Southeast Asian Bulletin of Mathematics © SEAMS. 2023

Some Variants of the Rothberger Property Using Generalized Open Sets*

Gaurav Kumar, Brij K. Tyagi and Sumit Mittal

Department of Mathematics, University of Delhi, Delhi, India

Email: gaurav.maths.du9419@gmail.com; sumitmittal1105@gmail.com; brijkishore.tyagi@gmail.com

Received 26 July 2021 Accepted 9 December 2021

Communicated by W.S. Cheung

AMS Mathematics Subject Classification(2020): 54D20, 54A10, 54C08, 54D10

Abstract. We define and study new weak versions of the classical star-Rothberger covering property using α -open and θ -open sets of a topological space. We discuss their relations with some known weak version of the Rothberger property. It is also proved that for an extremally disconnected S-paracompact- T_2 space the properties: Rothberger [25, 28], semi-Rothberger [26], α -Rothberger [14], θ -Rothberger [14] are equivalent. Moreover, for an extremely disconnected space the θ -Rothberger property coincides with the almost Rothberger [29] property.

Keywords: Star-selection principles; Star-Rothberger and Rothberger property; θ -continuity; S-paracompact space.

1. Introduction

Throughout this paper a space X or (X, \mathcal{T}) , means a topological space. A space X is called Menger [9, 22] if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of X there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$ such that for every $k \in \mathbb{N}$, \mathcal{B}_k is a nite subset of \mathcal{A}_k such that $\bigcup_{k \in \mathbb{N}} \mathcal{B}_k$ is a cover of X. Then evidently every Menger space is Lindelöf. In 1938, Rothberger [25, 28] introduced the Rothberger property: for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of X there is a sequence $(\mathcal{A}_k : k \in \mathbb{N})$

^{*}The rst and second author acknowledges the fellowship grant of University Grant Commission, India and Council of Scientific & Industrial Research, India, respectively.

such that for each $k \in \mathbb{N}$, A_k is a member of \mathcal{A}_k , and $\{A_k : k \in \mathbb{N}\}$ is an open cover of X. The Rothberger property is stronger than the Menger property. In 1996, Scheepers [28] associated the selection principles to the Ramsey and game theories and after this paper selection principles became a more attractive area of topology. In 1999 Kočinac [10] generalized the Rothberger property using the star operator and defined the star-Rothberger property. For detailed study related to weak version of the Menger and Rothberger properties, we refer to [30, 13, 11, 16, 12, 15].

In 2019, Kočinac [14] studied α -Rothberger and θ -Rothberger properties using α -open, θ -open sets, respectively. Continuing this thread we further study the α -Rothberger and θ -Rothberger properties and also introduces their starversion.

The paper is organized as follows. Section 2 contains some known results used in the paper. Section 3 contains the equivalence of the Rothberger, semi-Rothberger, α -Rothberger, θ -Rothberger properties together with characterization of the α -Rothberger property. In Section 4 we introduce the star- α -Rothberger and star θ -Rothberger properties using α -open and θ -open sets and also discuss their relations to some known covering properties. We further, investigate the behaviour of the star α -Rothberger and star θ -Rothberger properties under the various types of maps. In Section 5, we define the strongly star α -Rothberger, strongly star θ -Rothberger properties and show that these are not hereditary properties but the strongly star α -Rothberger property is preserved under open- F_{σ} subspaces.

2. Preliminiaries

For a subset A of a space X, Cl(A) or \overline{A} and Int(A) denotes the closure and interior of A, respectively. The generalizations of open sets, θ -open, α -open, semi-open sets in X will be used for the definitions of variations of the Rothberger property:

A subset A of a space X is said to be:

- (1) θ -open if for each $x \in A$ there is an open set $B \subset X$ such that $x \in B \subset Cl(B) \subset A$ [31];
- (2) α -open if $A \subset Int(Cl(Int(A)))$, or equivalently, if $A = B \setminus N$, where B is open and N is a nowhere dense set in X [23], or equivalently, if there is an open set B such that $B \subset A \subset Int(Cl(B))$. The complement of α -open set is α -closed. Equivalently, a set A is α -closed in X if $Cl(Int(Cl(A))) \subseteq A$.
- (3) semi-open if there exists an open set $B \subset X$ such that $B \subset A \subset Cl(B)$, or equivalently, if $A \subset Cl(Int(A))$ [17]. SO(X) denotes the set of all semi-open sets. The complement of a semi-open sets in X is called semiclosed. sCl(A) denotes the semi-closure of $A \subset X$, that is sCl(A) is the intersection of all semi-closed sets containing A. The set A is semi-closed if and only if sCl(A) = A.

Clearly, we have:

 θ -open \Rightarrow open $\Rightarrow \alpha$ -open \Rightarrow semi-open.

A space X is called semi-regular [4] if for each $x \in X$ and for each semi-closed set U not containing x, there exist disjoint semi-open subsets A and B of X such that $x \in A$ and $U \subset B$.

Lemma 2.1. [4] For a space X the following statements are equivalent:

- (1) X is semi-regular;
- (2) For each $x \in X$ and $A \in SO(X)$ such that $x \in A$, there is a $B \in SO(X)$ such that $x \in B \subset sCl(B) \subset A$.

Recall that, a space X is called extremally disconnected if the closure of each open set in X is open.

Lemma 2.2. [24] If X is extremally disconnected, then sCl(A) = Cl(A) for all $A \in SO(X)$.

A space X is called S-paracompact [1] if for each open cover of X has a locally finite semi-open refinement.

Lemma 2.3. [1] A S-paracompact- T_2 space X is semi-regular.

Lemma 2.4. [8] Let A be a subset of X. Then $Int(Cl(A)) \subset sCl(A)$.

Jankovic [8], proved that a space X is extremally disconnected if and only if for all $A \in SO(X)$, $A \subset Int(Cl(A))$.

