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Abstract. This paper concerns the behavior of semigroups with set valued mappings.

By using the notion of set-valued mapping T , we introduce the notion of a T
−-

rough(T+-rough) semigroup on an approximation space and study some of its prop-

erties. Also, we define the notion of a T
−-rough(T+-rough) ideal based on an up-

per(lower)approximation space and several properties are investigated.
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1. Introduction

In 1981, the concept of a rough set was originally proposed by Pawlak [15] as a
formal tool for modelling and processing incomplete information in information
systems. Since then this subject has been investigated in many papers, and
subsequently the algebraic approach to rough sets has been studied by some
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authors (see [2, 3, 13, 16, 17]). The theory of rough set is an extension of
set theory, in which a subset of a universe is described by a pair of ordinary
sets called the lower and upper approximations. A key notion in the Pawlak
rough set model is the equivalence relation. The equivalence classes are the
building blocks for the construction of the lower and upper approximations.
The lower approximation of a given set is the union of all equivalence classes
which are subsets of the set and the upper approximation is the union of all
equivalence classes which have a non-empty intersection with the set. However,
equivalence relations are too respective for many applications; for instance, in
existing databases, the values of attributes could be either symbolic or real-
valued. Rough set theory would have difficulty in handling such values. It is a
natural question to ask what happens if we substitute the universe set with an
algebraic system.

Some authors have studied the algebraic properties of rough sets. Biswas and
Nanda [2] introduced the notion of a rough subgroup. Kuroki in [13], introduced
the notion of a rough ideal in a semigroup. Mordeson [14] used covers of the
universal set to define an approximation operator on the power set of the given
set. Estaji et al. [8] considered connection between a rough set and lattice
theory and they introduced the concepts of upper and lower ideals (filters) in
a lattice. Also, Estaji et al. in [9] introduced the notion of θ-upper and θ-
lower approximations of a fuzzy subset of the lattice. Davvaz [3, 4] concerned
a relationship between a rough set and ring theory and considered a ring as a
universal set and introduced the notion of a rough ideal and a rough subring with
respect to an ideal of a ring [7]. Kazanci et al. [12] introduced the notions of a
rough prime (primary) ideal and a rough fuzzy prime (primary) ideal in a ring
and gave some properties of such ideals. Rough modules have been investigated
by Davvaz et al. in 2006 [5].

Davvaz in 2008 introduced the concept of a T -rough set and a T -rough homo-
morphism in a group [6], which is a generalization of ordinary homomorphism.
Then using the definitions of lower and upper inverses, he introduced the def-
inition of uniform set-valued homomorphism and proved that every set-valued
homomorphism is uniform. In [17], the concepts of a set-valued and a strong
set-valued homomorphism of a ring are introduced and related properties are
investigated. Also, the notions of generalized lower and upper approximation
operators, constructed by means of a set-valued mapping, which is a generaliza-
tion of the notion of lower and upper approximations of a ring, are provided.
Also, Hosseini [11, 10] defined the concept of a T -rough semigroup and a T -rough
commutative ring by using the definitions of lower and upper approximations.

In [1], Bagirmaz et al. introduced rough semigroup, which extends the notion
of a semigroup to include the algebraic structures of a rough set. The concept
was introduced in [1] depends on the upper approximation and does not depend
on the lower approximation. The main purpose of this paper, is to introduce
a T−-rough(T+-rough) semigroup, which extends the notion of a semigroup to
include two algebraic structures of T−-rough(T+-rough) sets. Also, we obtain
some properties of approximations and these algebraic structures. In fact, in this
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paper, we define the notion of T−-rough(T+-rough) semigroups which depends
on upper(lower) approximation.

2. Preliminaries

The following definitions and preliminaries are required in the sequel of the work
and hence presented in brief. Let U be a non-empty set. It is important to recall
that an equivalence relation Θ on a set U is a reflexive, symmetric and transitive
binary relation on U . Each equivalence relation Θ on U induces a partition P
of U whose classes have form [x]Θ = {y ∈ U | xΘy}. Conversely, each partition
P induces an equivalence relation Θ on U by setting xΘy ⇔ x and y are in the
same set of P .

