (BFPT) are obtained in Section 3.
The validation of the results is done by providing examples in Section 4.

2. Preliminaries

We begin with some basic definitions, properties and lemmas with results [8, 10].

Definition 2.1. The left and right HFIs of order % > 0 are respectively defined by

(HI
%

b+g)(ι) =
1

Γ(%)

∫ ι

b

(

log
ι

σ

)%−1

g(σ)
dσ

σ
, b < ι < c

and

(HI
%

c−g)(ι) =
1

Γ(%)

∫ c

ι

(

log
σ

ι

)%−1

g(σ)
dσ

σ
, b < ι < c.

Definition 2.2. The left and right-sided HFDs of order % with R(%) ≥ 0 on (b, c)
and b < ι < c are defined by

(HD
%

b+g)(ι) =
(

ι
d

dι

)n 1

Γ(n− %)

∫ ι

b

(

log
ι

σ

)n−%−1 g(σ)

σ
dσ,

and

(HD
%

c−g)(ι) =
(

− ι
d

dι

)n 1

Γ(n− %)

∫ ι

b

(

log
σ

ι

)n−%−1 g(σ)

σ
dσ,

where n = [R(%) + 1].

Lemma 2.3. If R(%) > 0, R(ς) > 0 and 0 < b < c <∞, then we have

(

H
I

%

b+

(

log
σ

b

)ς−1)

(ι) =
Γ(ς)

Γ(ς + %)

(

log
ι

b

)ς+%−1

and
(

H
I

%

c−

(

log
c

σ

)ς−1)

(ι) =
Γ(ς)

Γ(ς + %)

(

log
c

ι

)ς+%−1

.

Lemma 2.4. Let %, ς 3 R(%) > R(ς) > 0. If 0 < b < c <∞ and 1 ≤ p <∞, then
for g ∈ L p(b, c),

H
I

%

b+
H

I
ς

b+g =
H

I
%+ς

b+ g
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and

H
I

%

c−
H

I
ς

c−g =
H

I
%+ς

c− g.

Definition 2.5. Let 0 < b < c <∞, R(%) ≥ 0, n = [R(%) + 1]. The left and right
CHFDs of order % are respectively defined by

(CD
%
b+g)(ι) = D

%
b+

[

g(σ)−

n−1
∑

k=0

δkg(b)

k!

(

log
σ

b

)k]

(ι),

and

(CD
%
c−g)(ι) = D

%
c−

[

g(σ)−
n−1
∑

k=0

(−1)kδkg(c)

k!

(

log
c

σ

)k]

(ι).

Lemma 2.6. Let R(%) > 0, n = [R(%) + 1] and g ∈ C [b, c]. If R(%) 6= 0 or % ∈ N,
then

(CD
%
b+I

%
b+g)(ι) = g(ι), (CD

%
c−I

%
c−g)(ι) = g(ι).

Lemma 2.7. Let g ∈ A C
n
δ [b, c] or C n

δ [b, c] and % > 0. Then

I
%
b+(

C
D

%
b+g)(ι) =

[

g(ι)−

n−1
∑

k=0

δkg(b)

k!

(

log
ι

b

)k
]

,

and

I
%
c−(

C
D

%
c−g)(ι) =

[

g(ι)−

n−1
∑

k=0

δkg(c)

k!

(

log
c

ι

)k
]

.