A map $f: X \to Y$ from a space X to a space Y is called:

- (1) α -continuous [21] (α -irresolute [20]) if the preimage of any open (α -open) subset of Y is α -open in X.
- (2) α -open (strongly α -open) if the image of any α -open subset of X is α -open (open) in Y.
- (3) θ -continuous [6, 7] (resp., strongly θ -continuous [19]) if for each $x \in X$ and each open set B of Y containing f(x) there exists an open set A of Xcontaining x such that $f(Cl(A)) \subset Cl(B)$ (resp., $f(Cl(A)) \subset B$).

3. The θ -Rothberger Spaces and α -Rothberger Spaces

In this section we will show that for the class of an extremally disconnected Sparacompact- T_2 spaces the Rothberger [25, 28], semi-Rothberger [26], θ -Rothberger [14], α -Rothberger [14] properties are equivalent. Moreover, we prove that for an extremally disconnected spaces the θ -Rothberger [14] property is equivalent to the almost Rothberger [29] property. Also a characterization of the α -Rothberger property is given.

A space X is called semi-Rothberger [26], in short s-Rothberger (resp., θ -Rothberger [14], α -Rothberger [14]) if for each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) of semiopen (resp., θ -open, α -open) covers of X there is a sequence ($\mathcal{A}_k : k \in \mathbb{N}$), where $\mathcal{A}_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} \mathcal{A}_k = X$.

Evidently, the following implications hold:

s-Rothberger $\Rightarrow \alpha$ -Rothberger $\Rightarrow \beta$ -Rothberger.

A space has semi-Rothberger property means it is a semi-Rothberger space and so on throughout the paper.

Remark 3.1. We observe that for the class of regular spaces, open set is equivalent to θ -open set. Therefore, for the class of regular spaces the Rothberger property is equivalent to the θ -Rothberger property.

Next, we show that the Rothberger property is not equivalent to the θ -Rothberger property.

Example 3.2. There is a θ -Rothberger space X, which is not Rothberger.

Consider $U = \{u_{\alpha} : \alpha < \omega_1\}, V = \{v_i : i \in \omega\}$ and $W = \{\langle u_{\alpha}, v_i \rangle : i \in \omega\}$ $\alpha < \omega_1, i \in \omega$, where ω, ω_1 are the rst innite cardinal and the rst uncountable cardinal, respectively. Let $X = W \cup U \cup \{x\}$ where x is not a member of $W \cup U$. We topologize X as follows: for $u_{\alpha} \in U$ for each $\alpha < \omega_1$ the basic neighborhood takes of the form $A_{u_{\alpha}}(i) = \{u_{\alpha}\} \cup \{\langle u_{\alpha}, v_j \rangle : j \geq i\}, i \in \omega$, the basic neighborhood of a point x takes of the form $A_x(\alpha) = \{x\} \cup \bigcup \{\langle u_{\beta}, v_i \rangle : \beta > \alpha, i \in \omega\},\$ $\alpha < \omega_1$ and each point of W is isolated. From the construction of topology on X, the subset $\{u_{\alpha} : \alpha < \omega_1\}$ of X is an uncountable discrete closed set of X. Thus X is not a Lindelöf space. Hence X is not Rothberger, because every Rothberger space is Lindelöf. We will show X is a θ -Rothberger space. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. For fixed k = 1, there exists an $A_1 \in \mathcal{A}_1$ such that $x \in A_1$. As A_1 is θ -open, there is an open set A'_1 with $x \in A'_1 \subset \overline{A'_1} \subset A_1$. Again by the construction of topology on X, there is a $\beta < \omega_1$ such that $A_x(\beta) \subseteq A'_1, \overline{A_x(\beta)} \subseteq \overline{A'_1}$, this implies that the set $\{u_{\alpha} : \alpha > \beta\} \cup \{x\} \cup \{\langle u_{\alpha}, v_i \rangle : \alpha > \beta, i \in \omega\} \subseteq \overline{A'_1} \subset A_1$. Moreover the subset $Y = \bigcup_{\alpha \leq \beta} (u_{\alpha} \cup \{ < u_{\alpha}, v_i >: i \in \omega \})$ is countable. We can enumerate Y as $\{y_k : k \in \mathbb{N}\}$. Thus we can find $A_{k+1} \in \mathcal{A}_{k+1}$ such that $y_k \in A_{k+1}$, for each $k \in \mathbb{N}$. Thus we have a sequence $(A_k : k \in \mathbb{N})$ with $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$ such that $\bigcup_{k \in \mathbb{N}} A_k = X$. Hence X is θ -Rothberger.

Example 3.3. There is a Rothberger space which is not α -Rothberger.

Let X be an uncountable set and A is a xed nite subset of X. Then $\mathcal{T} = \{\phi, A, X\}$ form a topology on X. Clearly the space X is Rothberger. We note that sets of the forms $A \cup \{p\}, p \in X \setminus A$, are α -open. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a

sequence of α -open covers of X, where $\mathcal{A}_k = \{A \cup \{p\} : p \in X \setminus A\}$ for each $k \in \mathbb{N}$. Hence the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ witness of X is not an α -Rothberger space because α -open cover \mathcal{A}_k does not have a countable subcover.

The Rothberger property is not equivalent to the α -Rothberger property. However, for the class of an extremally disconnected S-paracompact- T_2 spaces these properties are equivalent.

