
Southeast Asian

Bulletin of

Mathematics
c©SEAMS. 2023

Southeast Asian Bulletin of Mathematics (2023) 47: 439–453

Some Applications of Generalized Alexander

Integral Operator

M. Çağlar
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1. Introduction

Let A be a class of functions f of the form

f (z) = z +

∞∑

k=n+1

akz
k (n ∈ N = {1, 2, 3, · · · }) (1)
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that are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Denote by A(n)
the class of functions consisting of functions f of the form

f(z) = z −
∞∑

k=n+1

akz
k (ak ≥ 0, n ∈ N) (2)

which are analytic in U .

Let Ω be the class of functions w(z) analytic in U such that w(0) = 0,
|w(z)| < 1. For the functions f and g in A, f is said to be subordinate to g ∈ U
if there exists an analytic function w(z) ∈ Ω such that f(z) = g(w(z)). This
subordination is denoted by f(z) ≺ g(z).

Next, following the earlier investigations by Goodman [16], Ruscheweyh [27],
Silverman [31] and Altıntaş et al. [3, 4] (see also [5]-[11], [17]-[21]), we define the
(n, δ)−neighborhood of a function f ∈ A(n) by

Nn,δ (f) =

{
g ∈ A (n) : g (z) = z−

∞∑

k=n+1

bkz
k and

∞∑

k=n+1

k |ak−bk| ≤ δ

}
. (3)

For e(z) = z, we have

Nn,δ (e) =

{
g ∈ A (n) : g (z) = z −

∞∑

k=n+1

bkz
k and

∞∑

k=n+1

k |bk| ≤ δ

}
. (4)

A function f ∈ A(n) is α−starlike of complex order τ, denoted by f ∈ S∗
n(α, τ)

if it satisfies the following condition

<

{
1 +

1

τ

(
zf ′(z)

f(z)
− 1

)}
> α (τ ∈ C\ {0} , 0 < α ≤ 1, z ∈ U) ,

and a function f ∈ A(n) is α−convex of complex order τ, denoted by f ∈ Cn(α, τ)
if it satisfies the following condition

<

{
1 +

1

τ

zf
′′

(z)

f ′(z)

}
> α (τ ∈ C\ {0} , 0 < α ≤ 1, z ∈ U) .

For f ∈ A, the following integral operator defined by Alexander [2]:

A−1f(z) =

z∫

0

f(s)

s
ds = z +

∞∑

k=n+1

ak

k
zk. (5)

Alexander integral operator was applied for some subclasses of analytic functions
in U by Acu [1], Güney [15] and Kugita et al. [18].

For (5), we consider

A−jf(z) = A−j+1 (A−1f(z)) = z +

∞∑

k=n+1

ak

k
zk (j ∈ N) (6)
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where A0f(z) = f(z).

From the various definitions of fractional calculus of f ∈ A (that is, fractional
integrals and fractional derivatives) given in the literature, we would like to recall
here the following definitions for fractional calculus which were used by Owa [22],
Owa and Srivastava [25] and Owa and Patel [23].

Definition 1.1. The fractional integral of order r for f ∈ A is defined by

D−r
z f(z) =

1

Γ (r)

z∫

0

f(s)

(z − s)1−r ds (r > 0)

where f is an analytic function in a simply-connected region of the z−plane
containing the origin, and the multiplicity of (z − s)r−1 is removed by requiring
log(z − t) to be real when z − s > 0 and Γ is the Gamma function.

From Definition 1.1, we know that

D−r
z f(z) =

1

Γ (2 + r)
z1+r +

∞∑

k=n+1

k!

Γ (k + 1 + r)
akz

k+r (7)

for r > 0 and f ∈ A. Further applying the fractional integral for f ∈ A, we
define a new operator A−rf(z) given by

A−rf(z) =
Γ
(
3+r
2

)

Γ
(
3−r
2

)z
1−r
2 D−r

z

(
z

−1−r
2 f(z)

)
, (8)

where 0 ≤ r ≤ 1. If r = 0, then (8) becomes A0f(z) = f(z) and if r = 1, then
(8) leads us that A−1f(z).

