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Abstract. In this work, we use the notion of convexificators to discuss optimality condi-
tions for a fractional interval-valued optimization problem. We illustrate the sufficient
optimality conditions established in the paper by the example of a nonconvex fractional
interval-valued optimization problem with the help of generalized invex functions. Fur-
ther, we study saddle point criteria of a Lagrange function defined for a fractional
interval-valued optimization problem.
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1. Introduction

In the last two decades, a large number of research has been devoted for solving
fractional programming problems. This follows from the fact that optimization
problems with the objective function of ratio of two functions have a wide range
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of applications in engineering and economics, game theory, and many more (cf.
[12, 18, 22]).

Interval-valued optimization problem is used to tackle interval uncertainity
that appears in many real world mathematical problems. For example, it is ap-
plied to solve the fixed-charge transportation problem [15], chemical engineering
problem [17] and municipal solid waste management [20], etc. Interval-valued
programming problem was first studied by Ben-Israel and Robers [2]. Wu [21]
formulated four kinds of interval-valued optimization problems and discussed op-
timality conditions. Further, they also established duality results to relate the
primal and dual problems. Singh et al. [16] proposed a theoretical and practi-
cal solution method for a multiobjective interval-valued programming problem.
In the recent past, many mathematicians have shown their interest to study
different types of interval-valued programming problems [1, 3, 11, 14, 19].

The notion of convexificators introduced by Demyanov [6] and extended fur-
ther by Jeyakumar and Luc [10]. Convexificators can be viewed as weaker ver-
sions of the notion of subdifferentials as they are in general closed sets unlike the
well-known subdifferentials which are convex and compact sets. In literature, a
lot of research has been carried out for convexificators regarding its theoretical
properties (see, e.g. [5, 7, 8, 11, 13] and the references therein). Recently, making
use of these notions, Karush-Kuhn-Tucker necessary optimality conditions for lo-
cal weak efficient solutions were established by Hejazi and Nobakhtian [9] for a
multiobjective fractional programming problem. Also, Hejazi and Nobakhtian
[9] gave some constraint qualifications and subsequently they discussed relation-
ship between these constraint qualifications.

In this paper, by using the idea of convexificators, we study optimality condi-
tions for a fractional interval-valued optimization problem. Further, we establish
equivalence between the saddle point and LU optimal solution of the fractional
interval-valued optimization problem involving generalized invex functions.

2. Preliminaries

In this section, we give a number of basic definitions and lemmas which will be
used in the paper. Let Rn be the n-dimensional Euclidean space and Rn

+ be
its non-negative orthant. Throughout this paper, we shall be concerned with
Banach spaces. Let X∗ be topological dual of a given Banach space X with the
canonical dual pairing 〈., .〉. Let X and Y be Banach spaces and we denote by
L(X,Y ) the set of continuous linear mappings between X and Y .

Let f : X → R ∪ {+∞}, be an extended real-valued function. Then

f−(x, d) = lim
t→0+

inf
f(x+ td)− f(x)

t
,

f+(x, d) = lim
t→0+

sup
f(x+ td)− f(x)

t

denote, respectively, the lower and upper Dini directional derivatives of f at
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x ∈ X in the direction of d.

Now, we begin with the definition of convexificator given by Jeyakumar and
Luc [10].

Definition 2.1. A function f : X → R ∪ {+∞} is said to have a convexificator
∂∗f(x) at x if ∂∗f(x) ⊂ X∗ is weak∗ closed and

f+(x, d) ≥ inf
x∗∈∂∗f(x)

〈x∗, d〉 and f−(x, d) ≤ sup
x∗∈∂∗f(x)

〈x∗, d〉 , ∀d ∈ X.

Along the lines of Gadhi [8], we now give the definitions of generalized invex
functions by using the concept of convexificators. Assume that f : X → R

admits a convexificator ∂∗f(x̄) ⊂ L(X,R) at x̄ ∈ X .

Definition 2.2. A function f : X → R is said to be (η, ∂∗f)-invex at x̄ ∈ X if
there exists η : X ×X → X such that,

f(x)− f(x̄) ≥ 〈ξ, η(x, x̄)〉 , for all ξ ∈ ∂∗f(x̄) and x ∈ X.

If strict inequality holds in above definition for x 6= x̄, then f is said to be strict
(η, ∂∗f)-invex at x̄.