Lemma 2.8. For any f̂ ∈ C ([1, T ],R), z ∈ C ([1, T ],R), the function z is the
solution of the problem

C
D

%z(ι) = f̂(ι), ι ∈ [1, T ],

z(1) = 0, z
′

(1) = 0, z(T ) = ωH
I

ςz(ϕ), 1 < ϕ < T,
(2)

if and only if

z(ι) = H
I

%f̂(ι) +
(log ι)2

Λ

[

ωH
I

%+ς f̂(ϕ)− H
I

%f̂(T )

]

, (3)
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where

Λ = (logT )2 −
2ω(logϕ)ς+2

Γ(ς + 3)
, (4)

Proof. Applying the operator HI
%
on the linear FDE in (2), we obtain

z(ι) = H
I

%
f̂(ι) + a0 + a1 log ι+ a2(log ι)

2, (5)

where a0,a1 and a2 ∈ R, are arbitrary unknown constants. Using the boundary
conditions (2) in (5), we get a0, a1 = 0,

a2 =
1

Λ

[

ωH
I

%+ς f̂(ϕ)− H
I

%f̂(T )

]

.

Substituting the value of a2 in (5), we get the solution (3).

Theorem 2.9. (LSNA) Let G : Q → Q be completely continuous operator (i.e.,
a map restricted to any bounded set in Q is compact). Let

Q(G ) = {z ∈ Q : z = νG (z) for some 0 < ν < 1}.

Then either the set Q(G ) is unbounded, or G has atleast one fixed point.

Theorem 2.10. (KPFT) Let W be a closed, bounded, convex and nonempty
subset of a Banach space Y . Let U , V be the operators 3. Then the following
statements hold:

(i) U x+ V y ∈ W whenever x, y ∈ W ;

(ii) U is a compact and continuous;

(iii) V is a contraction mapping. Then there exists ι ∈ W 3 ι = U ι+ V ι.

Theorem 2.11. (BFPT) Let Q be a Banach space, F ⊂ Q be closed and G :
F → F a strict contraction, i.e., |G x− G y| ≤ κ|x− y| for some κ ∈ (0, 1) and
all x, y ∈ F Then G has a unique fixed point.

3. Main Results

We define space P = C ([1, T ],R) endowed with the norm ‖z‖ = sup{|z(ι)|,
ι ∈ [1, T ]}. Obviously (P, ‖ · ‖) is a Banach space. In view of Lemma 2.8, we
interpret an operator T : P → P as

T (z)(ι) = H
I

%φz(σ, z(σ))(ι) +
(log ι)2

Λ

[

ωH
I

%+ςφz(σ, z(σ))(ϕ)

−H
I

%φz(σ, z(σ))(T )

]

,
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where

φz(σ, z(σ)) = ξg(σ, z(σ)) + ζHI
ϑ
h(σ, z(σ)),

T (z)(ι) = ξHI
%g(σ, z(σ))(ι) + ζHI

%+ϑh(σ, z(σ))(ι)

+
(log ι)2

Λ

[

ξωH
I

%+ςg(σ, z(σ))(ϕ) + ζωH
I

%+ς+ϑh(σ, z(σ))(ϕ)

−ξHI
%g(σ, z(σ))(T ) − ζHI

%+ϑh(σ, z(σ))(T )

]

. (6)

In the sequel, we use the following expressions:

H
I

%g(σ, z(σ))(ι) =
1

Γ(%)

∫ ι

1

(

log
ι

σ

)%−1

g(σ, z(σ))
dσ

σ
,

H
I

%+ϑh(σ, z(σ))(ι) =
1

Γ(%+ ϑ)

∫ ι

1

(

log
ι

σ

)%+ϑ−1

h(σ, z(σ))
dσ

σ
,

H
I

%+ςg(σ, z(σ))(ϕ) =
1

Γ(%+ ς)

∫ ϕ

1

(

log
ϕ

σ

)%+ς−1

g(σ, z(σ))
dσ

σ
,

H
I

%+ς+ϑh(σ, z(σ))(ϕ) =
1

Γ(%+ ς + ϑ)

∫ ϕ

1

(

log
ϕ

σ

)%+ς+ϑ−1

h(σ, z(σ))
dσ

σ
,

H
I

%g(σ, z(σ))(T ) =
1

Γ(%)

∫ T

1

(

log
T

σ

)%−1

g(σ, z(σ))
dσ

σ
,

H
I

%+ϑh(σ, z(σ))(T ) =
1

Γ(%+ ϑ)

∫ T

1

(

log
T

σ

)%+ϑ−1

h(σ, z(σ))
dσ

σ
.

