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Abstract. We define and study new weak versions of the classical star-Rothberger cover-

ing property using α-open and θ-open sets of a topological space. We discuss their rela-

tions with some known weak version of the Rothberger property. It is also proved that

for an extremally disconnected S-paracompact-T2 space the properties: Rothberger

[25, 28], semi-Rothberger [26], α-Rothberger [14], θ-Rothberger [14] are equivalent.

Moreover, for an extremely disconnected space the θ-Rothberger property coincides

with the almost Rothberger [29] property.

Keywords: Star-selection principles; Star-Rothberger and Rothberger property; θ-conti-

nuity; S-paracompact space.

1. Introduction

Throughout this paper a space X or (X, T ), means a topological space. A space
X is called Menger [9, 22] if for each sequence (Ak : k ∈ N) of open covers of X
there exists a sequence (Bk : k ∈ N) such that for every k ∈ N, Bk is a nite subset
of Ak such that

⋃
k∈N

Bk is a cover of X . Then evidently every Menger space is
Lindelöf. In 1938, Rothberger [25, 28] introduced the Rothberger property: for
each sequence (Ak : k ∈ N) of open covers of X there is a sequence (Ak : k ∈ N)
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such that for each k ∈ N, Ak is a member of Ak, and {Ak : k ∈ N} is an open
cover of X . The Rothberger property is stronger than the Menger property. In
1996, Scheepers [28] associated the selection principles to the Ramsey and game
theories and after this paper selection principles became a more attractive area
of topology. In 1999 Koc̆inac [10] generalized the Rothberger property using
the star operator and defined the star-Rothberger property. For detailed study
related to weak version of the Menger and Rothberger properties, we refer to
[30, 13, 11, 16, 12, 15].

In 2019, Koc̆inac [14] studied α-Rothberger and θ-Rothberger properties us-
ing α-open, θ-open sets, respectively. Continuing this thread we further study
the α-Rothberger and θ-Rothberger properties and also introduces their star-
version.

The paper is organized as follows. Section 2 contains some known results
used in the paper. Section 3 contains the equivalence of the Rothberger, semi-
Rothberger, α-Rothberger, θ-Rothberger properties together with characteri-
zation of the α-Rothberger property. In Section 4 we introduce the star-α-
Rothberger and star θ-Rothberger properties using α-open and θ-open sets and
also discuss their relations to some known covering properties. We further, inves-
tigate the behaviour of the star α-Rothberger and star θ-Rothberger properties
under the various types of maps. In Section 5, we define the strongly star α-
Rothberger, strongly star θ-Rothberger properties and show that these are not
hereditary properties but the strongly star α-Rothberger property is preserved
under open-Fσ subspaces.

2. Preliminiaries

For a subset A of a space X , Cl(A) or A and Int(A) denotes the closure and
interior of A, respectively. The generalizations of open sets, θ-open, α-open,
semi-open sets inX will be used for the definitions of variations of the Rothberger
property:

A subset A of a space X is said to be:

(1) θ-open if for each x ∈ A there is an open set B ⊂ X such that x ∈ B ⊂
Cl(B) ⊂ A [31];

(2) α-open if A ⊂ Int(Cl(Int(A))), or equivalently, if A = B \N , where B is
open and N is a nowhere dense set in X [23], or equivalently, if there is an
open set B such that B ⊂ A ⊂ Int(Cl(B)). The complement of α-open set
is α-closed. Equivalently, a set A is α-closed in X if Cl(Int(Cl(A))) ⊆ A.

(3) semi-open if there exists an open set B ⊂ X such that B ⊂ A ⊂ Cl(B),
or equivalently, if A ⊂ Cl(Int(A)) [17]. SO(X) denotes the set of all
semi-open sets. The complement of a semi-open sets in X is called semi-
closed. sCl(A) denotes the semi-closure of A ⊂ X, that is sCl(A) is the
intersection of all semi-closed sets containing A. The set A is semi-closed
if and only if sCl(A) = A.
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Clearly, we have:

θ-open ⇒ open ⇒ α-open ⇒ semi-open.