Definition 2.3. A function f : X → R is said to be (η, ∂∗f)-pseudoinvex at
x̄ ∈ X if there exists η : X ×X → X such that,

f(x) < f(x̄) ⇒ 〈ξ, η(x, x̄)〉 < 0, for all ξ ∈ ∂∗f(x̄) and x ∈ X,

equivalently

〈ξ, η(x, x̄)〉 ≥ 0 ⇒ f(x) ≥ f(x̄), for all ξ ∈ ∂∗f(x̄) and x ∈ X.

Definition 2.4. A function f : X → R is said to be strict (η, ∂∗f)-pseudoinvex
at x̄ ∈ X if there exists η : X ×X → X such that,

f(x) ≤ f(x̄) ⇒ 〈ξ, η(x, x̄)〉 < 0, for all ξ ∈ ∂∗f(x̄) and x ∈ X,

equivalently

〈ξ, η(x, x̄)〉 ≥ 0 ⇒ f(x) > f(x̄), for all ξ ∈ ∂∗f(x̄) and x ∈ X.

Definition 2.5. A function f : X → R is said to be (η, ∂∗f)-quasiinvex at x̄ ∈ X

if there exists η : X ×X → X such that,

f(x) ≤ f(x̄) ⇒ 〈ξ, η(x, x̄〉 ≤ 0, for all ξ ∈ ∂∗f(x̄) and x ∈ X,
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equivalently

〈ξ, η(x, x̄〉 > 0 ⇒ f(x) > f(x̄), for all ξ ∈ ∂∗f(x̄) and x ∈ X.

In order to proceed further, we need the following fundamental concepts of
interval mathematics:

Let
A

B
=

[

αL
1

γL
1

,
αU
1

γU
1

]

and
C

D
=

[

αL
2

γL
2

,
αU
2

γU
2

]

be two fractional closed intervals

with
αL
1

γL
1

≤
αU
1

γU
1

and
αL
2

γL
2

≤
αU
2

γU
2

, γL
1 , γ

U
1 , γL

2 , γ
U
2 6= 0.

(i)
A

B
+

C

D
=

[

αL
1

γL
1

+
αL
2

γL
2

,
αU
1

γU
1

+
αU
2

γU
2

]

,

(ii)
− A

B
=

[

− αU
1

γU
1

,
− αL

1

γL
1

]

,

(iii)
A

B
−

C

D
=

A

B
+

(

− C

D

)

=

[

αL
1

γL
1

−
αU
2

γU
2

,
αU
1

γU
1

−
αL
2

γL
2

]

,

(iv) β

(

A

B

)

=



















[

αL
1

γL
1

,
αU
1

γU
1

]

, if β ≥ 0,

[

αU
1

γU
1

,
αL
1

γL
1

]

, if β < 0.

An order relation ≤LU between two intervals
A

B
and

C

D
are defined as

(i)
A

B
≤LU

C

D
iff

αL
1

γL
1

≤
αL
2

γL
2

and
αU
1

γU
1

≤
αU
2

γU
2

.

(ii)
A

B
<

C

D
iff

A

B
≤

C

D
and

A

B
6=

C

D
, equivalently



















αL
1

γL
1

<
αL
2

γL
2

αU
1

γU
1

≤
αU
2

γU
2

, or



















αL
1

γL
1

≤
αL
2

γL
2

αU
1

γU
1

<
αU
2

γU
2

, or



















αL
1

γL
1

<
αL
2

γL
2

αU
1

γU
1

<
αU
2

γU
2

.

Consider the following non-differentiable fractional interval-valued optimiza-
tion problem:

min

[

fL(x), fU (x)

gL(x), gU (x)

]

subject to

hi(x) ≤ 0, i = 1, 2, ...,m,

x ∈ X,
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which further reduces to the problem

min

[

fL(x)

gU(x)
,
fU (x)

gL(x)

]

subject to

hi(x) ≤ 0, i = 1, 2, ...,m,

x ∈ X,

where fL(x), fU (x) ≥ 0, gL(x), gU (x) > 0, and hi, i = 1, 2, . . . ,m are contin-
uous functions on X . Set fL = pL, gU = qL, fU = pU , gL = qU . Then, the
above problem reduces to

(NFIVP) min

[

pL

qL
(x),

pU

qU
(x)

]

subject to

hi(x) ≤ 0, i = 1, 2, ...,m,

x ∈ X.

Let F be the feasible set for the problem (NFIVP).