Suitable for computation, we represent:

∆ =

(

ξ(log T )%

Γ(%+ 1)
+

ζ(log T )%+ϑ

Γ(%+ ϑ+ 1)

)[

(logT )2

Λ
+ 1

]

+

[

ω(logT )2

Λ

(

ξ(logϕ)%+ς

Γ(%+ ς + 1)
+

ζ(logϕ)%+ς+ϑ

Γ(%+ ς + ϑ+ 1)

)]

, (7)

η1 =

(

ξ(log T )%

Γ(%+ 1)

)[

(logT )2

Λ
+ 1

]

+
ω(logT )2

Λ

[

ξ(logϕ)%+ς

Γ(%+ ς + 1)

]

, (8)

η2 =

(

ζ(logT )%+ϑ

Γ(%+ ϑ+ 1)

)[

(logT )2

Λ
+ 1

]

+
ω(logT )2

Λ

[

ζ(logϕ)%+ς+ϑ

Γ(%+ ς + ϑ+ 1)

]

. (9)

First, we prove the existence result is based on LSNA.

Theorem 3.1. Let us speculate that g, h : [1, T ]×R → R be continuous functions
and the following conditions hold:
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(E1) There exists a function q1, q2 ∈ C ([1, T ],R+), and ψ1, ψ2 : R
+ → R

+

nondecreasing 3 |g(ι, z)| ≤ q1(ι)ψ1(‖z‖), |h(ι, z)| ≤ q2(ι)ψ2(‖z‖) for each
(ι, z) ∈ [1, T ]× R;

(E2) There exists a number L > 0 such that

L

‖q1‖ψ1(L ) + ‖q2‖ψ2(L )
> ξHI

%|g(σ, z(σ))|(T )

+ζHI
%+ϑ|h(σ, z(σ))|(T ) + G ,

G =
(logT )2

Λ

[

ξωH
I

%+ς |g(σ, z(σ))|(ϕ) + ζωH
I

%+ς+ϑ|h(σ, z(σ))|(ϕ)

+ξHI
%|g(σ, z(σ))|(T ) + ζHI

%+ϑ|h(σ, z(σ))|(T )

]

.

Then there exists at least one solution for BVP (1) on [1, T ].

Proof. To begin with, the operator T : P → P is described by (6). Next, we
demonstrate that T maps bounded sets into bounded sets in C ([1, T ],R). For
a positive number θ, let Bθ = {z ∈ C ([1, T ],R) : ‖z‖ ≤ θ} be a bounded set in
C ([1, T ],R). Then, for each z ∈ Bθ, we have

|(T z)(ι)| ≤ ξHI
%|g(σ, z(σ))|(ι) + ζHI

%+ϑ|h(σ, z(σ))|(ι)

+
(log ι)2

Λ

[

ξωH
I

%+ς |g(σ, z(σ))|(ϕ) + ζωH
I

%+ς+ϑ|h(σ, z(σ))|(ϕ)

+ξHI
%|g(σ, z(σ))|(T ) + ζHI

%+ϑ|h(σ, z(σ))|(T )

]

≤ ψ1(‖z‖)ξ

{

H
I

%q1(σ)(T ) +
(log T )2

Λ

[

ωH
I

%+ςq1(σ)(ϕ)

+H
I

%q1(σ)(T )

]}

ψ2(‖z‖)ζ

{

H
I

%+ϑq2(σ)(T )

+
(logT )2

Λ

[

ωH
I

%+ς+ϑq2(σ)(ϕ) +
H

I
%+ϑq2(σ)(T )

]}

≤ |ξ|‖q1‖ψ1(‖z‖)η1 + |ζ|‖q2‖ψ2(‖z‖)η2.