A pair (U,Θ) where U 6= ∅ and Θ is an equivalence relation on U is called
an approximation space [15]. Let (U,Θ) be an approximation space. Given
an arbitrary set X ⊆ U , it may be impossible to describe a precisely using
the equivalence classes of Θ. In this case one may characterize X by pair of
approximations:

Apr(X ) = {x ∈ U : [x]Θ ⊆ X} and Apr(X ) = {x ∈ U : [x]Θ ∩X 6= ∅}.

Apr(X ) and Apr(X ) are called lower rough approximation and upper rough
approximation of X , respectively [15]. Given an approximation space (U,Θ)
a pair (A,B) in P∗(U) × P∗(U) is called a rough set in (U,Θ) if (A,B) =
(Apr(X ),Apr(X )) for some X ∈ P∗(U). A subset X of U is called definable if

Apr(X ) = Apr(X ).

Definition 2.1. [6] Let U,W be two nonempty sets and X ⊆ W . Let T : U −→
P∗(W ) be a set-valued mapping where P∗(W ) denotes the set of all nonempty
subsets of W. Then, (U,W, T ) is called a T -approximation space. The lower
inverse and upper inverse of X under T are defined by

X := T−(X ) = {u ∈ U | T (u) ∩X 6= ∅},

X := T+(X ) = {u ∈ U | T (u) ⊆ X}.

Also, for any x ∈ X, we set x := {x} and x := {x}.

Moreover, we set

T [A] =
⋃

a∈A

T (a), ∀a ⊆ A.

For the sake of illustration we consider the following example.

Example 2.2. Let U = {x, y, z, t} and W = {a, b, c}. Consider set-valued func-
tion T : U −→ P∗(W ) defined by

T (x) = {b}, T (y) = {a, c}, T (z) = {b}, T (t) = {a, b, c}.
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Then,

T−({a}) = {y, t}; T+({a}) = ∅;
T−({b}) = {x, z, t}; T+({b}) = {x, z};
T−({c}) = {y, t}; T+({c}) = ∅;
T−({a, b}) = {x, z, y, t}; T+({a, b}) = {x, z};
T−({a, c}) = {y, t}; T+({a, c}) = {y};
T−({b, c}) = {x, z, y, t}; T+({b, c}) = {x, z};
T−({a, b, c}) = {x, z, y, t}; T+({a, b, c}) = {x, z, y, t}.

Lemma 2.3. [6] Let U,W be two non-empty sets and T : U −→ P∗(W ) be a
set-valued mapping. If X,Y are two non-empty subsets of Y , then following
statements hold:

(1) T−(X ∪ Y ) = T−(X ) ∪ T−(Y );

(2) T+(X ∩ Y ) = T+(X ) ∩ T+(Y );

(3) X ⊆ Y implies T−(X ) ⊆ T−(Y );

(4) X ⊆ Y implies T+(X ) ⊆ T+(Y );

(5) T+(X ) ∪ T+(Y ) ⊆ T+(X ∪ Y );

(6) T−(X ∩ Y ) ⊆ T−(X) ∩ T−(Y ).

The following example shows that for every X ⊆ W, it is in general not the
case that X ⊆ T [T−(X)].

Example 2.4. Let U = {x, y, z} and W = {a, b, c, d} be two sets. Let T :
U −→ P∗(W ) be a set valued mapping, where T (x) = {a, c}, T (y) = {a} and
T (z) = {d}. If X = {a, b}, we have T−(X) = {x, y} and T [T−(X)] = {a, c}.
Then, X * T [T−(X)].

3. T−-Rough Semigroup Based on Upper Approximation Space

In this section we introduce the notion of a T−-rough semigroup (T−-rough
subsemigroup) on an approximation space and study some of its properties. We
also introduce the notion of a T−-rough ideal and then some types of T−-rough
ideals on an approximation space are investigated.

Definition 3.1. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a set-valued mapping. A subset S of W
is called a T−-rough semigroup provided the following properties are satisfied:

(1) for all x, y ∈ S, x ∗ y ∈ T [S].

(2) for all x, y, z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z).



T
−-Rough(T+-Rough) Ideals 467

Let U,W, T be a T -approximation space and ∗ be a binary operation defined
on W . Let S be a T−-rough semigroup. We say e is a T -rough left identity if for
any y ∈ S, we have e ∗ y = y. Similarly, e is a T -rough right identity of S, if for
any y ∈ S, we have y ∗ e = y. If e is both a T -rough left and right identity in S,
then e is called a T -rough identity of S. A T−-rough semigroup is a T−-rough
monoid, if it has a T -rough identity. In particular, the identity of a T−-rough
monoid is unique. T−-rough monoid G is a T−-rough group, if every x ∈ G has
an inverse x−1 ∈ G such that x−1 ∗ x = e = x ∗ x−1, where e is the identity
element.