Definition 2.6. [21] A feasible point x̄ is said to be a LU optimal solution for
(NFIVP) if and only if there exists no feasible point x such that

[

pL

qL
(x),

pU

qU
(x)

]

<LU

[

pL

qL
(x̄),

pU

qU
(x̄)

]

.

3. Optimality Conditions

For the given feasible solution x̄, consider two fractional problems as given below:

(FP1) minφL(x) =
pL

qL
(x) (FP2) min φU (x) =

pU

qU
(x)

subject to subject to

hi(x) ≤ 0, i = 1, 2, . . . ,m, hi(x) ≤ 0, i = 1, 2, . . . ,m,

pU

qU
(x) ≤

pU

qU
(x̄),

pL

qL
(x) ≤

pL

qL
(x̄),

x ∈ X. x ∈ X.

The following result gives the relationship between (NFIVP) and (FP1) and
(FP2).

Lemma 3.1. [4] If x̄ is a LU optimal solution for the problem (NFIVP) if and
only if x̄ is an optimal solution for the problems (FP1 ) and (FP2 ).
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Lemma 3.2. [4] x̄ is a LU optimum of the problem (NFIVP) if and only if x̄

minimizes pL

qL
(x) on the following constraint set

N =

{

x ∈ X |
pU

qU
(x) ≤

pU

qU
(x̄), hi(x) ≤ 0, i = 1, 2, . . . ,m

}

.

Considered the following single-objective fractional problem:

(D) minφ(x) =
p1

q1
(x)

subject to

`i(x) ≤ 0, i = 1, 2, ...,m,

x ∈ X,

where p1, q1 and `i, i = 1, 2, ...,m are continuous functions on X such that
p1(x) ≥ 0 and q1(x) > 0, for all x ∈ X.

On the lines of Theorem 6 of Gadhi [8], we state the following theorem for
the problem (D):

Theorem 3.3. Suppose that x̄ is an optimal solution of the problem (D) and
a suitable constraint qualification is satisfied at x̄. Assume that p1, q1 and
`i, i = 1, 2, ...,m are continuous and admit bounded convexificators ∂∗p1(x̄),
∂∗q1(x̄) and ∂∗`i(x̄), i = 1, 2, ...,m at x̄ respectively and that ∂∗p1(x̄), ∂

∗q1(x̄)
and ∂∗`i(x̄), i = 1, 2, ...,m are upper semicontinuous at x̄, then there exist λ > 0,
and µ ∈ Rm

+ such that

0 ∈ λ (∂∗p1(x̄)− φ(x̄)∂∗q1(x̄)) +
m
∑

i=1

µi∂
∗`i(x̄), (1)

µi`i(x̄) = 0, j = 1, 2, ...,m, (2)

µi ≥ 0 and `i(x̄) ≤ 0, i = 1, 2, ...,m. (3)

Theorem 3.4. (Karush-Kuhn-Tucker Necessary Optimality Conditions) Suppose
that x̄ is a LU optimal solution of the problem (NFIVP) and a suitable constraint
qualification is satisfied at x̄. Assume that pL, qL, pU , qU and hi, i = 1, 2, ...,m
are continuous and admit bounded convexificators ∂∗pL(x̄), ∂∗qL(x̄), ∂∗pU (x̄),
∂∗qU (x̄) and ∂∗hi(x̄), i = 1, 2, ...,m at x̄ respectively and that ∂∗pL(x̄), ∂∗qL(x̄),
∂∗pL(x̄), ∂∗qL(x̄), and ∂∗hi(x̄), i = 1, 2, ...,m are upper semicontinuous at x̄,
then there exist λL > 0, λU > 0 and µ ∈ Rm

+ such that

0 ∈ λL
(

∂∗pL(x̄)− φL(x̄)∂∗qL(x̄)
)

+λU
(

∂∗pU (x̄)− φU (x̄)∂∗qU (x̄)
)

+
m
∑

i=1

µi∂
∗hi(x̄), (4)

µihi(x̄) = 0, j = 1, 2, ...,m, (5)

µi ≥ 0 and hi(x̄) ≤ 0, i = 1, 2, ...,m. (6)
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Proof. By assumption, x̄ is a LU optimal solution for the problem (NFIVP),
and a suitable constraint qualification is satisfied at x̄. Since x̄ is an LU optimal
solution, by Lemma 3.1, x̄ is also a optimal solution for the problems (FP1) and

(FP2). Hence, by Lemma 3.2, at x̄ the minimum value of
pL

qL
(x) is obtained on

the constraint set

NL =

{

x ∈ X |
pU

qU
(x) ≤

pU

qU
(x̄), hi(x) ≤ 0, i = 1, 2, ...,m

}

,

and the minimum value of
pU

qU
(x) is obtained at x̄ on the constraint set

NU =

{

x ∈ X |
pL

qL
(x) ≤

pL

qL
(x̄), hi(x) ≤ 0, i = 1, 2, ...,m

}

.