With this integral operator, we know

A−j−rf(z) = A−j(A−rf(z)) = z +

∞∑

k=n+1

Γ
(
3+r
2

)
Γ
(
2k+1−r

2

)

Γ
(
3−r
2

)
Γ
(
2k+1+r

2

)
kj
akz

k, (9)

for z ∈ U , where j ∈ N and 0 ≤ r ≤ 1. A−j−rf(z) is the generalization of (5).

If f ∈ A(n) is given by (2) then we have

Ã−j−rf(z) = z −
∞∑

k=n+1

Γ
(
3+r
2

)
Γ
(
2k+1−r

2

)

Γ
(
3−r
2

)
Γ
(
2k+1+r

2

)
kj
akz

k (z ∈ U) (10)

where j ∈ N and 0 ≤ r ≤ 1.

Finally, by using (10), we investigate the subclasses Mj(r, α, τ) and Rj(r, α,
τ, µ) of A(n) consisting of functions f as following:
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Definition 1.2. Let Mj(r, α, τ) denote the subclass of A(n) consisting of f which
satisfy the inequality

∣∣∣∣∣∣∣

1

τ



z
[
Ã−j−rf(z)

]′

Ã−j−rf(z)
− 1




∣∣∣∣∣∣∣
< α (z ∈ U) (11)

where j ∈ N, 0 ≤ r ≤ 1, τ ∈ C\ {0} and 0 < α ≤ 1.

Definition 1.3. Let Rj(r, α, τ, µ) denote the subclass of A(n) consisting of f
which satisfy the inequality

∣∣∣∣∣
1

τ

[
(1− µ)

Ã−j−rf(z)

z
+ µ

(
Ã−j−rf(z)

)′

− 1

]∣∣∣∣∣ < α (z ∈ U) (12)

where j ∈ N, 0 ≤ r ≤ 1, τ ∈ C\ {0} , 0 < α ≤ 1 and 0 ≤ µ ≤ 1.

In this paper, we obtain the coefficient inequalities, inclusion relations, neigh-
borhood properties, partial sums and integral means of the subclasses Mj(r, α,
τ) and Rj(r, α, τ, µ).

2. Coefficient Inequalities for Classes Mj(r, α, τ) and Rj(r, α, τ, µ)

Theorem 2.1. Let f ∈ A(n). Then f ∈ Mj(r, α, τ) if and only if

∞∑

k=n+1

ϕk (r, α, τ) ak ≤ 1 (13)

where

ϕk (r, α, τ) =
Γ
(
3+r
2

)
Γ
(
2k+1−r

2

)

Γ
(
3−r
2

)
Γ
(
2k+1+r

2

)
(
k − 1 + α |τ |

kjα |τ |

)
(14)

for j ∈ N, 0 ≤ r ≤ 1, τ ∈ C\ {0} and 0 < α ≤ 1.

Proof. Let f ∈ A(n). Then, by (11) we can write

<






z
[
Ã−j−rf(z)

]′

Ã−j−rf(z)
− 1





> −α |τ | (z ∈ U) . (15)

Using (2) and (10), we have,

<






−
∞∑

k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

[k − 1] akz
k

z −
∞∑

k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

akzk





> −α |τ | (z ∈ U) . (16)
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Since (16) is true for all z ∈ U , choose values of z on the real axis. Letting
z → 1, through the real values, the inequality (16) yields the desired inequality

∞∑

k=n+1

Γ
(
3+r
2

)
Γ
(
2k+1−r

2

)

Γ
(
3−r
2

)
Γ
(
2k+1+r

2

)
kj

[k − 1 + α |τ |] ak ≤ α |τ | .

Conversely, supposed that inequality (13) holds true and |z| = 1. We obtain

∣∣∣∣∣∣∣

z
[
Ã−j−rf(z)

]′

Ã−j−rf(z)
− 1

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣

∞∑
k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

[k − 1] akz
k

z −
∞∑

k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

akzk

∣∣∣∣∣∣∣∣

≤

∞∑
k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

[k − 1]ak

1−
∞∑

k=n+1

Γ( 3+r
2 )Γ( 2k+1−r

2 )
Γ( 3−r

2 )Γ( 2k+1+r
2 )kj

ak

≤ α |τ | .