A space X is called semi-regular [4] if for each x ∈ X and for each semi-closed
set U not containing x, there exist disjoint semi-open subsets A and B of X such
that x ∈ A and U ⊂ B.

Lemma 2.1. [4] For a space X the following statements are equivalent:

(1) X is semi-regular;

(2) For each x ∈ X and A ∈ SO(X) such that x ∈ A, there is a B ∈ SO(X)
such that x ∈ B ⊂ sCl(B) ⊂ A.

Recall that, a space X is called extremally disconnected if the closure of each
open set in X is open.

Lemma 2.2. [24] If X is extremally disconnected, then sCl(A) = Cl(A) for all
A ∈ SO(X).

A space X is called S-paracompact [1] if for each open cover of X has a
locally finite semi-open refinement.

Lemma 2.3. [1] A S-paracompact-T2 space X is semi-regular.

Lemma 2.4. [8] Let A be a subset of X. Then Int(Cl(A)) ⊂ sCl(A).

Jankovic [8], proved that a space X is extremally disconnected if and only if
for all A ∈ SO(X), A ⊂ Int(Cl(A)).

A map f : X → Y from a space X to a space Y is called:

(1) α-continuous [21] (α-irresolute [20]) if the preimage of any open (α-open)
subset of Y is α-open in X.

(2) α-open (strongly α-open) if the image of any α-open subset of X is α-open
(open) in Y .

(3) θ-continuous [6, 7] (resp., strongly θ-continuous [19]) if for each x ∈ X
and each open set B of Y containing f(x) there exists an open set A of X
containing x such that f(Cl(A)) ⊂ Cl(B) (resp., f(Cl(A)) ⊂ B).

3. The θ-Rothberger Spaces and α-Rothberger Spaces

In this section we will show that for the class of an extremally disconnected S-
paracompact-T2 spaces the Rothberger [25, 28], semi-Rothberger [26], θ-Roth-
berger [14], α-Rothberger [14] properties are equivalent. Moreover, we prove
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that for an extremally disconnected spaces the θ-Rothberger [14] property is
equivalent to the almost Rothberger [29] property. Also a characterization of
the α-Rothberger property is given.

A space X is called semi-Rothberger [26], in short s-Rothberger (resp., θ-
Rothberger [14], α-Rothberger [14]) if for each sequence (Ak : k ∈ N) of semi-
open (resp., θ-open, α-open) covers of X there is a sequence (Ak : k ∈ N), where
Ak ∈ Ak for each k ∈ N, such that

⋃
k∈N

Ak = X.

Evidently, the following implications hold:

s-Rothberger ⇒ α-Rothberger ⇒ Rothberger ⇒ θ-Rothberger.

A space has semi-Rothberger property means it is a semi-Rothberger space and
so on throughout the paper.

Remark 3.1. We observe that for the class of regular spaces, open set is equiv-
alent to θ-open set. Therefore, for the class of regular spaces the Rothberger
property is equivalent to the θ-Rothberger property.

Next, we show that the Rothberger property is not equivalent to the θ-
Rothberger property.

Example 3.2. There is a θ-Rothberger space X, which is not Rothberger.

Consider U = {uα : α < ω1}, V = {vi : i ∈ ω} and W = {< uα, vi >:
α < ω1, i ∈ ω}, where ω, ω1 are the rst innite cardinal and the rst uncountable
cardinal, respectively. LetX = W∪U∪{x} where x is not a member ofW∪U.We
topologizeX as follows: for uα ∈ U for each α < ω1 the basic neighborhood takes
of the form Auα

(i) = {uα} ∪ {< uα, vj >: j ≥ i}, i ∈ ω, the basic neighborhood
of a point x takes of the form Ax(α) = {x} ∪

⋃
{< uβ, vi >: β > α, i ∈ ω},

α < ω1 and each point of W is isolated. From the construction of topology
on X , the subset {uα : α < ω1} of X is an uncountable discrete closed set
of X . Thus X is not a Lindelöf space. Hence X is not Rothberger, because
every Rothberger space is Lindelöf. We will show X is a θ-Rothberger space.
Let (Ak : k ∈ N) be a sequence of θ-open covers of X. For fixed k = 1, there
exists an A1 ∈ A1 such that x ∈ A1. As A1 is θ-open, there is an open set
A′