Theorem 3.4. Let X be a Rothberger extremally disconnected S-paracompact- T_2 space. Then X is semi-Rothberger.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of semi-open covers of X. For each $x \in X$ there exists a $B_{k,x} \in SO(X)$ such that $x \in B_{k,x} \subset sCl(B_{k,x}) \subset A_k$ for some $A_k \in \mathcal{A}_k$, because S-paracompact- T_2 space is semi-regular. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of semi-open covers of X, where $\mathcal{B}_k = \{B_{k,x} : x \in X\}$. As X is extremally disconnected, $B \subset Int(Cl(B))$ for each $B \in SO(X)$. Let $\mathcal{C}_k = \{Int(Cl(B)) : B \in \mathcal{B}_k\}$. Then $(\mathcal{C}_k : k \in \mathbb{N})$ is a sequence of open covers of X. Since X is Rothberger space, there exists a sequence $(C_k : k \in \mathbb{N})$, where $C_k \in \mathcal{C}_k$ for each $k \in \mathbb{N}$ such that $\bigcup_{k \in \mathbb{N}} C_k = X$. Using Lemma 2.4, for each C_k there exists an $A_{C_k} \in \mathcal{A}_k$ such that $C_k \subset A_{C_k}$. Hence we can construct a sequence $(A_{C_k} : k \in \mathbb{N})$ with $C_k \subset A_{C_k}$ for each k, such that $\bigcup_{k \in \mathbb{N}} A_{C_k} = X$.

We can not drop the condition of extremal disconnectedness in Theorem 3.3. Consider the real line \mathbb{R} . Since the real line \mathbb{R} is T_2 -paracompact, therefore \mathbb{R} is *S*-paracompact- T_2 . But the real line \mathbb{R} is not semi-Rothberger since it is not semi-Menger [27]. On the other hand, the real line \mathbb{R} is a Rothberger space.

Al-zoubi [1], has shown that an extremally disconnected S-paracompact- T_2 space is regular. For the regular spaces, Rothberger property is equivalent to the θ -Rothberger property. We have the following corollary:

Corollary 3.5. For an extremally disconnected S-paracompact- T_2 space X, the following statements are equivalent:

- (1) X is semi-Rothberger;
- (2) X is α -Rothberger;
- (3) X is Rothberger;
- (4) X is θ -Rothberger.

In the next theorem, a characterization of the α -Rothberger spaces is given.

Theorem 3.6. For a space X, the following statements are equivalent:

- (1) X is α -Rothberger;
- (2) For each non-empty subset Y of X and each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of α open sets in X such that $\overline{Y} \subset \bigcup \mathcal{A}_k$ for each $k \in \mathbb{N}$, there exists a sequence $(A_k : k \in \mathbb{N}), A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, with $Y \subset \bigcup_{k \in \mathbb{N}} A_k$.

Proof. (2) \Rightarrow (1) Obvious. (1) \Rightarrow (2). Let Y be a non-empty subset of X and $(\mathcal{A}_k : k \in \mathbb{N})$ a sequence of α -open sets in X such that $\overline{Y} \subset \cup \mathcal{A}_k$ for each $k \in \mathbb{N}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of α -open covers of X, where $\mathcal{B}_k = \mathcal{A}_k \cup \{X \setminus \overline{Y}\}$ for each $k \in \mathbb{N}$. As X is α -Rothberger, there exists a sequence $(B_k : k \in \mathbb{N})$, where $B_k \in \mathcal{B}_k$ for each $k \in \mathbb{N}$ such that $\bigcup_{k \in \mathbb{N}} B_k = X$. Then clearly, $Y \subset \bigcup_{k \in \mathbb{N}} B_k \setminus \{X \setminus \overline{Y}\}$.

Now, we will show that for an extremally disconnected spaces the θ -Rothberger property is equivalent to the well known almost-Rothberger property.

A space X is called almost Rothberger [29] if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of X there exists a sequence $(A_k : k \in \mathbb{N}), A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$ such that $\bigcup_{k \in \mathbb{N}} \overline{A_k} = X$.

Clearly, the almost Rothberger property implies the θ -Rothberger property.

Theorem 3.7. For an extremally disconnected space X, the following statements are equivalent:

- (1) X is θ -Rothberger;
- (2) For each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of θ -open covers of X there is a sequence $(A_k : k \in \mathbb{N})$, where for each $k \in \mathbb{N}$, $A_k \in \mathcal{A}_k$ such that $\bigcup_{k \in \mathbb{N}} \overline{A_k} = X$;
- (3) X is almost-Rothberger.

Proof. (1) \Rightarrow (2). Obvious. (2) \Rightarrow (1). Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. For each $A_k \in \mathcal{A}_k$ and for each $x \in A_k$ there is an open set B_x such that $x \in B_x \subset \overline{B_x} \subset A_k$. As X is an extremally disconnected, so $\overline{B_x}$ is θ -open. Put $\mathcal{B}_k = \{\overline{B_x} : x \in A_k\}$. Then $(\mathcal{C}_k : k \in \mathbb{N})$ is a sequence of θ -open covers of X, where $\mathcal{C}_k = \bigcup_{A_k \in \mathcal{A}_k} \mathcal{B}_k$ for each $k \in \mathbb{N}$. By the assumption there exists a sequence $(C_k : k \in \mathbb{N})$, $C_k \in \mathcal{C}_k$ such that $\bigcup_{k \in \mathbb{N}} \overline{C_k} = X$. From the above construction, for each C_k there is an $A_k \in \mathcal{A}_k$ such that $\overline{C_k} \subset A_k$. The sequence $(\mathcal{A}_k : k \in \mathbb{N})$ such that $\overline{C_k} \subset A_k$ for each $k \in \mathbb{N}$ is witness for the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ means X is θ -Rothberger.

 $(2) \Rightarrow (3)$. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of X. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of θ -open covers of X, where for each $k \in \mathbb{N}$, $\mathcal{B}_k = \{\overline{A} : A \in \mathcal{A}_k\}$. So, there is a sequence $(B_k : k \in \mathbb{N})$, $B_k \in \mathcal{B}_k$, such that $\bigcup_{k \in \mathbb{N}} \overline{B_k} = X$. Then the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ where $\overline{\mathcal{A}_k} = B_k$ is witness for the sequence $(\mathcal{A}_k : k \in \mathbb{N})$. That means the space X is an almost Rothberger.