We shall proceed to prove that the operator T maps bounded sets into
equicontinuous sets of C ([1, T ],R). For ι1, ι2 ∈ [1, T ] with ι1 < ι2, and z ∈ Bθ
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is a bounded set of C ([1, T ],R). Then we have

|(T z)(ι2)− (T z)(ι1)|

≤ |HI
%|g(σ, z(σ))|(ι2)−

H
I

%|g(σ, z(σ))|(ι1)|

+|HI
%+ϑ|h(σ, z(σ))|(ι2)−

H
I

%+ϑ|h(σ, z(σ))|(ι1)|

+
|(log ι2)

2 − (log ι1)
2|

Λ

[

ξωH
I

%+ς |g(σ, z(σ))|(ϕ)

+ζωH
I

%+ς+ϑ|h(σ, z(σ))|(ϕ) + ξHI
%|g(σ, z(σ))|(T )

+ζHI
%+ϑ|h(σ, z(σ))|(T )

]

≤
ψ1(‖θ‖)

Γ(%)

∣

∣

∣

∣

∣

∫ ι1

0

[(

log
ι2

σ

)%−1

−
(

log
ι1

σ

)%−1]

q1(σ)
dσ

σ

+

∫ ι2

ι1

(

log
ι2

σ

)%−1

q1(σ)
dσ

σ

∣

∣

∣

∣

∣

ψ2(‖θ‖)

Γ(%+ ϑ)

∣

∣

∣

∣

∣

∫ ι1

0

[(

log
ι2

σ

)%+ϑ−1

−
(

log
ι1

σ

)%+ϑ−1]

q2(σ)
dσ

σ

+

∫ ι2

ι1

(

log
ι2

σ

)%+ϑ−1

q2(σ)
dσ

σ

∣

∣

∣

∣

∣

+
|(log ι2)

2 − (log ι1)
2|

Λ

[

ξωH
I

%+ςq1(σ)(ϕ) + ζωH
I

%+ς+ϑq2(σ)(ϕ)

+ξHI
%q1(σ)(T ) + ζHI

%+ϑq2(σ)(T )

]

.

Hence we have that RHS of the above inequality tends to zero independent
of z ∈ Bθ as ι2 − ι1 → 0. Therefore, the operator T (z) is equicontinuous
and consequently, by Arzela-Ascoli theorem, it is completely continuous. Next,
we demonstrate that the boundedness of the set of all solutions to equations
z = νT (z), 0 < ν < 1. Let z be a solution. Then, for ι ∈ [1, T ], and using the
computations in proving that T is bounded, we have

|(T z)(ι)| ≤ ψ1(‖z‖)ξ

{

H
I

%q1(σ)(T ) +
(log T )2

Λ

[

ωH
I

%+ςq1(σ)(ϕ)

+H
I

%q1(σ)(T )

]}

+ ψ2(‖z‖)ζ

{

H
I

%+ϑq2(σ)(T )

+
(logT )2

Λ

[

ωH
I

%+ς+ϑq2(σ)(ϕ) +
H

I
%+ϑq2(σ)(T )

]}

= ψ1(‖z‖)
H

I
%q1(σ)(T ) + ψ2(‖z‖)

H
I

%+ϑq2(σ)(T ) + G .
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In view of (E2), there exists L 3 ‖z‖ 6= L . Let us set

M = {z ∈ C ([1, T ],R) : ‖z‖ < L }.

Bearing in mind that the operator T : W → C ([1, T ],R) is continuous and
completely continuous. From the of choice of W , there is no z ∈ ∂W 3 z =
νT (z), 0 < ν < 1. Consequently, by Theorem 2.9, we deduce that T has a
fixed point z ∈ W which is a solution of the problem (1).

Next, we prove the existence result is based on KFPT.