1 with x ∈ A′
1 ⊂ A′

1 ⊂ A1. Again by the construction of topology on X ,

there is a β < ω1 such that Ax(β) ⊆ A′
1, Ax(β) ⊆ A′

1, this implies that the set
{uα : α > β} ∪ {x} ∪ {< uα, vi >: α > β, i ∈ ω} ⊆ A′

1 ⊂ A1. Moreover the
subset Y =

⋃
α≤β(uα ∪ {< uα, vi >: i ∈ ω}) is countable. We can enumerate Y

as {yk : k ∈ N}. Thus we can find Ak+1 ∈ Ak+1 such that yk ∈ Ak+1, for each
k ∈ N. Thus we have a sequence (Ak : k ∈ N) with Ak ∈ Ak for each k ∈ N such
that

⋃
k∈N

Ak = X . Hence X is θ-Rothberger.

Example 3.3. There is a Rothberger space which is not α-Rothberger.

Let X be an uncountable set and A is a xed nite subset of X . Then T =
{φ,A,X} form a topology on X. Clearly the space X is Rothberger. We note
that sets of the forms A ∪ {p}, p ∈ X \ A, are α-open. Let (Ak : k ∈ N) be a
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sequence of α-open covers of X , where Ak = {A ∪ {p} : p ∈ X \ A} for each
k ∈ N. Hence the sequence (Ak : k ∈ N) witness of X is not an α-Rothberger
space because α-open cover Ak does not have a countable subcover.

The Rothberger property is not equivalent to the α-Rothberger property.
However, for the class of an extremally disconnected S-paracompact-T2 spaces
these properties are equivalent.

Theorem 3.4. Let X be a Rothberger extremally disconnected S-paracompact-T2

space. Then X is semi-Rothberger.

Proof. Let (Ak : k ∈ N) be a sequence of semi-open covers of X. For each
x ∈ X there exists a Bk,x ∈ SO(X) such that x ∈ Bk,x ⊂ sCl(Bk,x) ⊂ Ak

for some Ak ∈ Ak, because S-paracompact-T2 space is semi-regular. Then
(Bk : k ∈ N) is a sequence of semi-open covers of X, where Bk = {Bk,x : x ∈ X}.
As X is extremally disconnected, B ⊂ Int(Cl(B)) for each B ∈ SO(X). Let
Ck = {Int(Cl(B)) : B ∈ Bk}. Then (Ck : k ∈ N) is a sequence of open covers
of X. Since X is Rothberger space, there exists a sequence (Ck : k ∈ N), where
Ck ∈ Ck for each k ∈ N such that

⋃
k∈N

Ck = X. Using Lemma 2.4, for each
Ck there exists an ACk

∈ Ak such that Ck ⊂ ACk
. Hence we can construct a

sequence (ACk
: k ∈ N) with Ck ⊂ ACk

for each k, such that
⋃

k∈N
ACk

= X.

We can not drop the condition of extremal disconnectedness in Theorem 3.3.
Consider the real line R. Since the real line R is T2-paracompact, therefore R

is S-paracompact-T2. But the real line R is not semi-Rothberger since it is not
semi-Menger [27]. On the other hand, the real line R is a Rothberger space.

Al-zoubi [1], has shown that an extremally disconnected S-paracompact-T2

space is regular. For the regular spaces, Rothberger property is equivalent to
the θ-Rothberger property. We have the following corollary:

Corollary 3.5. For an extremally disconnected S-paracompact-T2 space X, the
following statements are equivalent:
(1) X is semi-Rothberger;

(2) X is α-Rothberger;

(3) X is Rothberger;

(4) X is θ-Rothberger.

In the next theorem, a characterization of the α-Rothberger spaces is given.