By Theorem 3.3, it follows that there exist λLL > 0, λLU > 0, µL ∈ Rm
+ and

λUL > 0, λUU > 0, µU ∈ Rm
+ such that

0 ∈ λLL
(

∂∗pL(x̄)− φL(x̄)∂∗qL(x̄)
)

+λLU
(

∂∗pU (x̄)− φU (x̄)∂∗qU (x̄)
)

+
m
∑

i=1

µL
i ∂

∗hi(x̄), (7)

µL
i hi(x̄) = 0, j = 1, 2, ...,m, (8)

µL
i ≥ 0 and hi(x̄) ≤ 0, i = 1, 2, ...,m. (9)

and

0 ∈ λUL
(

∂∗pL(x̄)− φL(x̄)∂∗qL(x̄)
)

+λUU
(

∂∗pU (x̄)− φU (x̄)∂∗qU (x̄)
)

+
m
∑

i=1

µU
i ∂

∗hi(x̄), (10)

µU
i hi(x̄) = 0, j = 1, 2, ...,m, (11)

µU
i ≥ 0 and hi(x̄) ≤ 0, i = 1, 2, ...,m. (12)

From (7) to (12), we have

0 ∈ [λLL + λUL]
(

∂∗pL(x̄)− φL(x̄)∂∗qL(x̄)
)

+[λLU + λUU ]
(

∂∗pU (x̄)− φU (x̄)∂∗qU (x̄)
)

+
m
∑

i=1

[µL
i + µU

i ]∂
∗hi(x̄), (13)

[µL
i + µU

i ]hi(x̄) = 0, j = 1, 2, ...,m, (14)

[µL
i + µU

i ] ≥ 0 and hi(x̄) ≤ 0, i = 1, 2, ...,m. (15)

Let us denote λLL +λUL = λL, λLU +λUU = λU and µL +µU = µ. Thus, from
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(13)-(15), it yields

0 ∈ λL
(

∂∗pL(x̄)− φL(x̄)∂∗qL(x̄)
)

+λU
(

∂∗pU (x̄)− φU (x̄)∂∗qU (x̄)
)

+
m
∑

i=1

µi∂
∗hi(x̄),

µihi(x̄) = 0, j = 1, 2, ...,m,

µi ≥ 0 and hi(x̄) ≤ 0, i = 1, 2, ...,m.

This completes the proof.

Theorem 3.5. (Sufficient Optimality Conditions) Suppose that x̄ is a feasible
solution of (NFIVP) and there exist λL > 0, λU > 0, µ ∈ Rm

+ such that (4)–(6)
are satisfied at x̄. Also, assume that

(i) pL(.) − φL(x̄)qL(.) and pU (.) − φU (x̄)qU (.) are respectively (η, ∂∗pL −
φL(x̄)∂∗qL)-invex and (η, ∂∗pU − φU (x̄)∂∗qU )-invex at x̄,

(ii) µihi, for i = 1, 2, ...,m, is (η, ∂∗hi(.))-invex at x̄.

Then x̄ is a LU optimal solution for (NFIVP).

Proof. By assumption, (4)-(6) are satisfied at x̄ with Lagrange multipliers λL >

0, λU > 0, µ ∈ Rm
+ . As it follows from (4), there exist ξL ∈ ∂∗pL(x̄), νL ∈

∂∗qL(x̄), ξU ∈ ∂∗pU (x̄), νU ∈ ∂∗qU (x̄), and ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m , such
that

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

+

m
∑

i=1

µiζi = 0. (16)

Suppose contrary to the result, that x̄ is not a LU optimal solution for (NFIVP).
Hence, by Definition 2.6, there exists a feasible solution x such that

[

pL

qL
(x),

pU

qU
(x)

]

<LU

[

pL

qL
(x̄),

pU

qU
(x̄)

]

that is



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) ≤

pU

qU
(x̄)

, or



















pL

qL
(x) ≤

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

, or



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

.

This implies

pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) ≤ pU (x̄)− φU (x̄)qU (x̄),

or
pL(x)− φL(x̄)qL(x) ≤ pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄),
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or

pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄).