Definition 3.2. Let (U,W, T ) be a T -approximation space and ∗ be a binary
operation defined on W .

(1) A non-empty subset H of a T−-rough semigroup S is called a T−-rough
subsemigroup of a T−-rough semigroup S if H ∗H ⊆ T [H].

(2) A non-empty subset I of a T−-rough semigroup S is called a T−-rough left
(resp. right) ideal of S if S ∗ I ⊆ T [I] (resp. I ∗ S ⊆ T [I]).

(3) A non-empty subset B of a T−-rough semigroup S is called a T−-rough
bi-ideal ideal of S if B ∗ S ∗B ⊆ T [B].

(4) A nonempty subset H of a T−-rough semigroup S is called to a T−-rough
prime ideal of S if for all a, b ∈ S and a ∗ b ∈ T [H], then a ∈ H or b ∈ H.

Definition 3.3. Let U, W be two non-empty sets and T : U −→ P∗(W ) be a set-
valued mapping. T is a covering set-valued mapping if for every X ⊆ P∗(W ),
there exists Y ⊆ U such that X ⊆ T [Y ].

Proposition 3.4. Let U,W be two non-empty sets and T : U −→ P∗(W ) be a set-
valued mapping. Let X be a non-empty subset of W . The following properties
are equivalent:

(1) T is a covering set-valued mapping;

(2) for every x ∈ W, x 6= ∅;

(3) if X ⊆ P∗(W ), then X ⊆ T [X].

Proof. (1)⇒(2) Let a ∈ W and a = ∅. By definition of a, there exists no u ∈ U
such that a ∈ T (u). Hence, T is not a covering set-valued mapping.

(2)⇒(3) Let x ∈ X and x 6= ∅. Then, there exists ux ∈ U , such that
x ∈ T (ux). It follows that x ∈ X ∩ T (ux). Hence, X ⊆ T [X].

(3)⇒(1) Let X ⊆ P∗(W ). Since X ⊆ T [X], it follows that there exists
Y ⊆ X ⊆ U such that X ⊆ T [Y ]. Hence, T is a set-valued mapping covering of
W .

Proposition 3.5. Let U , W be two non-empty sets and T : U −→ P∗(W ) be a
covering set-valued mapping. If X is a non-empty subset of W , then T [X] ⊆ X.
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Proof. Let x ∈ T [X]. Then there exists u ∈ X such that x ∈ T (u). So, T (u) ⊆ X
and x ∈ X .

Proposition 3.6. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a covering set-valued mapping and
S ⊆ W . Then,

(1) If S is a (subsemigroup) semigroup, then S is a T−-rough (subsemigroup)
semigroup.

(2) If I is a left (right, two sided, bi) ideal of semigroup S, then I is a T−-rough
left (right, two sided, bi) ideal of T−-rough semigroup S.

Proof. (1) Let S be a (subsemigroup) semigroup. Then, S ∗ S ⊆ S. Since T is
a covering set-valued mapping, by Proposition 3.4, it follows that S ⊆ T [S]. So,
we obtain S ∗ S ⊆ T [S] and hence S is a T−rough (subsemigroup) semigroup.

(2) Suppose that I is a left (right, two sided, bi) ideal of semigroup S. Since
S ∗ I ⊆ I and T is a covering set-valued mapping, by Proposition 3.4, it follows
that I ⊆ T [I]. This yields that S ∗ I ⊆ T [I].

Proposition 3.7. Let U and W be two non-empty sets and ∗ be a binary operation
defined on W . If any semigroup is a T−-rough semigroup, then T : U −→ P∗(W )
is a covering set-valued mapping.

Proof. According to Proposition 3.4 we show that, for every a ∈ W , a 6= ∅.
Assume that a ∈ W and a = ∅. Set S = {ak | k = 1, ..., n}. Since W is a finite
set, it follows that S is a finite subset. Since S is easily seen to be a semigroup,
it follows that S is a T−-rough semigroup. On the other hand, we show that S
is not a T−-rough semigroup and this is a contradiction. Since a = ∅, it follows
that there exists no u ∈ U such that a ∈ T (u). Thus, there is no u ∈ U such
that a ∗ an = a ∈ T (u). Consequently, a ∗ an /∈ T [S] and S is not a T−-rough
semigroup.