Hence, by the maximum modulus theorem, we have f ∈ Mj(r, α, τ), which
establishes the required result.

Theorem 2.2. Let f ∈ A(n). Then f ∈ Rj(r, α, τ, µ) if and only if

∞∑

k=n+1

ψk (r, α, τ, µ) ak ≤ 1 (17)

where

ψk (r, α, τ, µ) =
Γ
(
3+r
2

)
Γ
(
2k+1−r

2

)

Γ
(
3−r
2

)
Γ
(
2k+1+r

2

)
(
1 + µ (k − 1)

kjα |τ |

)
(18)

for j ∈ N, 0 ≤ r ≤ 1, τ ∈ C\ {0} , 0 < α ≤ 1 and 0 ≤ µ ≤ 1.

Proof. We omit the proofs since it is similar to Theorem 2.1.

3. Inclusion Relations Involving Nn,δ(e) of the Classes Mj(r, α, τ)
and Rj(r, α, τ, µ)

Theorem 3.1. If

δ =
(n+ 1)

j+1
α |τ |

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )

(n+ α |τ |)
(|τ | < 1) (19)

then Mj(r, α, τ) ⊂ Nn,δ (e) .
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Proof. Let f ∈ Mj(r, α, τ). By Theorem 2.1, we have

Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)

j (n+ α |τ |)
∞∑

k=n+1

ak ≤ α |τ | ,

which implies

∞∑

k=n+1

ak ≤
α |τ |

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(n+ α |τ |)
. (20)

Using (13) and (20), we get

Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)j

∞∑

k=n+1

kak

≤ α |τ | +
Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)

j (1 − α |τ |)
∞∑

k=n+1

ak

≤
(n+ 1)α |τ |

n+ α |τ |
= δ.

That is,
∞∑

k=n+1

kak ≤
(n+ 1)α |τ |

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(n+ α |τ |)
= δ.

Thus, by the definition given by (4), f ∈ Nn,δ(e), which completes the proof.

Theorem 3.2. If

δ =
(n+ 1)j+1

α |τ |
Γ( 3+r

2 )Γ( 2n+3−r
2 )

Γ( 3−r
2 )Γ( 2n+3+r

2 )
(1 + µn)

(|τ | < 1) (21)

then Rj(r, α, τ, µ) ⊂ Nn,δ (e) .

Proof. For f ∈ Rj(r, α, τ, µ) and making use of the condition (17), we obtain

Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)j

(1 + µn)
∞∑

k=n+1

ak ≤ α |τ |

so that
∞∑

k=n+1

ak ≤
α |τ |

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(1 + µn)
. (22)
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Thus, using (17) along with (22), we also get

µ
Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)

j

∞∑

k=n+1

kak

≤ α |τ | + (µ− 1)
Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)j

∞∑

k=n+1

ak

≤ α |τ | + (µ− 1)
Γ
(
3+r
2

)
Γ
(
2n+3−r

2

)

Γ
(
3−r
2

)
Γ
(
2n+3+r

2

)
(n+ 1)

j

α |τ |

(1 + µn)
Γ( 3+r

2 )Γ( 2n+3−r
2 )

Γ( 3−r
2 )Γ( 2n+3+r

2 )(n+1)j

Hence,
∞∑

k=n+1

kak ≤
(n+ 1)α |τ |

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(1 + µn)
= δ

which in view of (4), completes the proof of theorem.

4. Neighborhood Properties for the Classes Mη
j (r, α, τ)

and R
η
j (r, α, τ, µ)

Definition 4.1. For 0 ≤ η < 1 and z ∈ U , a function f ∈ Mη
j (r, α, τ) if there

exists a function g ∈ Mj(r, α, τ) such that
∣∣∣∣
f(z)

g(z)
− 1

∣∣∣∣ < 1− η. (23)

For 0 ≤ η < 1 and z ∈ U , a function f ∈ Rη
j (r, α, τ, µ) if there exists a function

g ∈ Rj(r, α, τ, µ) such that the inequality (23) holds true.