Theorem 3.2. Let g, h : [1, T ] × R → R be continuous functions. Then, the
following conditions hold:

(E4) |g(ι, p1)− g(ι, p2)| ≤ S1|p1 − p2|, |h(ι, p1) − g(ι, p2)| ≤ S2|p1 − p2|, ∀ ι ∈
[1, T ], p1, p2 ∈ R,S1,S2 > 0 with S = max{S1,S2}.

(E5) |g(ι, z(ι))| ≤ $1(ι), |h(ι, z(ι))| ≤ $2(ι) for (ι, z) ∈ [1, T ]×R, and $1, $2 ∈
C ([1, T ],R+) with ‖$‖ = maxι∈[1,T ] |$i(ι)|, i = 1, 2.

Then the BVP (1) has at least one solution on [1, T ] if S ∆̂ < 1, where

∆̂ = ∆−

(

ξ(log T )%

Γ(%+ 1)
+

ζ(log T )%+ϑ

Γ(%+ ϑ+ 1)

)

, (10)

∆ is given by (7) and supι∈[1,T ] |$1(ι)| = ‖$i‖, i = 1, 2.

Proof. Let us interpret Bθ = {z ∈ P : ‖z‖ ≤ θ}, where θ ≥ ‖$‖∆. To
prove the hypothesis of Theorem 2.10, we split the operator T given by (6) as
T = T1 + T2 on Bθ, where

(T1z)(ι) = ξHI
%g(σ, z(σ))(ι) + ζHI

%+ϑh(σ, z(σ))(ι),

(T2z)(ι) =
(log ι)2

Λ

[

ξωH
I

%+ςg(σ, z(σ))(ϕ) + ζωH
I

%+ς+ϑh(σ, z(σ))(ϕ)

−ξHI
%g(σ, z(σ))(T )− ζHI

%+ϑh(σ, z(σ))(T )

]

.

For ẑ1, ẑ2 ∈ Bθ, we have

|(T1ẑ1)(ι) + (T2ẑ2)(ι)|

≤ sup
ι∈[1,T ]

{

ξHI
%|g(σ, z(σ))|(ι) + ζHI

%+ϑ|h(σ, z(σ))|(ι)

+
(log ι)2

Λ

[

ξωH
I

%+ς |g(σ, z(σ))|(ϕ) + ζωH
I

%+ς+ϑ|h(σ, z(σ))|(ϕ)

+ξHI
%|g(σ, z(σ))|(T ) + ζHI

%+ϑ|h(σ, z(σ))|(T )

]}
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≤ ‖$‖

{(

ξ(log T )%

Γ(%+ 1)
+

ζ(logT )%+ϑ

Γ(%+ ϑ+ 1)

)

+

[

(log T )2

Λ

(

ξω(logϕ)%+ς

Γ(%+ ς + 1)

+
ζω(logϕ)%+ς+ϑ

Γ(%+ ς + ϑ+ 1)
+
ξ(logT )%

Γ(%+ 1)
+

ζ(log T )%+ϑ

Γ(%+ ϑ+ 1)

)]}

≤ ‖$‖∆ ≤ θ,

which imply that T1ẑ1 + T2ẑ2 ∈ Bθ.

Now, we will show that T2 is a contraction. Let p1, p2 ∈ R, ι ∈ [1, T ]. Then,
using the assumption (E4) together with (10), we get

‖T2p1 − T2p2‖ ≤
S (logT )2

Λ

[

ξω(logϕ)%+ς

Γ(%+ ς + 1)
+

ζω(logϕ)%+ς+ϑ

Γ(%+ ς + ϑ+ 1)

+
ξ(logT )%

Γ(%+ 1)
+

ζ(log T )%+ϑ

Γ(%+ ϑ+ 1)

]

‖p1 − p2‖.

By the assumption (E4), it follows that the operator T2 is contraction. Next,
we will show that T1 is compact and continuous. Continuity of g, h implies that
the operator T1 is continuous. Also, T1 is uniformly bounded on Bθ as

‖T1z‖ ≤ ‖$‖

{

|ξ|(logT )%

Γ(%+ 1)
+

|ζ|(log T )%+ϑ

Γ(%+ ϑ+ 1)

}

.