Example 3.8. Let U = {x, y, z} andW = {a, b, c, d} be two sets and ∗ be a binary
operation defined on W and W be with the following multiplication table: Let

∗ a b c d
a a b a b
b a b a b
c c d c d
d c d c d

T : U −→ P∗(W ) be a set valued mapping where, T (x) = {a}, T (y) = {a, b} and
T (z) = {d}. Set S = {a, b}. Hence, we have S = {x, y} and so T [S] = {a, b}. So,
we conclude that S is a T−-rough semigroup. But T is not a covering set-valued
mapping, since c = ∅.
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The following examples shows that the covering in Prop. 3.6 can not be
removed.

Example 3.9. Let U = {x, y, z} and W = {a, b, c, d} be two sets, ∗ be a binary
operation defined on W and W be with the following multiplication table:

∗ a b c d
a a b a b
b a b a b
c c a c d
d c a c d

Let T : U −→ P∗(W ) be a set valued mapping where T (x) = {a, c}, T (y) =
{a, b} and T (z) = {d}. So T is a covering set-valued setting. Set I = {a, b}.
Then, I is not an ideal. Since I = {x, y}, it follows that T [I] = {a, b, c} and I is
a T−-rough ideal.

Example 3.10. Let U = {x, y, z} and S = W = {a, b, c, d, e} be two sets with the
following multiplication table: Let T : U −→ P∗(W ) be a set valued mapping

∗ a b c d
a a b a b
b a b a b
c c d c d
d c d c d

where, T(x)={a,c}, T (y) = {a} and T(z)={d}. So, S is a semigroup and a T−-
rough semigroup. Set B = {a, b}. Then, B is a bi-ideal of S. Also, B = {x, y}
and T [B] = {a, c}. So, B ∗S ∗B = {a, b} and B ∗S ∗B * T [B]. Hence, B is not
a T−-rough bi-ideal of S.

The following example shows that a T−-rough semigroup is not a semigroup
in general.

Example 3.11. Let T : R −→ R ∪ {−∞,∞} be a set-valued mapping such that
T (x) = {x} ∪ {∞} for any x ∈ R. Let S = Q and x ∗ y = x/y for any x ∈ Q.
We show that (S, ∗) is a T−-rough semigroup which is not a semigroup. For this
purpose, we have T [Q] = T {a ∈ R : T (a)∩Q 6= ∅}. Then, T [Q] = T {a ∈ R : a ∈
Q} = Q ∪ {∞}. Hence, x ∗ y = x/y ∈ T [Q] for any x, y ∈ Q. It is equivalent to
that S is a T−-rough semigroup, but a ∗ 0 = a/0 /∈ Q, so S is not a semigroup.

The following example shows that a T−-rough ideal is not a ideal in general.
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Example 3.12. Let T : R −→ R ∪ {−∞,∞} be a set-valued mapping such that
T (x) = Q for x ∈ R. Let S = Q and x ∗ y = x.y for any x ∈ Q. Then we show
that I = Z ( Q is a T−-rough ideal which is not an ideal. For this purpose, we
have T [I] = T [Z] = T {a ∈ R : T (a) ∩ Z 6= ∅}. Then, T [Z] = T {a ∈ R : Q ∩ Z 6=
∅} = R. Thus x ∗ y = x.y ∈ T [Z] for any x, y ∈ Z. It is equivalent to that I is a
T−-rough ideal, but a/b ∗ c = a.c/b /∈ Z, so I is not an ideal.

Proposition 3.13. Let (U,W, T ) be a T -approximation space and ∗ be a binary
operation defined on W . If H1 and H2 are two T−-rough subsemigroups and
T [H1 ∩H2] = T [H1] ∩ T [H2], then H1 ∩H2 is a T−-rough subsemigroup.

Proof. Suppose that H1 and H2 are two T−-rough subsemigroups of a T−-
rough semigroup S. Consider x, y ∈ H1 ∩ H2. Since H1 and H2 are two T−-
rough subsemigroups, it follows that x ∗ y ∈ T [H1] and x ∗ y ∈ T [H2], i.e.
x ∗ y ∈ T [H1] ∩ T [H2]. Assuming T [H1 ∩H2] = T [H1] ∩ T [H2], we have x ∗ y ∈
T [H1 ∩H2]. Hence, we conclude that H1 ∩H2 is a T−-rough subsemigroup.