Theorem 4.2. If g ∈ Mj(r, α, τ) and

η = 1−
δ (n+ α |τ |)

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j+1

(n+ α |τ |)
Γ( 3+r

2 )Γ( 2n+3−r
2 )

Γ( 3−r
2 )Γ( 2n+3+r

2 )(n+1)j
− α |τ |

(24)

then Nn,δ (g) ⊂ Mη
j (r, α, τ).

Proof. Let f ∈ Nn,δ (g) . Then,

∞∑

k=n+1

k |ak − bk| ≤ δ, (25)

which yields the coefficient inequality,

∞∑

k=n+1

|ak − bk| ≤
δ

n+ 1
(n ∈ N).
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Since g ∈ Mj(r, α, τ) by (20), we have

∞∑

k=n+1

bk ≤
α |τ |

(n+ α |τ |)
Γ( 3+r

2 )Γ( 2n+3−r
2 )

Γ( 3−r
2 )Γ( 2n+3+r

2 )(n+1)j

, (26)

and so

∣∣∣∣
f(z)

g(z)
− 1

∣∣∣∣ <

∞∑
k=n+1

|ak − bk|

1−
∞∑

k=n+1

bk

≤
δ

n+ 1

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(n+ α |τ |)

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j

(n+ α |τ |)− α |τ |

= 1− η.

Thus, by definition, f ∈ Mη
j (r, α, τ) for η given by (24), which establishes the

desired result.

Theorem 4.3. If g ∈ Rj(r, α, τ, µ) and

η = 1−
δ (1 + µn)

Γ( 3+r
2 )Γ( 2n+3−r

2 )
Γ( 3−r

2 )Γ( 2n+3+r
2 )(n+1)j+1

(1 + µn)
Γ( 3+r

2 )Γ( 2n+3−r
2 )

Γ( 3−r
2 )Γ( 2n+3+r

2 )(n+1)j
− α |τ |

(27)

then Nn,δ (g) ⊂ Rη
j (r, α, τ, µ).

Proof. We omit the proof since it is similar to Theorem 4.2.

5. Partial Sums for the Classes Mj(r, α, τ) and Rj(r, α, τ, µ)

Following the earlier works by Silverman [29] and others (see [12, 13, 28, 30]), in
this section we investigate the ratio of real parts of functions involving (2) and
their sequence of partial sums defined by

f1(z) = z; (28)

fm(z) = z −
m∑

k=n+1

akz
k (n ∈ N)

and determine sharp lower bounds for

<

{
f(z)

fm(z)

}
, <

{
fm(z)

f(z)

}
, <

{
f ′(z)

f ′
m(z)

}
and <

{
f ′
m(z)

f ′(z)

}
.
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Firstly, we obtain partial sums for the class Mj(r, α, τ).

Theorem 5.1. If f of the form (2) satisfies condition (13), then

<

{
f(z)

fm(z)

}
≥ 1−

1

ϕm+n+1 (r, α, τ)
, (29)

<

{
fm(z)

f(z)

}
≥

ϕm+n+1 (r, α, τ)

ϕm+n+1 (r, α, τ) + 1
(30)

where ϕm+n+1 (r, α, τ) is given by (14). The results are sharp for every m, with
the extremal function given by

f(z) = z −
1

ϕm+n+1 (r, α, τ)
zm+1. (31)

Proof. In order to prove (29), it is sufficient to show that

ϕm+n+1 (r, α, τ)

[
f(z)

fm(z)
−

(
1−

1

ϕm+n+1 (r, α, τ)

)]
≺

1 + z

1− z
, (32)

for z ∈ U . We can write

ϕm+n+1 (r, α, τ)

[
f(z)

fm(z)
−

(
1−

1

ϕm+n+1 (r, α, τ)

)]

= ϕm+n+1 (r, α, τ)




1−
∞∑

k=n+1

akz
k−1

1−
m∑

k=n+1

akzk−1

−

(
1−

1

ϕm+n+1 (r, α, τ)

)



=
1 + w(z)

1 + w(z)
.