 $(3)\Rightarrow(2).$ Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. Then for each $x \in X$ and for each $k \in \mathbb{N}$, there exists an open set $B_{k,x}$ such that $x \in B_{k,x} \subset \overline{B_{k,x}} \subset A_k$ for some $A_k \in \mathcal{A}_k$. Put $\mathcal{B}_k = \{B_{k,x} : x \in X\}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of open covers of X. Since X is an almost Rothberger space, there exists a sequence $(B_k : k \in \mathbb{N})$ with $B_k \in \mathcal{B}_k$ such that $\bigcup_{k \in \mathbb{N}} \overline{B_k} = X$. For each B_k there is an $A_k \in \mathcal{A}_k$, such that $\overline{B_k} \subset A_k$. Then we have a sequence $(A_k : k \in \mathbb{N})$, where $\overline{B_k} \subset A_k$, for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} \overline{A_k} = X$.

Caldas et al. [2] introduced an α -closure operator, denoted by $Cl_{\alpha}(A)$. For

a subset A of a space X, $Cl_{\alpha}(A)$ is intersection of all α -closed sets containing A. We define a class of space using the α -closure operator.

Definition 3.8. A space X is called almost α -Rothberger if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of α -open covers of X, there is a sequence $(A_k : k \in \mathbb{N})$, where $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $X = \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$.

Clearly, each α -Rothberger space is almost α -Rothberger.

Theorem 3.9. If a space X has a dense subset which is α -Rothberger in X, then X is almost α -Rothberger.

Proof. Let D be an α -Rothberger dense subset of X and $(\mathcal{A}_k : k \in \mathbb{N})$ a sequence of α -open covers of X. Since D is α -Rothberger in X, for each $k \in \mathbb{N}$, there exists an $A_k \in \mathcal{A}_k$, such that $D \subset \bigcup_{k \in \mathbb{N}} A_k \subset \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$. Since D is dense in X, so X is only α -closed set containing D. Then, we have $Cl_\alpha(D) = Cl(D)$. Hence $X = \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$, because $Cl_\alpha(\bigcup_{k \in \mathbb{N}} A_k) = \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$.

Corollary 3.10. Every seperable space is almost α -Rothberger.

In Example 3.2, the space X is not α -Rothberger. On the other hand, X is separable space. Hence X is an almost α -Rothberger space.

Recall that, a subset A of a space X is α -regular open, if $\operatorname{Int}_{\alpha}(\operatorname{Cl}_{\alpha}(A)) = A$.

Theorem 3.11. A space X is an almost α -Rothberger if and only if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of α -regular open covers of X, there exists a sequence $(A_k : k \in \mathbb{N})$, $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $X = \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$.

Proof. The forward part is obvious.

Conversely, let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of α -open covers of X. Then for each $k \in \mathbb{N}$, $\mathcal{B}_k = \{Int_\alpha(Cl_\alpha(A_k)) : A_k \in \mathcal{A}_k\}$ is a α -regular open cover of X. From the assumption, we have a sequence $(Int_\alpha(Cl_\alpha(A_k)) : k \in \mathbb{N})$, where for each $k \in \mathbb{N}$, $Int_\alpha(Cl_\alpha(A_k))$ is a member of \mathcal{B}_k such that $X = \bigcup_{k \in \mathbb{N}} Cl_\alpha(Int_\alpha(Cl_\alpha(A_k)))$. We note that $Cl_\alpha(Int_\alpha(Cl_\alpha(A_k))) \subseteq Cl_\alpha(A_k)$. Therefore, $X = \bigcup_{k \in \mathbb{N}} Cl_\alpha(A_k)$. Hence X is an almost α -Rothberger space.

Theorem 3.12. An α -continuous image of an almost α -Rothberger space is almost-Rothberger.

Proof. Consider an α -continuous map $f: X \to Y$ from an almost α -Rothberger space X onto a space Y. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of Y. From the α -continuity of f, $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of α -open covers of X, where $\mathcal{B}_k = (f^{-1}(A) : A \in \mathcal{A}_k)$ for each $k \in \mathbb{N}$. Since X is an almost α -Rothberger, there exists a sequence $(f^{-1}(A_k) : k \in \mathbb{N})$, where $f^{-1}(A_k) \in \mathcal{B}_k$ such that $X = \bigcup_{k \in \mathbb{N}} Cl_{\alpha}(f^{-1}(A_k))$. Again from the α -continuity of $f, Y \subset \bigcup_{k \in \mathbb{N}} Cl(A_k)$. Thus Y is an almost Rothberger space.

Since each continuous map is α -continuous, we have the following corollary:

Corollary 3.13. The continuous image of an almost α -Rothberger space is almost Rothberger.

Remark 3.14. Velicko [31] introduced the θ -closure operator, it is denoted by $Cl_{\theta}(A)$. For a subset A of a space X, $Cl_{\theta}(A) = \{x \in X: \text{ for each neighbourhood } U \text{ of } x, Cl(U) \cap A \neq \phi\}$. It is interesting to dene and investigate the following two classes of spaces. A space X is said to be almost θ -Rothberger (resp., weakly θ -Rothberger) if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of θ -open covers of X there is a sequence $(A_k : k \in \mathbb{N})$, where for each $k, A_k \in \mathcal{A}_k$ such that $X = \bigcup_{k \in \mathbb{N}} Cl_{\theta}(A_k)$ (resp., $X = Cl_{\theta}(\bigcup_{k \in \mathbb{N}} A_k)$. Observe that θ -Rothberger space is almost θ -Rothberger, almost θ -Rothberger.

4. The Star α -Rothberger Spaces and Star θ -Rothberger Spaces

In this section we generalize the star semi-Rothberger [26], (star-Rothberger [10]) properties and introduce the star α -Rothberger (star θ -Rothberger) properties, respectively. We prove that for an extremally disconnected S-paracompact- T_2 spaces the star-Rothberger [10], star semi-Rothberger [26], star θ -Rothberger, star α -Rothberger properties are equivalent. We also characterize the star α -Rothberger property as well as see behavior of these properties under the various types of maps.