Moreover, with sup(ι,z)∈[1,T ]×Bθ
|g(ι, z)| = ĝ < ∞, sup(ι,z)∈[1,T ]×Bθ

|h(ι, z)| =

ĥ <∞ and ι1 < ι2, ι1, ι2 ∈ [1, T ], we have

|(T1z)(ι2)− (T1z)(ι1)| (11)

= |HI
%|g(σ, z(σ))|(ι2)−

H
I

%|g(σ, z(σ))|(ι1)|

|HI
%+ϑ|h(σ, z(σ))|(ι2)−

H
I

%+ϑ|h(σ, z(σ))|(ι1)|

≤
ĝ

Γ(%)

∣

∣

∣

∣

∣

∫ ι1

0

[(

log
ι2

σ

)%−1

−
(

log
ι1

σ

)%−1]dσ

σ

+

∫ ι2

ι1

(

log
ι2

σ

)%−1 dσ

σ

∣

∣

∣

∣

∣

+
ĥ

Γ(%+ ϑ)

∣

∣

∣

∣

∣

∫ ι1

0

[(

log
ι2

σ

)%+ϑ−1

−
(

log
ι1

σ

)%+ϑ−1]dσ

σ

+

∫ ι2

ι1

(

log
ι2

σ

)%+ϑ−1 dσ

σ

∣

∣

∣

∣

∣

. (12)

Clearly, the RHS of (11) tends to zero independent of z as ι2−ι1 → 0. Thus, T1 is
relatively compact on Bθ. Hence, by the Arzela-Ascoli Theorem, T1 is compact
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on Bθ. Thus, all the assumptions of Theorem 2.10 are satisfied. Therefore, there
exists at least one solution for BVP (1) on [1, T ].

Next, we establish the uniqueness of solution using BFPT for the problem
(1).

Theorem 3.3. Let g, h : [1, T ] × R → R be continuous functions satisfying the
assumptions (E4). In addition, it is assumed that S∆ < 1, where ∆ is described
by (7). Then there exists a unique solution for BVP (1) on [1, T ].

Proof. Let us interpret supι∈[1,T ] |g(ι, 0)| = Q1 < ∞, supι∈[1,T ] |h(ι, 0)| = Q2 <

∞, with Q = max{Q1,Q2}. Nominating θ ≥ Q∆
1−S∆ . We demonstrate that

T Bθ ⊂ Bθ, where Bθ = {z ∈ P : ‖z‖ ≤ θ}. For z ∈ Bθ, we have

|(T z)(ι)|

≤ sup
ι∈[1,T ]

{

ξHI
%|g(σ, z(σ))|(ι) + ζHI

%+ϑ|h(σ, z(σ))|(ι)

+
(log ι)2

Λ

[

ξωH
I

%+ς |g(σ, z(σ))|(ϕ) + ζωH
I

%+ς+ϑ|h(σ, z(σ))|(ϕ)

+ξHI
%|g(σ, z(σ))|(T ) + ζHI

%+ϑ|h(σ, z(σ))|(T )

]}

≤ |ξ|(S1θ + Q1) sup
ι∈[1,T ]

{

H
I

%(1)(ι) +
(log ι)2

Λ

[

ωH
I

%+ς(1)(ϕ)

+H
I

%(1)(T )

]}

|ζ|(S2θ + Q2) sup
ι∈[1,T ]

{

ζHI
%+ϑ(1)(ι)

+
(log ι)2

Λ

[

ζωH
I

%+ς+ϑ(1)(ϕ) + ζHI
%+ϑ(1)(T )

]}

≤ (S θ + Q)∆. (13)

Thus, it follows from (13) that ‖(T z)‖ ≤ θ.