Then

w(z) =

−ϕm+n+1 (r, α, τ)
∞∑

k=m+n+1

akz
k−1

2− 2
m∑

k=n+1

akzk−1 − ϕm+n+1 (r, α, τ)
∞∑

k=m+n+1

akzk−1

.

Notice that w(0) = 0 and

|w(z)| ≤

ϕm+n+1 (r, α, τ)
∞∑

k=m+n+1

ak

2− 2
m∑

k=n+1

ak − ϕm+n+1 (r, α, τ)
∞∑

k=m+n+1

ak

.
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Now, |w(z)| < 1 if and only if

2ϕm+n+1 (r, α, τ)

∞∑

k=m+n+1

ak ≤ 2− 2

m∑

k=n+1

ak,

which is equivalent to

m∑

k=n+1

ak + ϕm+n+1 (r, α, τ)

∞∑

k=m+n+1

ak ≤ 1. (33)

In view of (13), this is equivalent to showing that

m∑

k=n+1

(ϕk (r, α, τ)−1)ak +

∞∑

k=m+n+1

(ϕk (r, α, τ)−ϕm+n+1 (r, α, τ)) ak ≥ 0. (34)

To see that the function f given by (31) gives the sharp result, we observe for
z = re2πi/m that

f(z)

fm(z)
= 1−

1

ϕm+n+1 (r, α, τ)
zm → 1−

1

ϕm+n+1 (r, α, τ)

where r → 1−.

This completes the proof of (29).

The proof of (30) is similar to (29) and will be omitted.

Theorem 5.2. If f of the form (2) satisfies condition (13), then

<

{
f ′(z)

f ′
m(z)

}
≥ 1−

m+ 1

ϕm+n+1 (r, α, τ)
, (35)

<

{
f ′
m(z)

f ′(z)

}
≥

ϕm+n+1 (r, α, τ)

ϕm+n+1 (r, α, τ) +m+ 1
(36)

where ϕm+n+1 (r, α, τ) is given by (14). The results are sharp for every m, with
the extremal function given by (31).

Proof. In order to prove (35), it is sufficient to show that

ϕm+n+1 (r, α, τ)

m+ 1

[
f ′(z)

f ′
m(z)

−

(
1−

m+ 1

ϕm+n+1 (r, α, τ)

)]
≺

1 + z

1− z
, (37)

for z ∈ U . We can write

ϕm+n+1 (r, α, τ)

m+ 1

[
f ′(z)

f ′
m(z)

−

(
1−

m+ 1

ϕm+n+1 (r, α, τ)

)]

=
ϕm+n+1 (r, α, τ)

m+ 1




1−
∞∑

k=n+1

kakz
k−1

1−
m∑

k=n+1

kakzk−1

−

(
1−

m+ 1

ϕm+n+1 (r, α, τ)

)



=
1 + w(z)

1 + w(z)
.
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Then

w(z) =

−ϕm+n+1(r,α,τ)
m+1

∞∑
k=m+n+1

kakz
k−1

2− 2
m∑

k=n+1

kakzk−1 − ϕm+n+1(r,α,τ)
m+1

∞∑
k=m+n+1

kakzk−1

.

Obviously w(0) = 0 and

|w(z)| ≤

ϕm+n+1(r,α,τ)
m+1

∞∑
k=m+n+1

kak

2− 2
m∑

k=n+1

kak −
ϕm+n+1(r,α,τ)

m+1

∞∑
k=m+n+1

kak

.

Now, |w(z)| < 1 if and only if

2
ϕm+n+1 (r, α, τ)

m+ 1

∞∑

k=m+n+1

kak ≤ 2− 2

m∑

k=n+1

kak,

which is equivalent to

m∑

k=n+1

kak +
ϕm+n+1 (r, α, τ)

m+ 1

∞∑

k=m+n+1

kak ≤ 1. (38)

In view of (13), this is equivalent to showing that

m∑

k=n+1

(ϕk (r, α, τ)−k)ak+
∞∑

k=m+n+1

(
ϕk(r, α, τ)−

ϕm+n+1 (r, α, τ)

m+ 1
k

)
ak ≥ 0. (39)

Thus, we have completed the proof of (35).

The proof of (36) is similar to (35) and is omitted.