From hypothesis (i), pL(.)− φL(x̄)qL(.) and pU (.)− φU (x̄)qU (.) are respectively
(η, ∂∗pL−φL(x̄)∂∗qL)-invex and (η, ∂∗pU−φU (x̄)∂∗qU )-invex at x̄ and therefore,
there exists η : X ×X → X such that

〈[

ξL − φL(x̄)νL
]

, η(x, x̄)

〉

≤ 0, for all ξL ∈ ∂∗pL(x̄), and νL ∈ ∂∗qL(x̄),

〈[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

< 0, for all ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄),

or
〈[

ξL − φL(x̄)νL
]

, η(x, x̄)

〉

< 0, for all ξL ∈ ∂∗pL(x̄), and νL ∈ ∂∗qL(x̄),

〈[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

≤ 0, for all ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄),

or
〈[

ξL − φL(x̄)νL
]

, η(x, x̄)

〉

< 0, for all ξL ∈ ∂∗pL(x̄), and νL ∈ ∂∗qL(x̄),

〈[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

< 0, for all ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄).

From the fact λL > 0, λU > 0 and by above inequalities, we have

〈

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

< 0. (17)

On the other hand, by using the feasibility of x, µi ≥ 0, i = 1, 2, ...,m and (5),
we obtain

µihi(x) ≤ µihi(x̄), i = 1, 2, ...,m,

which by hypothesis (ii), we get

〈µiζi, η(x, x̄)〉 ≤ 0, for all ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m. (18)

On adding (17) and (18), we have

〈

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

+

m
∑

i=1

µiζi, η(x, x̄)

〉

< 0,

which contradicts (16). Hence, x̄ is a LU optimal solution for (NFIVP).
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In order to illustrate the sufficient optimality conditions established in the
Theorem 3.5, we consider the following example:

Example 3.6.

(IVP1) min

[

fL
1 (x), f

U
1 (x)

gL1 (x), g
U
1 (x)

]

= min

[

2x2, x2 + 1

−x+ 4,−x2 + 6

]

subject to

h1(x) = −x+ 2 ≤ 0, x ∈ X = R.

Now, we rewrite the considered optimization problem in the following manner

min

[

2x2

−x2 + 6
,
x2 + 1

−x+ 4

]

subject to

h1(x) = −x+ 2 ≤ 0, x ∈ X = R.

where
pL

1

qL
1

(x) = 2x2

−x2+6 ,
pU

1

qU
1

(x) = x2+1
−x+4 . The feasible set is F1 = {x : −x + 2 ≤

0, x ∈ S}. By simple calculations, for the feasible point x̄ = 2, we see that
∂∗pL(x̄) = {−8, 8}, ∂∗qL(x̄) = {−4, 4}, ∂∗pU (x̄) = {−4, 4}, ∂∗qU (x̄) = {−1, 1}
and ∂∗h1(x̄) = {−1, 1}. Also, we see that for the feasible point x̄ = 2, there
exist λL > 0, λU > 0, µ ∈ Rm

+ such that (4)-(6) are satisfied at x̄ and it is easy
to see that

(i) pL1 (.) − φL
1 (x̄)q

L
1 (.) and pU1 (.) − φU

1 (x̄)q
U
1 (.) are respectively (η, ∂∗pL1 −

φL
1 (x̄)∂

∗qL1 )-invex and (η, ∂∗pU1 − φU
1 (x̄)∂

∗qU1 )-invex at x̄,

(ii) µh1 is (η, ∂∗h1(.))-invex at x̄.

Therefore, by Theorem 3.5, x̄ = 2 is a LU optimal solution for (IVP1).

Theorem 3.7. (Sufficient Optimality Conditions) Suppose that x̄ is a feasible
solution of (NFIVP) and there exist λL > 0, λU > 0, µ ∈ Rm

+ such that (4)–(6)
are satisfied at x̄. Also, assume that

(i) λL[pL(.) − φL(x̄)qL(.)] + λU [pU (.) − φU (x̄)qU (.)] is (η, λL[∂∗pL −
φL(x̄)∂∗qL] + λU [∂∗pU − φU (x̄)∂∗qU ])-pseudoinvex at x̄,

(ii) µihi, for i = 1, 2, ...,m, is (η, ∂∗hi(.))-quasiinvex at x̄.

Then x̄ is a LU optimal solution for (NFIVP).