Theorem 3.6. For a space X, the following statements are equivalent:
(1) X is α-Rothberger;

(2) For each non-empty subset Y of X and each sequence (Ak : k ∈ N) of α-
open sets in X such that Y ⊂ ∪Ak for each k ∈ N, there exists a sequence
(Ak : k ∈ N), Ak ∈ Ak for each k ∈ N, with Y ⊂

⋃
k∈N

Ak.
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Proof. (2) ⇒ (1) Obvious. (1) ⇒ (2). Let Y be a non-empty subset of X
and (Ak : k ∈ N) a sequence of α-open sets in X such that Y ⊂ ∪Ak for
each k ∈ N. Then (Bk : k ∈ N) is a sequence of α-open covers of X , where
Bk = Ak ∪ {X \ Y } for each k ∈ N. As X is α-Rothberger, there exists a
sequence (Bk : k ∈ N), where Bk ∈ Bk for each k ∈ N such that

⋃
k∈N

Bk = X.

Then clearly, Y ⊂
⋃

k∈N
Bk \ {X \ Y }.

Now, we will show that for an extremally disconnected spaces the θ-Rothber-
ger property is equivalent to the well known almost-Rothberger property.

A space X is called almost Rothberger [29] if for each sequence (Ak : k ∈ N)
of open covers of X there exists a sequence (Ak : k ∈ N), Ak ∈ Ak for each
k ∈ N such that

⋃
k∈N

Ak = X.

Clearly, the almost Rothberger property implies the θ-Rothberger property.

Theorem 3.7. For an extremally disconnected space X, the following statements
are equivalent:
(1) X is θ-Rothberger;

(2) For each sequence (Ak : k ∈ N) of θ-open covers of X there is a sequence
(Ak : k ∈ N), where for each k ∈ N, Ak ∈ Ak such that

⋃
k∈N

Ak = X ;

(3) X is almost-Rothberger.

Proof. (1)⇒(2). Obvious. (2)⇒ (1). Let (Ak : k ∈ N) be a sequence of θ-open
covers of X . For each Ak ∈ Ak and for each x ∈ Ak there is an open set Bx such
that x ∈ Bx ⊂ Bx ⊂ Ak. As X is an extremally disconnected, so Bx is θ-open.
Put Bk = {Bx : x ∈ Ak}. Then (Ck : k ∈ N) is a sequence of θ-open covers
of X , where Ck =

⋃
Ak∈Ak

Bk for each k ∈ N. By the assumption there exists

a sequence (Ck : k ∈ N), Ck ∈ Ck such that
⋃

k∈N
Ck = X . From the above

construction, for each Ck there is an Ak ∈ Ak such that Ck ⊂ Ak. The sequence
(Ak : k ∈ N) such that Ck ⊂ Ak for each k ∈ N is witness for the sequence
(Ak : k ∈ N) means X is θ-Rothberger.

(2)⇒ (3). Let (Ak : k ∈ N) be a sequence of open covers ofX . Then (Bk : k ∈
N) is a sequence of θ-open covers ofX, where for each k ∈ N, Bk = {A : A ∈ Ak}.
So, there is a sequence (Bk : k ∈ N), Bk ∈ Bk, such that

⋃
k∈N

Bk = X. Then the

sequence (Ak : k ∈ N) where Ak = Bk is witness for the sequence (Ak : k ∈ N).
That means the space X is an almost Rothberger.

(3)⇒(2). Let (Ak : k ∈ N) be a sequence of θ-open covers of X . Then
for each x ∈ X and for each k ∈ N, there exists an open set Bk,x such that
x ∈ Bk,x ⊂ Bk,x ⊂ Ak for some Ak ∈ Ak. Put Bk = {Bk,x : x ∈ X}. Then (Bk :
k ∈ N) is a sequence of open covers of X . Since X is an almost Rothberger space,
there exists a sequence (Bk : k ∈ N) with Bk ∈ Bk such that

⋃
k∈N

Bk = X.

For each Bk there is an Ak ∈ Ak, such that Bk ⊂ Ak. Then we have a sequence
(Ak : k ∈ N), where Bk ⊂ Ak, for each k ∈ N, such that

⋃
k∈N

Ak = X.

Caldas et al. [2] introduced an α-closure operator, denoted by Clα(A). For
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a subset A of a space X , Clα(A) is intersection of all α-closed sets containing
A. We define a class of space using the α-closure operator.