A space X is called star semi-Rothberger in short SsR [26], (resp., star-Rothberger or SR [10]) if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of semi-open (resp., open) covers of X there is a sequence $(A_k : k \in \mathbb{N})$ for each $k, A_k \in \mathcal{A}_k$ such that $\bigcup_{k\in\mathbb{N}} St(A_k, \mathcal{A}_k) = X$, where $St(A_k, \mathcal{A}_k) = \bigcup \{A \in \mathcal{A}_k : A \cap A_k \neq \phi\}$.

In the similar way, we define two classes of spaces.

Definition 4.1. A space X is called star α -Rothberger in short $S_{\alpha}R$ (resp., star θ -Rothberger or $S_{\theta}R$) if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of α -open (resp., θ -open) covers of X there is a sequence $(A_k : k \in \mathbb{N})$, $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k) = X$.

Then we have the following implications:

$$SsR \Rightarrow S_{\alpha}R \Rightarrow SR \Rightarrow S_{\theta}R.$$

Presently, the authors do not know whether the reverse implications are true. But note that the α -Rothberger space is star α -Rothberger, but converse need not be true. Example 4.2. There is a star α -Rothberger space which is not α -Rothberger.

Let X be an uncountable space with the topology $\mathcal{T} = \{X, \phi, \{a\}\}$, where a is a fixed point of X. Note that each subset of X containing point a is α -open. Then $\mathcal{A} = \{\{a, x\} : x \in X\}$ is an α -open cover of X, but \mathcal{A} does not contain a countable subcover. Thus the space X cannot be α -Rothberger. On the other hand, for any α -open cover \mathcal{A} of X, we have $St(\{a\}, \mathcal{A}) = X$. Hence X is a star α -Rothberger space.

Next, a characterization of the $S_{\alpha}R$ property is given.

Theorem 4.3. For a space X, the following statements are equivalent:

- (1) X is star α -Rothberger;
- (2) For each non-empty subset Y of X and each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of α -open sets in X such that $\overline{Y} \subset \bigcup \mathcal{A}_k$ for each $k \in \mathbb{N}$, there is a sequence $(A_k : k \in \mathbb{N}), A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $Y \subset \bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k)$.

Proof. $(2) \Rightarrow (1)$ is obvious.

 $(1) \Rightarrow (2).$ Let Y be a non-empty subset of X and $(\mathcal{A}_k : k \in \mathbb{N})$ is a sequence of α -open sets of X such that for each $k \in \mathbb{N}, \overline{Y} \subset \bigcup \mathcal{A}_k$. Let $\mathcal{B}_k = \mathcal{A}_k \cup \{X \setminus \overline{Y}\}$ for each $k \in \mathbb{N}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of α -open covers of X. Since X is a star α -Rothberger space, there exists a sequence $(B_k : k \in \mathbb{N}), B_k \in \mathcal{B}_k$ for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k) = X$. Moreover, for each $y \in Y$, $y \in \bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k) \setminus \{X \setminus \overline{Y}\}$. Hence we can find a sequence $\{A_k : k \in \mathbb{N}\}$, where $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $Y \subset \bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k)$.

Theorem 4.4. A space X is star θ -Rothberger if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of closed covers of X there exists a sequence $(A_k : k \in \mathbb{N})$, where $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k) = X$.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. For each $x \in X$, there is a $A_{x,k} \in \mathcal{A}_k$ and open set $\underline{B}_{x,k}$ such that $x \in B_{x,k} \subset \overline{B}_{x,k} \subset A_{x,k}$. Then for each fixed $k \in \mathbb{N}$, $\mathcal{B}_k = \{\overline{B}_{x,k} : x \in X\}$ is a cover of X by closed sets. Then by the assumption, for each $k \in \mathbb{N}$, there is a $B_k \in \mathcal{B}_k$ such that $\bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k) = X$. Form the construction, for each $B_k \in \mathcal{B}_k$, there is an $A_k \in \mathcal{A}_k$ such that $B_k \subset A_k$. Hence the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ where $B_k \subset A_k$ for each $k \in \mathbb{N}$, is witness of the sequence $(\mathcal{A}_k : k \in \mathbb{N})$. That means X is star θ -Rothberger space.

Now, we show that for the class of extremally disconnected S-paracompact- T_2 spaces the star-Rothberger [10] and the star semi-Rothberger [26] properties are equivalent.

Theorem 4.5. Let X be an extremally disconnected S-paracompact- T_2 space. If X is star-Rothberger then X is also star semi-Rothberger.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of semi-open covers of X. Then for each $x \in X$ there exists a $B_{k,x} \in SO(X)$ such that $x \in B_{k,x} \subset sCl(B_{k,x}) \subset A$ for some $A \in \mathcal{A}_k$, being a S-paracompact- T_2 space is semi-regular. Put $\mathcal{B}_k = \{B_{k,x} : x \in X\}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of semi-open covers of X. Since the space X is an extremally disconnected, $B \subset Int(Cl(B))$ for every $B \in SO(X)$. Let $\mathcal{C}_k = \{Int(Cl(B)) : B \in \mathcal{B}_k\}$. Then $(\mathcal{C}_k : k \in \mathbb{N})$ is a sequence of open covers of X. Since X is a star-Rothberger space, there exists a sequence $(C_k : k \in \mathbb{N})$, $C_k \in \mathcal{C}_k$ for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} St(C_k, \mathcal{C}_k) = X$. By Lemma 2.4, for each $C_k \in \mathcal{C}_k$ there is an $A_{C_k} \in \mathcal{A}_k$ such that $C_k \subset A_{C_k}$. Hence we can construct a sequence $(A_k : k \in \mathbb{N})$ with $A_k \in \mathcal{A}_k$ containing C_k for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k) = X$. ■

Since an extremally disconnected S-paracompact- T_2 spaces are regular [1] and in regular spaces, θ -open sets coincide with open sets, we have the following corollary:

Corollary 4.6. For an extremally disconnected S-paracompact- T_2 space X, the following statements are equivalent:

- (1) X is star semi-Rothberger;
- (2) X is star α -Rothberger;
- (3) X is star-Rothberger;
- (4) X is star θ -Rothberger.