Proposition 3.14. Let (U,W, T ) be a T -approximation space and ∗ be a binary
operation defined on W . Let I1 and I2 be two T−-rough left (right, two sided)
ideals of T−-rough semigroup S. If I1 and I2 are two T−-rough left (right, two
sided) ideals and T [I1 ∩ I2] = T [I1]∩T [I2], then I1∩I2 is a T−-rough left (right,
two sided) ideal.

Proof. Let I1 and I2 be two T−rough left ideals of T−-rough semigroup S. Let
x ∈ S and y ∈ I1 ∩ I2. Then, x ∗ y ∈ T [I1] ∩ T [I2]. Assuming T [I1 ∩ I2] =
T [I1] ∩ T [I2], we have x ∗ y ∈ T [I1 ∩ I2]. Hence, I1 ∩ I2 is a T−-rough left ideal
of S. Similarly, I1 ∩ I2 is a T−-rough right ideal of S.

4. T−-Rough Prime Ideals

In this section we introduce the notion of a T−-rough prime ideal and and several
properties are investigated.

Definition 4.1. Let U,W be non-empty sets and ∗ be a binary operation defined
on W . Let T : U −→ P∗(W ) be a set-valued homomorphism. A T−-rough ideal
H is called a T−-rough prime ideal of a T−-rough semigroup S if for all a, b ∈ S
and a ∗ b ∈ T [H] implies a ∈ H or b ∈ H.

The following example shows that a prime ideal is not a T−-rough prime
ideal in general.

Example 4.2. Let U = W = {a, b, c, d, e} be a non-empty set with the mul-
tiplication table (see Tab. 1). Let T : U −→ P∗(W ) and T (x) = [x]R
and R = {E1, E2, E3}, where E1 = {a, c}, E2 = {b, d} and E3 = {e}. Set
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∗ a b c d e
a a a a a a
b a b c d e
c a b c a e
d d c d d e
e c c d d e

Table 1: multiplication table

S = {a, b, c} and H = {a}. Then, H is a prime ideal of S but H is not a
T−-rough prime ideal of the T−-rough semigroup S, since T [S] = {a, b, c, d} and
T [H] = {a, c} and b ∗ c = c ∈ T [H] but b /∈ H and c /∈ H .

In the following proposition under the stronger conditions we show that a
prime ideal is a T−-rough prime ideal.

Proposition 4.3. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping. Let S ⊆ W and
T [H] = H ∗ H. If H is a prime ideal of semigroup S, then H is a T−-rough
prime ideal of T−-rough semigroup S.

Proof. Let H be a prime ideal of S and a∗ b ∈ T [H]. Hence, a∗ b ∈ H , so a ∈ H
or b ∈ H .

Proposition 4.4. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping. Then, the union
of a family of T−-rough prime ideals is a T−-rough prime ideal.

Proof. Let {Ai} be a family of T−-rough prime ideals of S, where i ranges over
an arbitrary index set I. Then, by Lemma 2.3, we have T [

⋃
i∈I Ai] =

⋃
i∈I T [Ai].

Thus, if a, b ∈ S and a ∗ b ∈ T [
⋃

i∈I Ai], we have a ∗ b ∈ T [Ai], for some i ∈ I.
Then, a ∈ Ai or b ∈ Ai and so a ∈

⋃
i∈I Ai or b ∈

⋃
i∈I Ai. Therefore,

⋃
i∈I Ai

is a T−-rough prime ideal of T−-rough semigroup S.

In general, the intersection of T−-rough prime ideals is not a T−-rough prime
ideal, as is shown in the following proposition:

Proposition 4.5. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping. Let {Ai | i ∈ I}
be a set of T−-rough prime ideals of S and T [

⋂
i∈I Ai] =

⋂
i∈I T [Ai]. Then,⋂

i∈I Ai is a T−-rough prime ideal of S if and only if it is a T−-rough prime
ideal of the union of the given ideals.
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Proof. The sufficiency being obvious, we proceed to prove the necessity. Let
{Ai | i ∈ I} be a set of T−-rough prime ideals of S.