Proof. By assumption, (4)-(6) are satisfied at x̄ with Lagrange multipliers λL >

0, λU > 0, µ ∈ Rm
+ . As it follows from (4), there exist ξL ∈ ∂∗pL(x̄), νL ∈

∂∗qL(x̄), ξU ∈ ∂∗pU (x̄), νU ∈ ∂∗qU (x̄), and ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m , such
that

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

+

m
∑

i=1

µiζi = 0. (19)
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Suppose contrary to the result, that x̄ is not a LU optimal solution for (NFIVP).
Hence, by Definition 2.6, there exist a feasible solution x such that

[

pL

qL
(x),

pU

qU
(x)

]

<LU

[

pL

qL
(x̄),

pU

qU
(x̄)

]

that is



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) ≤

pU

qU
(x̄)

, or



















pL

qL
(x) ≤

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

, or



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

.

This implies

pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) ≤ pU (x̄)− φU (x̄)qU (x̄),

or
pL(x)− φL(x̄)qL(x) ≤ pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄),

or
pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄).

From the fact λL > 0, λU > 0 and by above inequalities, we have

λL[pL(x) − φL(x̄)qL(x)] + λU [pU (x)− φU (x̄)qU (x)]

< λL[pL(x̄)− φL(x̄)qL(x̄)] + λU [pU (x̄)− φU (x̄)qU (x̄)].

From hypothesis (i), λL[pL(.) − φL(x̄)qL(.)] + λU [pU (.) − φU (x̄)qU (.)] is
(η, λL[∂∗pL−φL(x̄)∂∗qL]+λU [∂∗pU −φU (x̄)∂∗qU ])-pseudoinvex at x̄ and there-
fore, there exists η : X ×X → X such that

〈

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

< 0, (20)

for all ξL ∈ ∂∗pL(x̄), νL ∈ ∂∗qL(x̄), ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄).

On the other hand, by using the feasibility of x, µi ≥ 0, i = 1, 2, ...,m and
(5), we obtain

µihi(x) ≤ µihi(x̄), i = 1, 2, ...,m,

which by hypothesis (ii), we get

〈µiζi, η(x, x̄)〉 ≤ 0, for all ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m. (21)
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On adding (20) and (21), we have

〈

λL

[

ξL − φL(x̄)νL
]

+ λU

[

ξU − φU (x̄)νU
]

+
m
∑

i=1

µiζi, η(x, x̄)

〉

< 0,

which contradicts (19). Hence, x̄ is a LU optimal solution for (NFIVP).

4. Lagrangian Type Function and Saddle-point Analysis

In this section, for the feasible point x̄ ∈ F, we define the Lagrangian type
function for the primal problem (NFIVP) as follows:

L(x, λL, λU , µ) = λL
(

pL(x) − φL(x̄)qL(x)
)

+ λU
(

pU (x)− φU (x̄)qU (x)
)

+

m
∑

i=1

µihi(x)

where x ∈ X, λL ≥ 0, λU ≥ 0 and µ ∈ Rm
+ . Now, we define a saddle-point of

L(x, λL, λU , µ) and subsequently we discuss its relation to the problem (NFIVP).

Definition 4.1. A point (x̄, λ̄L, λ̄U , µ̄) ∈ X×R+×R+×Rm
+ is said to be a saddle

point for L(x, λL, λU , µ), if

(i) L(x̄, λ̄L, λ̄U , µ) ≤ L(x̄, λ̄L, λ̄U , µ̄), for all µ ∈ Rm
+ ,

(ii) L(x̄, λ̄L, λ̄U , µ̄) ≤ L(x, λ̄L, λ̄U , µ̄), for all x ∈ X.

Theorem 4.2. Let λ̄L > 0, λ̄U > 0 and (x̄, λ̄L, λ̄U , µ̄) be a saddle point for
L(x, λL, λU , µ). Then x̄ is a LU optimal solution to (NFIVP).

Proof. Suppose contrary to the result, that x̄ is not a LU optimal solution for
(NFIVP). Hence, by Definition 2.6, there exists a feasible solution x such that

[

pL

qL
(x),

pU

qU
(x)

]

<LU

[

pL

qL
(x̄),

pU

qU
(x̄)

]

that is



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) ≤

pU

qU
(x̄)

, or



















pL

qL
(x) ≤

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

, or



















pL

qL
(x) <

pL

qL
(x̄)

pU

qU
(x) <

pU

qU
(x̄)

This implies

pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) ≤ pU (x̄)− φU (x̄)qU (x̄),
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or
pL(x)− φL(x̄)qL(x) ≤ pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄),

or
pL(x)− φL(x̄)qL(x) < pL(x̄)− φL(x̄)qL(x̄),

pU (x)− φU (x̄)qU (x) < pU (x̄)− φU (x̄)qU (x̄).