Finally, we get partial sums for the class Rj(r, α, τ, µ).

Theorem 5.3. If f of the form (2) satisfies condition (17), then

<

{
f(z)

fm(z)

}
≥ 1−

1

ψm+n+1 (r, α, τ, µ)
, (40)

<

{
fm(z)

f(z)

}
≥

ψm+n+1 (r, α, τ, µ)

ψm+n+1 (r, α, τ, µ) + 1
(41)

where ψm+n+1 (r, α, τ, µ) is given by (18). The results are sharp for every m,
with the extremal function given by (31).

Proof. The proof of Theorem 5.3 is similar to Theorem 5.1 and is omitted.
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Theorem 5.4. If f of the form (2) satisfies condition (17), then

<

{
f ′(z)

f ′
m(z)

}
≥ 1−

m+ 1

ψm+n+1 (r, α, τ, µ)
, (42)

<

{
f ′
m(z)

f ′(z)

}
≥

ψm+n+1 (r, α, τ, µ)

ψm+n+1 (r, α, τ, µ) +m+ 1
(43)

where ψm+n+1 (r, α, τ, µ) is given by (18). The results are sharp for every m,
with the extremal function given by (31).

Proof. The proof of Theorem 5.4 is similar to Theorem 5.2 and is omitted.

6. Integral Means for the Classes Mj(r, α, τ) and Rj(r, α, τ, µ)

The following subordination result due to Littlewood [19] will be required in our
investigation. The integral means of analytic functions was studied in [14], [24]
and [26].

Lemma 6.1. If f and g are analytic in U with f(z) ≺ g(z), then

2π∫

0

∣∣f
(
reiθ

)∣∣ρ dθ ≤
2π∫

0

∣∣g
(
reiθ

)∣∣ρ dθ

where ρ > 0, z = reiθ and 0 < r < 1.

First, we obtain integral means for the class Mj(r, α, τ) using Lemma 6.1.

Theorem 6.2. Let ρ > 0. If f ∈ Mj(r, α, τ) is given by (2) and f2(z) is defined
by

f2(z) = z −
1

ϕn+2 (r, α, τ)
z2

where ϕm+n+1 (r, α, τ) is defined by (14), then for z = reiθ and 0 < r < 1, we
have

2π∫

0

|f (z)|ρ dθ ≤

2π∫

0

|f2(z)|
ρ
dθ. (44)

Proof. For function f of the form (2) is equivalent to proving that

2π∫

0

∣∣∣∣∣1−
∞∑

k=n+1

akz
k−1

∣∣∣∣∣

ρ

dθ ≤

2π∫

0

∣∣∣∣1−
1

ϕn+2 (r, α, τ)
z

∣∣∣∣
ρ

dθ.
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By Lemma 6.1, it suffices to show that

1−
∞∑

k=n+1

akz
k−1 ≺ 1−

1

ϕn+2 (r, α, τ)
z.

Setting

1−
∞∑

k=n+1

akz
k−1 = 1−

1

ϕn+2 (r, α, τ)
w(z). (45)

From (45) and (13), we obtain

|w(z)| =

∣∣∣∣∣

∞∑

k=n+1

ϕn+2 (r, α, τ) akz
k−1

∣∣∣∣∣ ≤ |z|
∞∑

k=n+1

ϕn+2 (r, α, τ) ak

≤ |z|
∞∑

k=n+1

ϕm+n+1 (r, α, τ) ak ≤ |z|

which completes the proof.

Finally, we have integral means for the class Rj(r, α, τ, µ) using Lemma 6.1.

Theorem 6.3. Let ρ > 0. If f ∈ Rj(r, α, τ, µ) is given by (2) and f2(z) is defined
by

f2(z) = z −
1

ψn+2 (r, α, τ, µ)
z2

where ψm+n+1 (r, α, τ, µ) is defined by (18), then for z = reiθ and 0 < r < 1, we
have

2π∫

0

|f (z)|ρ dθ ≤

2π∫

0

|f2(z)|
ρ
dθ. (46)

Proof. The proof of Theorem 6.3 is similar to Theorem 6.2 and is omitted.
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