Let
⋂

i∈I Ai be a T−-rough prime ideal of
⋃

i∈I Ai. Let x, y ∈ S and x ∗ y ∈

T [
⋂

i∈I Ai]. If x /∈
⋂

i∈I T [Ai] then there exists a T [Aj] and j ∈ J such that

x /∈ T [Aj]. Hence, x /∈ T [Aj] ∩ T [Ak] = T [Aj ∩ Ak]. But x ∗ y ∈ T [
⋂

i∈I Ai] ⊆

T [Aj ∩ Ak] and Aj and Ak are T−-rough prime ideals, where x ∈ Aj and y ∈ Ak.
Then, x, y ∈ Aj ∪Ak ⊆

⋃
i∈I Ai. Since

⋂
i∈I Ai is a T−-rough prime in

⋃
i∈I Ai,

whence either x ∈
⋂

i∈I Ai or y ∈
⋂

i∈I Ai. Hence,
⋂

i∈I Ai is T−-rough prime
ideal of T−-rough semigroup S.

5. T
+-Rough Semigroup Based on Lower Approximation Space

In this section we introduce the notion of a T+-rough semigroup (T+-rough
subsemigroup) on an approximation space and study some of its properties. We
also introduce the notion of a T+-rough ideal and then some types of T+-rough
ideals on an approximation space are investigated.

Definition 5.1. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a set-valued mapping. A subset S of W
is called a T+-rough semigroup provided the following properties are satisfied:

(1) for all x, y ∈ S, x ∗ y ∈ T [S].

(2) for all x, y, z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z).

Let U,W, T be a T -approximation space and ∗ be a binary operation defined
on W . Let S be a T+-rough semigroup. We say e is a T -rough left identity if for
any y ∈ S, we have e ∗ y = y. Similarly, e is a T -rough right identity of S, if for
any y ∈ S, we have y ∗ e = y. If e is both a T -rough left and right identity in S,
then e is called a T -rough identity of S. A T+-rough semigroup is a T+-rough
monoid, if it has a T -rough identity. In particular, the identity of a T+-rough
monoid is unique. T+-rough monoid G is a T+-rough group, if every x ∈ G has
an inverse x−1 ∈ G such that x−1 ∗ x = e = x ∗ x−1, where e is the identity
element.

Definition 5.2. Let (U,W, T ) be a T -approximation space and ∗ be a binary
operation defined on W .

(1) A non-empty subset H of a T+-rough semigroup S is called a T+-rough
subsemigroup of a T+-rough semigroup S if H ∗H ⊆ T [H].

(2) A non-empty subset I of a T+-rough semigroup S is called a T+-rough left
(resp. right) ideal of S if S ∗ I ⊆ T [I] (resp. I ∗ S ⊆ T [I]).

(3) A non-empty subset B of a T+-rough semigroup S is called a T+-rough
bi-ideal ideal of S if B ∗ S ∗B ⊆ T [B].

(4) A nonempty subset H of a T+-rough semigroup S is called to a T+-rough
prime ideal of S if for all a, b ∈ S and a ∗ b ∈ T [H], then a ∈ H or b ∈ H.
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Definition 5.3. Let U, W be two non-empty sets and T : U −→ P∗(W ) be a set-
valued mapping. T is a covering set-valued mapping if for every X ⊆ P∗(W ),
there exists Y ⊆ U such that X ⊆ T [Y ].

Proposition 5.4. Let U , W be two non-empty sets and T : U −→ P∗(W ) be a
set-valued mapping. If X is a non-empty subset of W , then T [X] ⊆ X.

Proof. Let x ∈ T [X]. Then there exists u ∈ X such that x ∈ T (u). So, T (u) ⊆ X
and x ∈ X .

Proposition 5.5. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a set-valued mapping and S ⊆ W .
Then,

(1) If S is a T+-rough (subsemigroup) semigroup, then S is a (subsemigroup)
semigroup.

(2) If I is a T+-rough left (right, two sided, bi) ideal of T+-rough semigroup
S, then I is a left (right, two sided, bi) ideal of semigroup S.

Proof. (1) Let S be a T+-rough (subsemigroup) semigroup. Then, S ∗S ⊆ T [S].
By Proposition 5.4, S ∗ S ⊆ S and hence S is a (subsemigroup) semigroup.