Let \mathcal{T}_{α} and \mathcal{T}_{θ} be the family of all α -open and θ -open sets of a space (X, \mathcal{T}) , respectively. Then \mathcal{T}_{α} and \mathcal{T}_{θ} is also forms topologies on X. Moreover $\mathcal{T} \subset \mathcal{T}_{\alpha}$ and $\mathcal{T}_{\theta} \subset \mathcal{T}$ for details, see [23, 18].

We have some interesting results related to the star α -Rothberger and star θ -Rothberger properties.

Theorem 4.7. A space (X, \mathcal{T}) is star α -Rothberger (resp., star θ -Rothberger) if and only if $(X, \mathcal{T}_{\alpha})$, (resp., $(X, \mathcal{T}_{\theta})$) is star-Rothberger.

Proof. The proof is straight forward and thus omitted.

Theorem 4.8. The star α -Rothbergerness is a semi-topological property.

Proof. Let (X, \mathcal{T}) be a star α -Rothberger space and $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ a semihomeomorphism from the space (X, \mathcal{T}) onto a space (Y, \mathcal{T}') . Then $f : (X, \mathcal{T}_{\alpha}) \to (Y, \mathcal{T}'_{\alpha})$ is a homeomorphism [3]. Since (X, \mathcal{T}) is star α -Rothberger, so $(X, \mathcal{T}_{\alpha})$ is star-Rothberger and star-Rothberger is a topological property. So $(Y, \mathcal{T}'_{\alpha})$ is star-Rothberger. Hence (Y, \mathcal{T}') is star α -Rothberger.

Now we will discuss behavior of the star α -Rothberger and the star θ -Rothberger spaces under the various types of maps.

Theorem 4.9. An α -continuous image of a star α -Rothberger space is star-Rothberger.

Proof. Let X be a star α -Rothberger space and $f: X \to Y$ be an α -continuous map from X onto a space Y. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of Y. Set $\mathcal{B}_k = \{f^{-1}(A_k) : A_k \in \mathcal{A}_k\}$, for each $k \in \mathbb{N}$. Since f is an α -continuous map, $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of α -open covers of X. As space X is an star α -Rothberger, there exists a $B_k \in \mathcal{B}_k$ such that $X = \bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k)$. Let $A_{B_k} = f(B_k), k \in \mathbb{N}$. Then the sequence $(A_{B_k} : k \in \mathbb{N})$ witness for the sequence $(\mathcal{A}_k : k \in \mathbb{N})$. That means Y is a star-Rothberger.

Similarly, we have the following theorem.

Theorem 4.10. An α -irresolute image of a star α -Rothberger space is star α -Rothberger.

Theorem 4.11. Let (X, \mathcal{T}) be a star α -Rothberger space. Then the following statements hold:

- (1) (X, \mathcal{T}) is an α -continuous image of a star-Rothberger space;
- (2) (X, \mathcal{T}) is an α -open preimage of a star-Rothberger space.

Proof. The space $(X, \mathcal{T}_{\alpha})$ is star-Rothberger because (X, \mathcal{T}) is a star α -Rothberger space. Then the identity map $1_X : (X, \mathcal{T}_{\alpha}) \to (X, \mathcal{T})$ is an α -continuous. On the other hand, $1_X : (X, \mathcal{T}) \to (X, \mathcal{T}_{\alpha})$ is an α -open map.

Theorem 4.12. A strongly θ -continuous image of a star θ -Rothberger space X is star-Rothberger.

Proof. Let $f: X \to Y$ be a strongly θ -continuous map from a star θ -Rothberger space X onto a space Y. Consider a sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of Y. For $x \in X$, $f(x) \in A_k$ for some $A_k \in \mathcal{A}_k$ for each $k \in \mathbb{N}$. By the strongly θ -continuity of f, there exists an open set $B_{x,k}$ of x such that $f(Cl(B_{x,k})) \subset A_k$. That is $f^{-1}(A_k)$ is θ -open set. Put $\mathcal{B}_k := \{f^{-1}(A) : A \in \mathcal{A}_k\}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of θ -open covers of X. Since X is a star θ -Rothberger space, there exists $B_k \in \mathcal{B}_k$ for each $k \in \mathbb{N}$, such that $X = \bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k)$. For each $k \in \mathbb{N}$, we can choose $A_k \in \mathcal{A}_k$ such that $B_k = f^{-1}(A_k)$. Then we have

$$Y = f(X) = f(\bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k)) = \bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k).$$

Hence, Y is star-Rothberger.

Theorem 4.13. An θ -continuous image of a star θ -Rothberger space X is star θ -Rothberger.

Proof. Let $f: X \to Y$ be an θ -continuous map from a star θ -Rothberger space X onto a space Y. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of Y. From

the θ -continuity of map f, $\mathcal{B}_k = \{f^{-1}(A) : A \in \mathcal{A}_k\}$ is an θ -open cover of X for each $k \in \mathbb{N}$. Using the fact that X is a star θ -Rothberger space, there exists a $B_k \in \mathcal{B}_k$ for each $k \in \mathbb{N}$, such that $X = \bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k)$. For each $k \in \mathbb{N}$ and for $B_k \in \mathcal{B}_k$, we may choose $A_k \in \mathcal{A}_k$ such that $B_k = f^{-1}(A_k)$. We have

$$Y = f(X) = f(\bigcup_{k \in \mathbb{N}} St(B_k, \mathcal{B}_k)) = \bigcup_{k \in \mathbb{N}} St(A_k, \mathcal{A}_k)$$

Hence, Y is star θ -Rothberger.