By above inequalities and from λL > 0, λU > 0, we have

λ̄L[pL(x) − φL(x̄)qL(x)] + λ̄U [pU (x)− φU (x̄)qU (x)]

< λ̄L[pL(x̄)− φL(x̄)qL(x̄)] + λ̄U [pU (x̄)− φU (x̄)qU (x̄)]. (22)

Since (x̄, λ̄L, λ̄U , µ̄) is a saddle point for L(x, λL, λU , µ), by Definition 4.1 (i), we
get

L(x̄, λ̄L, λ̄U , µ) ≤ L(x̄, λ̄L, λ̄U , µ̄),

that is,
m
∑

i=1

µihi(x̄) ≤

m
∑

i=1

µ̄ihi(x̄). (23)

Taking (µ1, µ2, ...µi−1, µi, µi+1, ..., µm) = (µ̄1, µ̄2, ...µ̄i−1, µ̄i + 1, µ̄i+1, ..., µ̄m) in
the above inequality (23), we obtain

hi(x̄) ≤ 0, i = 1, 2, ...,m,

which shows that x̄ is a feasible solution to (NFIVP).

Using µ̄ ∈ Rm
+ , above inequality implies

µ̄ihi(x̄) ≤ 0, i = 1, 2, ...,m. (24)

Again taking µi = 0, i = 1, 2, ...,m, in the inequality (23), we get

µ̄ihi(x̄) ≥ 0, i = 1, 2, ...,m. (25)

From the inequalities (24) and (25), we conclude that

µ̄ihi(x̄) = 0, i = 1, 2, ...,m. (26)

On other hand, since (x̄, λ̄L, λ̄U , µ̄) is a saddle point for L(x, λL, λU , µ), by Def-
inition 4.1 (ii), we get

L(x̄, λ̄L, λ̄U , µ̄) ≤ L(x, λ̄L, λ̄U , µ̄),

that is

λ̄L
(

pL(x̄)− φL(x̄)qL(x̄)
)

+ λ̄U
(

pU (x̄)− φU (x̄)qU (x̄)
)

+

m
∑

i=1

µ̄ihi(x̄)

≤ λ̄L
(

pL(x) − φL(x̄)qL(x)
)

+ λ̄U
(

pU (x)− φU (x̄)qU (x)
)

+

m
∑

i=1

µ̄ihi(x)
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Using the feasibilty of x of the problem (NFIVP) together with µ̄ ∈ Rm
+ and

(26), above inequality gives

λ̄L
(

pL(x̄)− φL(x̄)qL(x̄)
)

+ λ̄U
(

pU (x̄)− φU (x̄)qU (x̄)
)

≤ λ̄L
(

pL(x) − φL(x̄)qL(x)
)

+ λ̄U
(

pU (x) − φU (x̄)qU (x)
)

.

This contradicts (22). Hence the proof.

Theorem 4.3. Let x̄ be a LU optimal solution to (NFIVP) and assume that there
exist λ̄L > 0, λ̄U > 0, µ̄ ∈ Rm

+ such that (4)–(6) are satisfied at x̄. Also, assume
that

(i) pL(.) − φL(x̄)qL(.) and pU (.) − φU (x̄)qU (.) are respectively (η, ∂∗pL −
φL(x̄)∂∗qL)-invex and (η, ∂∗pU − φU (x̄)∂∗qU )-invex at x̄.

(ii) µihi, for i = 1, 2, ...,m, is (η, ∂∗hi(.))-invex at x̄.

Then (x̄, λ̄L, λ̄U , µ̄) is a saddle point for L(x, λL, λU , µ).