(2) Suppose that I is a T+-rough left (right, two sided, bi) ideal of T+-rough
semigroup S. Since S ∗ I ⊆ T [I] and by Proposition 5.4, we have S ∗ I ⊆ I and
hence I is a left (right, two sided, bi) ideal of S.

In general, X * T [X] for every X ⊆ P∗(W ). In the following proposition
under the stronger condition we show that X ⊆ T [X].

Proposition 5.6. Let U,W be two non-empty sets and T : U −→ P∗(W ) be a
set-valued mapping. Let X be a non-empty subset of W . Then, the following
properties are equivalent:

(1) X =
⋃
T (ux), for some ux ∈ U , for every X ⊆ P∗(W ).

(2) if X ⊆ P∗(W ), X ⊆ T [X].

Proof. (1)⇒(2) Let x ∈ X . Since there exists ux ∈ U such that x ∈ T (ux) and
T (ux) ⊆ X , it follows that x ∈ T (ux) and ux ∈ X. Hence, X ⊆ T [X].

(2)⇒(1) It is clear.

Example 5.7. Let U = {x, y, z} andW = {a, b, c, d} be two sets and ∗ be a binary
operation defined on W and W be with the multiplication table (see Tab. 2):
Let T : U −→ P∗(W ) be a set valued mapping where, T (x) = {a}, T (y) = {a, c}
and T (z) = {d}. Set S = {a, b}. It is clear that S is a semigroup. We show
that S is not a T+-rough semigroup. Since S = {x}, it follows that T [S] = {a}.
Consequently, S is not a T+-rough semigroup.
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∗ a b c d
a a b a b
b a b a b
c c d c d
d c d c d

Table 2: multiplication table

Proposition 5.8. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a surjective set-valued mapping such
that range T is the set of all one point subset of W . Then x 6= ∅ for every
w ∈ W .

Proof. We argue by contradiction. Assume that x = ∅. By definition of x, there
exists no ux ∈ U such that T (ux) = x. Hence, T is not surjective.

Proposition 5.9. Let U,W be two non-empty sets and ∗ be a binary operation
defined on W . Let T : U −→ P∗(W ) be a set-valued mapping such that X =⋃
T (ux), for some ux ∈ U , for every X ⊆ P∗(W ) and S ⊆ W . Then,

(1) If S is a (subsemigroup) semigroup, then S is a T+-rough(subsemigroup)
semigroup.

(2) If I is a left (right, two sided, bi) ideal of semigroup S, then I is a T+-rough
left (right, two sided, bi) ideal of T+-rough semigroup S.

Proof. (1) Let S be a (subsemigroup) semigroup. Then, S ∗ S ⊆ S. By Propo-
sition 5.6, S ∗ S ⊆ T [S] and hence S is a T+-rough (subsemigroup) semigroup.

(2) Suppose that I is a left (right, two sided, bi) ideal of T+-rough semigroup
S. Since S ∗ I ⊆ I and by Proposition 5.6, we have S ∗ I ⊆ T [I] and hence I is
a T+-rough left (right, two sided, bi) ideal of S.

Example 5.10. Let U = {x, y, z} and S = W = {a, b, c, d, e} be two sets with
the following multiplication table:

∗ a b c d
a a b a b
b a b a b
c c d c d
d c d c d

Let T : U −→ P∗(W ) be a set valued mapping where, T(x)={a,c}, T (y) =
{a} and T(z)={d}. So, S is a semigroup and a T+-rough semigroup. Set
B = {a, b}. Then, B is a bi-ideal of S. Also, B = {y} and T [B] = {a}.
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So, B ∗S ∗B = {a, b} and B ∗S ∗B * T [B]. Hence, B is not a T+-rough bi-ideal
of S.

Proposition 5.11. Let (U,W, T ) be a T -approximation space and ∗ be a binary
operation defined on W and X =

⋃
T (ux), for some ux ∈ U , for every X ⊆

P∗(W ). If H1 and H2 are two T+-rough subsemigroups, then H1 ∩ H2 is a
T+-rough subsemigroup.

Proof. Suppose that H1 and H2 are two T+-rough subsemigroups of a T+-
rough semigroup S. Consider x, y ∈ H1 ∩ H2. Since H1 and H2 are two T+-
rough subsemigroups, it follows that x ∗ y ∈ T [H1] and x ∗ y ∈ T [H2], i.e.
x∗y ∈ T [H1]∩T [H2] ⊆ H1∩H2. Then, by Proposition 5.6,H1∩H2 ⊆ T [H1 ∩H2]
and x ∗ y ∈ T [H1 ∩H2]. Hence, we conclude that H1 ∩ H2 is a T+-rough
subsemigroup.