Since continuity implies θ -continuity, we have the following corollary:

Corollary 4.14. A continuous image of a star θ -Rothberger space is star θ -Rothberger.

We end this section with the following remark:

It is interesting to use the α -closure operator [2], and the θ -closure operator [31] to define and explore the following two classes of spaces. A space X is said to be almost star α -Rothberger in short AS_{α}R (resp., almost star θ -Rothberger, in short AS_{θ}R) if for each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) of α -open (resp., θ -open) covers of X there exists a sequence ($\mathcal{A}_k : k \in \mathbb{N}$) such that for each k, \mathcal{A}_k is a member of \mathcal{A}_k such that $X = \bigcup_{k \in \mathbb{N}} Cl_{\alpha}(St(\mathcal{A}_k, \mathcal{A}_k))$ (resp., $X = \bigcup_{k \in \mathbb{N}} Cl_{\theta}(St(\mathcal{A}_k, \mathcal{A}_k))$). Observe that AS_{α}R and AS_{θ}R spaces are generalizations of S_{α}R and S_{θ}R spaces, respectively.

5. The Strongly Star α -Rothberger Spaces and Strongly Star θ -Rothberger Spaces

In this section we introduce new strongly star-selection principles using the α open and θ -open sets. We further study their hereditary properties and the relation with other known spaces.

A space X is called strongly star semi-Rothberger in short SSsR [26], (resp., strongly star-Rothberger or SSR [10]) if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of semiopen (resp., open) covers of X there exists a sequence $(x_k : k \in \mathbb{N})$ of elements of X such that $\bigcup_{k \in \mathbb{N}} St(x_k, \mathcal{A}_k) = X$.

Definition 5.1. A space X is called strongly star θ -Rothberger in short $SS_{\theta}R$ (resp., strongly star α -Rothberger or $SS_{\alpha}R$) if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of θ -open (resp., α -open) covers of X there is a sequence $(x_k : k \in \mathbb{N})$ of elements of X such that $\bigcup_{k\in\mathbb{N}} St(x_k, \mathcal{A}_k) = X$

Clearly, the following implications hold:

$$SSsR \Rightarrow SS_{\alpha}R \Rightarrow SSR \Rightarrow SS_{\theta}R$$

By the similar argument as in Remark 1, for the class of regular spaces the $SS_{\theta}R$ property is equivalent to the SSR property. Here also, the authors do not know whether the reverse implications are true. But we have a class of spaces for which these properties are equivalents.

Theorem 5.2. For an extremally disconnected S-paracompact- T_2 space X, the SSR property implies the SSsR property.

Proof. The proof is almost similar to that of Theorem 4.5 and thus omitted. \blacksquare

The extremally disconnected S-paracompact- T_2 space is regular [1]. Then we have the following corollary:

Corollary 5.3. For an extremally disconnected S-paracompact- T_2 space X, the following statements are equivalent:

X is SSsR;
X is SS_αR;
X is SSR;
X is SSR;
X is SS_θR.

Theorem 5.4. A space X is $SS_{\theta}R$ if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of closed covers of X, there exists a sequence $(x_k : k \in \mathbb{N})$ of elements of X such that $\bigcup_{k \in \mathbb{N}} St(x_k, \mathcal{A}_k) = X$.

Proof. In the proof, we use the almost similar facts in Theorem 4.4. Thus the proof is omitted.

Next we will show that $SS_{\alpha}R$ property need not be hereditary.

Example 5.5. A subspace of an $SS_{\alpha}R$ space need not be $SS_{\alpha}R$.

Let x_0 be a fixed point of an uncountable set X. The family $\mathcal{T} = \{A \subset X : x_0 \notin A\} \cup \{A \subset X : X \setminus A \text{ is finite set}\}$ of subsets of X forms a topology on X, for more details see [5, Example 1.1.8]. It is easy to check that the space X is $SS_{\alpha}R$. Consider the subspace $Y = X \setminus \{x_0\}$. The one point subsets $\{x\}, x \in Y$ are α -open. Then the α -open cover $\mathcal{A} = \{\{x\} : x \in Y\}$ of Y has no countable subcover. Hence the subspace Y cannot be a $SS_{\alpha}R$ space.

Remark 5.6. Note that in Example 5.5, Y is an α -open (open) subset of X. So, the α -open (open) subspace of a SS $_{\alpha}$ R space need not be SS $_{\alpha}$ R.

Remark 5.7. Let X be a space of Example 5.5. It is also easy to check that X is a $SS_{\theta}R$ space and $Y = X \setminus \{x_0\}$ is an open subspace of X, which is not $SS_{\theta}R$. It means $SS_{\theta}R$ is not a hereditary property.

Theorem 5.8. The $SS_{\alpha}R$ property is preserved by open F_{σ} -subspaces.

Proof. Let X be a $SS_{\alpha}R$ space and $Y = \bigcup_{k \in \mathbb{N}} M_k$ an open F_{σ} -subspace of X, where each M_k is closed subset of X. Without loss of generality, we may assume $M_k \subseteq M_{k+1}$ for all $k \in \mathbb{N}$. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of α -open covers of Y. Since Y is open in X, so each α -open subset of Y is α -open in X. Then $\mathcal{B}_k = \mathcal{A}_k \cup \{X \setminus M_k\}$ is an α -open cover of X for each $k \in \mathbb{N}$. Since X is $SS_{\alpha}R$ space, there is a sequence $(x_k : k \in \mathbb{N})$ of elements of X such that $\bigcup_{k \in \mathbb{N}} St(x_k, \mathcal{B}_k) = X$. Let $C = Y \cap \{x_k : k \in \mathbb{N}\}$. Then for every $y \in Y$, there exists $k \in \mathbb{N}$ such that $y \in St(x_k, \mathcal{B}_k)$. Hence $y \in St(C, \mathcal{A}_k)$. This means Y is strongly star α -Rothberger.