Proof. By assumption, (4)–(6) are satisfied at x̄ with Lagrange multipliers λ̄L >

0, λ̄U > 0, µ̄ ∈ Rm
+ . As it follows from (4), there exist ξL ∈ ∂∗pL(x̄), νL ∈

∂∗qL(x̄), ξU ∈ ∂∗pU (x̄), νU ∈ ∂∗qU (x̄), and ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m, such
that

λ̄L

[

ξL − φL(x̄)νL
]

+ λ̄U

[

ξU − φU (x̄)νU
]

+

m
∑

i=1

µ̄iζi = 0. (27)

From the hypothesis (i), pL(.) − φL(x̄)qL(.) and pU (.) − φU (x̄)qU (.) are respec-
tively (η, ∂∗pL−φL(x̄)∂∗qL)-invex and (η, ∂∗pU −φU (x̄)∂∗qU )-invex at x̄, there-
fore, there exists η : X ×X → X such that

[pL(x) − φL(x̄)qL(x)]− [pL(x̄)− φL(x̄)qL(x̄)]

≥

〈[

ξL − φL(x̄)νL
]

, η(x, x̄)

〉

, for all ξL ∈ ∂∗pL(x̄), and νL ∈ ∂∗qL(x̄),

and

[pU (x)− φU (x̄)qU (x)]− [pU (x̄)− φU (x̄)qU (x̄)]

≥

〈[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

, for all ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄).

From the fact λ̄L > 0, λ̄U > 0 and by above inequalities, we have

λ̄L[pL(x)− φL(x̄)qL(x)]− λ̄L[pL(x̄)− φL(x̄)qL(x̄)] (28)

≥

〈

λ̄L

[

ξL − φL(x̄)νL
]

, η(x, x̄

〉

, for all ξL ∈ ∂∗pL(x̄), and νL ∈ ∂∗qL(x̄),

and

λ̄U [pU (x)− φU (x̄)qU (x)]− λ̄U [pU (x̄)− φU (x̄)qU (x̄)] (29)

≥

〈

λ̄U

[

ξU − φU (x̄)νU
]

, η(x, x̄)

〉

, for all ξU ∈ ∂∗pU (x̄), and νU ∈ ∂∗qU (x̄).
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From hypothesis (ii), we get

m
∑

i=1

µ̄ihi(x) −

m
∑

i=1

µ̄ihi(x̄) ≥

〈

m
∑

i=1

µ̄iζi, η(x, x̄)

〉

, (30)

for all ζi ∈ ∂∗hi(x̄), i = 1, 2, ...,m.

On adding (28)-(30), we have

λ̄L[pL(x) − φL(x̄)qL(x)] + λ̄U [pU (x)− φU (x̄)qU (x)] +

m
∑

i=1

µ̄ihi(x)

−

[

λ̄L[pL(x̄)− φL(x̄)qL(x̄)] + λ̄U [pU (x̄)− φU (x̄)qU (x̄)] +

m
∑

i=1

µ̄ihi(x̄)

]

≥

〈

λ̄L

[

ξL − φL(x̄)νL
]

+ λ̄U

[

ξU − φU (x̄)νU
]

+
m
∑

i=1

µ̄iζi, η(x, x̄)

〉

,

which by (27), yields

λ̄L[pL(x) − φL(x̄)qL(x)] + λ̄U [pU (x)− φU (x̄)qU (x)] +

m
∑

i=1

µ̄ihi(x)

≥

[

λ̄L[pL(x̄)− φL(x̄)qL(x̄)] + λ̄U [pU (x̄)− φU (x̄)qU (x̄)] +

m
∑

i=1

µ̄ihi(x̄)

]

,

that is
L(x̄, λ̄L, λ̄U , µ̄) ≤ L(x, λ̄L, λ̄U , µ̄). (31)

On the other hand, using the feasibility of x̄ of the problem (NFIVP) and
the fact µ ∈ Rm

+ , we have

µihi(x̄) ≤ 0, i = 1, 2, ...,m, (32)

By using (32) and the optimality conditions (5), we get

L(x̄, λ̄L, λ̄U , µ) ≤ L(x̄, λ̄L, λ̄U , µ̄). (33)

By inequalities (31) and (33) we conclude that (x̄, λ̄L, λ̄U , µ̄) is a saddle point
for L(x, λL, λU , µ). Hence the proof.

5. Conclusion

In this paper, with the idea of convexificators, we have discussed optimality
conditions and saddle point criteria for a nonconvex fractional interval-valued
optimization problem. Also, we provided an example to validate the results
of sufficient optimality conditions established in this paper. In our opinion,



408 B.J. Rani and K. Kummari

the techniques employed in this paper can be extended for proving the similar
results for other classes of fractional programming problems with the functions
involving are convexificators. This may be the topic of some of our forthcoming
papers.

Acknowledgement. Our sincere acknowledgements to the anonymous referees
for their insightful remarks and suggestions.
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