Proposition 5.12. Let (U,W, T ) be a T -approximation space ∗ be a binary opera-
tion defined on W , X =

⋃
T (ux), for some ux ∈ U , for every X ⊆ P∗(W ). Let

I1 and I2 be two T+-rough left (right, two sided) ideals of T+-rough semigroup
S. If I1 and I2 are two two T+-rough left (right, two sided) ideals, then I1 ∩ I2
is a T+-rough left (right, two sided) ideal.

Proof. Let I1 and I2 be two T−rough left ideals of T+-rough semigroup S. Let
x ∈ S and y ∈ I1 ∩ I2. Then, x ∗ y ∈ T [I1]∩T [I2] ⊆ I1 ∩ I2. Then, by Prop. 5.6,
x ∗ y ∈ T [I1 ∩ I2]. Hence, I1 ∩ I2 is a T+-rough left ideal of S. Similarly, I1 ∩ I2
is a T+-rough right ideal of S.

6. T+-Rough Prime Ideals

In this section we introduce the notion of a T+-rough prime ideal and and several
properties are investigated.

Definition 6.1. Let U,W be non-empty sets and ∗ be a binary operation defined
on W . Let T : U −→ P∗(W ) be set-valued homomorphism. A T+-rough ideal
H is called a T+-rough prime ideal of a T+-rough semigroup S if for all a, b ∈ S
and a ∗ b ∈ T [H] implies a ∈ H or b ∈ H.

Proposition 6.2. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping. Let S ⊆ W . If H
is a prime ideal of semigroup S, then H is a T+-rough prime ideal of T+-rough
semigroup S.

Proof. Let H be a prime ideal of semigroup S and a∗b ∈ T [H]. Hence, a∗b ∈ H ,
so a ∈ H or b ∈ H .
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Example 6.3. Let U = {x, y, z} andW = {a, b, c, d} be two sets and ∗ be a binary
operation defined on W and W be with the multiplication table (see Tab. 3).
Let T : U −→ P∗(W ) be a set valued mapping where T (x) = {a, c}, T (y) = {a}

∗ a b c d
a a a a a
b a b a b
c a c c d
d a a c d

Table 3: multiplication table

and T (z) = {d}. Set I = {a, b}. Then, I is not an ideal. Since I = {y}, it
follows that T [I] = {a} and I is a T+-rough ideal.

Proposition 6.4. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping. Let {Ai | i ∈ I}
be a set of T+-rough prime ideals of S. Then,

⋂
i∈I Ai is a T+-rough prime ideal

of T+-rough semigroup S if and only if it is a T+-rough prime ideal of the union
of the given ideals.

Proof. Let {Ai} be a family of T+-rough prime ideals of S, where i ranges over
an arbitrary index set I. If a, b ∈ S and a ∗ b ∈ T [

⋂
i∈I Ai], it is clear we have

a ∗ b ∈
⋂

i∈I T [Ai] and a ∗ b ∈
⋂

i∈I Ai. Then, by Proposition 6.2,
⋂

i∈I Ai is a
T+-rough prime ideal of T+-rough semigroup S.

In general, the union of T+-rough prime ideals is not a T+-rough prime ideal
but under the stronger conditions show that the union of a family of T+-rough
prime ideals is a T+-rough prime ideal.

Proposition 6.5. Let U,W be two nonempty sets and ∗ be a binary operation
defined on W and T : U −→ P∗(W ) be a set-valued mapping and X =

⋃
T (ux),

for some ux ∈ U , for every X ⊆ P∗(W ). Then, the union of a family of T+-
rough prime ideals is a T+-rough prime ideal.

Proof. Let {Ai} be a family of T+-rough prime ideals of S, where i ranges over
an arbitrary index set I. Thus, if a, b ∈ S and a ∗ b ∈ T [

⋃
i∈I Ai], we have

a ∗ b ∈ T [Ai], for some i ∈ I. Since X =
⋃
T (ux), for some ux ∈ U , for every

X ⊆ P∗(W ). Then, by Proposition 6.2,
⋃

i∈I Ai is a T+-rough prime ideal of
T+-rough semigroup S.
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