Corollary 5.9. A clopen subspace of an $SS_{\alpha}R$ space is $SS_{\alpha}R$.

Recall that, for a continuous real valued function $f: X \to \mathbb{R}$ from a space X to \mathbb{R} . The set of the form $f^{-1}(\mathbb{R} \setminus \{0\})$ is called cozero-set in a space X. The cozero-set is an open F_{σ} -set. Then we have the following corollary:

Corollary 5.10. A cozero-set of an $SS_{\alpha}R$ space is $SS_{\alpha}R$.

Theorem 5.11. An α -continuous image of an $SS_{\alpha}R$ space is SSR.

Proof. The proof is almost similar to the proof of Theorem 4.9, with some suitable adjustments, thus omitted.

Theorem 5.12. An θ -continuous image of an $SS_{\theta}R$ space X is $SS_{\theta}R$.

Proof. The proof is almost similar to the proof of Theorem 4.13, with some minor changes, thus ommited.

Corollary 5.13. The continuous image of an $SS_{\theta}R$ space is $SS_{\theta}R$.

Theorem 5.14. For a space (X, \mathcal{T}) the following statements are equivalent:

- (1) (X, \mathcal{T}) is $SS_{\alpha}R$;
- (2) (X, \mathcal{T}) admits a strongly α -open bijection onto an SSR space (Y, \mathcal{T}') .

Proof. (1) \Rightarrow (2) Since (X, \mathcal{T}) is SS_{α}R space, $(X, \mathcal{T}_{\alpha})$ is SSR space. The identity map $I_X : (X, \mathcal{T}) \rightarrow (X, \mathcal{T}_{\alpha})$ is a strongly α -open bijection.

 $(2) \Rightarrow (1)$ Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a strongly α -open bijection from a space (X, \mathcal{T}) onto a SSR space (Y, \mathcal{T}') . Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of α -open covers of (X, \mathcal{T}) . Then $\mathcal{B}_k = (f(\mathcal{A}_k) : \mathcal{A}_k \in \mathcal{A}_k)$ is a sequence of open covers of Y. Choose $y_k \in Y$ such that $Y = \bigcup_{k \in \mathbb{N}} St(y_k, \mathcal{B}_k)$. Evidently, then $X = \bigcup_{k \in \mathbb{N}} St(x_k, \mathcal{A}_k)$, where $x_k = f(y_k)$.

References

- [1] K.Y. Al-zoubi, S-paracompact spaces, Acta Math. Hungar 110 (2006) 165–174.
- [2] M. Caldas, D.N. Georgiou, S. Jafari, Characterization of low separation axioms via α-open sets and α-closure operator, Bol. Soc. Paran. Math. 21 (2003) 1–14.
- [3] C. Crossley, S.K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972) 233–254.
- [4] C. Dorsett, Semi-regular spaces, Soochow J. Math. 8 (1982) 45–53.
- [5] R. Engelking, *General Topology*, Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann, Berlin, 1989.
- S.V. Fomin, Extensions of topological spaces, Doklady Akad. Nauk SSSR 32 (1941) 114–116.
- [7] S. Fomin, Extensions of topological spaces, Ann. Math. 44 (1943) 471–480.
- [8] D. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar 46 (1985) 83–92.
- [9] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers (II), *Topology Appl.* 73 (1996) 241–266.
- [10] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999) 421–431.
- [11] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999) 129-140.
- [12] Lj.D.R. Kočinac, Selected results on selection principles, In: Proc. 3rd Seminar on Geometry and Topology, Azarb. Univ. Tarbiat Moallem, Tabriz, 2004.
- [13] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (2015) 82–106.
- [14] Lj.D.R. Kočinac, Generalized open sets and selection properties, *Filomat* 33 (2019) 1485–1493.
- [15] Lj.D.R. Kočinac, Variations of classical selection principles: An overview, Quaest. Math. 43 (2020) 1121–1153.
- [16] G. Kumar, B.K. Tyagi, Weakly strongly star-Menger spaces, Cubo 23 (2021) 287– 298.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. 70 (1963) 36–41.
- [18] P.E. Long, L. Herrington, The T_{θ} -topology and faintly continuous functions, Kyungpook Math. J. **22** (1982) 7–14.
- [19] P.E. Long, L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc. 18 (1981) 21–28.
- [20] S.N. Maheshwari, S.S. Thakur, On $\alpha\text{-irresolute mappings},$ Tamkang J. Math. 11 (1980) 209–214.
- [21] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.
- [22] K. Menger, Einige überdeckungssätze der punltmengenlehre, In: Selecta Mathematica, Springer, Vienna, 1924.
- [23] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965) 961– 970.
- [24] T. Noiri, Properties of S-closed spaces, Acta Math. Hungar 35 (1980) 431–436.
- [25] F. Rothberger, Eine Verschrfung der Eigenschalft, Fund. Math. 3 (1938) 50–55.
- [26] A. Sabah, M. Khan, Semi-Rothberger and related spaces, Bull. Iranian Math. Soc. 43 (2017) 1969–1987.
- [27] A. Sabah, M. Khan, Lj.D.R. Kočinac, Covering properties defined by semi-open sets, J. Nonlinear Sci. Appl. 9 (2016) 4388–4398.
- [28] M. Scheepers, Combinatorics of open covers (I): Ramsey theory, *Topology Appl.*

69 (1996) 31–62.

- [29] M. Scheepers, Lusin sets, Proc. Amer. Math. Soc. 197 (1999) 251–257.
- [30] Y-K. Song, Remarks on almost Rothberger spaces and weakly Rothberger spaces, Quaest. Math. 38 (2015) 317–325.
- [31] N.V. Velicko, H-closed topological spaces, Mat. Sbobnik 70 (1966) 98–11; (Amer. Math. Soc. Transl. 78 (1968) 103–118).