Now, for z, ẑ ∈ P, we obtain

|T z(ι)− T ẑ(ι)|

≤ sup
ι∈[1,T ]

{

ξHI
%|g(σ, z(σ))− g(σ, ẑ(σ))|(ι)

+ζHI
%+ϑ|h(σ, z(σ)) − h(σ, ẑ(σ))|(ι)

+
(log ι)2

Λ

[

ξωH
I

%+ς |g(σ, z(σ)) − g(σ, ẑ(σ))|(ϕ)

+ζωH
I

%+ς+ϑ|h(σ, z(σ)) − h(σ, ẑ(σ))|(ϕ)
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+ξHI
%|g(σ, z(σ))− g(σ, ẑ(σ))|(T )

+ζHI
%+ϑ|h(σ, z(σ)) − h(σ, ẑ(σ))|(T )

]}

≤ S1∆‖z − ẑ‖

{

ξHI
%(1)(T ) +

(log ι)2

Λ

[

ξωH
I

%+ς(1)(ϕ) + ξHI
%(1)(T )

]

+S2∆‖z − ẑ‖

{

ζHI
%+ϑ(1)(T ) +

(log ι)2

Λ

[

ζωH
I

%+ς+ϑ(1)(ϕ)

+ζHI
%+ϑ(1)(T )

]}

= S∆‖z − ẑ‖.

Thus,

‖T z − T ẑ‖ ≤ S∆‖z − ẑ‖.

Since S∆ < 1 by the given assumption, therefore T is a contraction. Hence it
follows from Theorem 2.11 that Eq. (1) has a unique solution on [1, T ].

4. Numerical Examples

Example 4.1. Consider a BVP of CHFIDE given by

C
D

%
z(ι) = ξg(ι, z(ι)) + ζHI

ϑ
h(ι, z(ι)), ι ∈ [1, T ],

z(1) = 0, z
′

(1) = 0, z(T ) = ωH
I

ς
z(ϕ),

(14)

where

g(ι, z) =
1

(ι+ 5)2

(

|z|

1 + |z|
+

cos z

(elog ι)
+

ι

1 + ι

)

,

h(ι, z) =
1

4
sin z + ι.

Here, % = 12
5 , ϑ = 6

5 , ς =
7
5 , ξ =

1
4 , ζ = 1

6 , ω = 3
10 , ϕ = 7

4 .

In addition, we find that

|g(ι, p1(ι))− g(ι, p2(ι))| ≤
1

36
‖p1 − p2‖,

|h(ι, p1(ι))− h(ι, p2(ι))| ≤
1

4
‖p1 − p2‖.

With the above specifics, we find that S1 = 1
36 , S2 = 1

4 , so S = max{S1,S2} =
1
4 . Next, we find that Λ = 0.47222857758628856, ∆ = 0.10248515987315399.
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Thus, S∆ < 1, the presumptions of Theorem 3.3 are satisfied. Hence, by
Theorem 3.3, the BVP (14) has a unique solution on [1, T ].

Example 4.2. Consider the BVP of CHFIDE (14) with |g(ι, z(ι))| ≤ $1(ι),
|h(ι, z(ι))| ≤ $2(ι) for (ι, z) ∈ [1, T ]× R, and $1, $2 ∈ C ([1, T ],R+). Clearly,

|g(ι, z)| ≤
1

1 + log ι
+

|z|

1 + |z|

elog ι

(4 + ι)2
,

|h(ι, z)| ≤
1

1 + ι2
+

cos z

(2 + ι)2
.

Here, % = 12
5 , ϑ = 6

5 , ς =
7
5 , ξ = 1

4 , ζ = 1
6 , ω = 3

10 , ϕ = 7
4 . With the above

specifics, we find that Λ = 0.47222857758628856, ∆ = 0.05276145334211216.
Thus, ∆̂S < 1, the presumptions of Theorem 3.2 are satisfied. Hence, by
Theorem 3.2, the BVP (14) has at least one solution on [1, T ].
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