Definition 3.8. A space X is called almost α-Rothberger if for each sequence
(Ak : k ∈ N) of α-open covers of X, there is a sequence (Ak : k ∈ N), where
Ak ∈ Ak for each k ∈ N, such that X =

⋃
k∈N

Clα(Ak).

Clearly, each α-Rothberger space is almost α-Rothberger.

Theorem 3.9. If a space X has a dense subset which is α-Rothberger in X, then
X is almost α-Rothberger.

Proof. Let D be an α-Rothberger dense subset of X and (Ak : k ∈ N) a sequence
of α-open covers of X . Since D is α-Rothberger in X , for each k ∈ N, there
exists an Ak ∈ Ak, such that D ⊂

⋃
k∈N

Ak ⊂
⋃

k∈N
Clα(Ak). Since D is dense

in X , so X is only α-closed set containing D. Then, we have Clα(D) = Cl(D).
Hence X =

⋃
k∈N

Clα(Ak), because Clα(
⋃

k∈N
Ak) =

⋃
k∈N

Clα(Ak).

Corollary 3.10. Every seperable space is almost α-Rothberger.

In Example 3.2, the space X is not α-Rothberger. On the other hand, X is
seperable space. Hence X is an almost α-Rothberger space.

Recall that, a subset A of a space X is α-regular open, if Intα(Clα(A)) = A.

Theorem 3.11. A space X is an almost α-Rothberger if and only if for each
sequence (Ak : k ∈ N) of α-regular open covers of X, there exists a sequence
(Ak : k ∈ N), Ak ∈ Ak for each k ∈ N, such that X =

⋃
k∈N

Clα(Ak).

Proof. The forward part is obvious.

Conversely, let (Ak : k ∈ N) be a sequence of α-open covers of X . Then
for each k ∈ N, Bk = {Intα(Clα(Ak)) : Ak ∈ Ak} is a α-regular open cover
of X. From the assumption, we have a sequence (Intα(Clα(Ak)) : k ∈ N),
where for each k ∈ N, Intα(Clα(Ak)) is a member of Bk such that X =⋃

k∈N
Clα(Intα(Clα(Ak))). We note that Clα(Intα(Clα(Ak))) ⊆ Clα(Ak).

Therefore, X =
⋃

k∈N
Clα(Ak). Hence X is an almost α-Rothberger space.

Theorem 3.12. An α-continuous image of an almost α-Rothberger space is
almost-Rothberger.

Proof. Consider an α-continuous map f : X → Y from an almost α-Rothberger
spaceX onto a space Y. Let (Ak : k ∈ N) be a sequence of open covers of Y. From
the α-continuity of f , (Bk : k ∈ N) is a sequence of α-open covers of X, where
Bk = (f−1(A) : A ∈ Ak) for each k ∈ N. Since X is an almost α-Rothberger,
there exists a sequence (f−1(Ak) : k ∈ N), where f−1(Ak) ∈ Bk such that
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X =
⋃

k∈N
Clα(f

−1(Ak)). Again from the α-continuity of f , Y ⊂
⋃

k∈N
Cl(Ak).

Thus Y is an almost Rothberger space.

Since each continuous map is α-continuous, we have the following corollary:

Corollary 3.13. The continuous image of an almost α-Rothberger space is almost
Rothberger.

Remark 3.14. Velicko [31] introduced the θ-closure operator, it is denoted by
Clθ(A). For a subset A of a space X , Clθ(A) = {x ∈ X : for each neighbourhood
U of x, Cl(U) ∩ A 6= φ}. It is interesting to dene and investigate the following
two classes of spaces. A space X is said to be almost θ-Rothberger (resp.,
weakly θ-Rothberger) if for each sequence (Ak : k ∈ N) of θ-open covers of
X there is a sequence (Ak : k ∈ N), where for each k, Ak ∈ Ak such that
X =

⋃
k∈N

Clθ(Ak) (resp., X = Clθ(
⋃

k∈N
Ak). Observe that θ-Rothberger space

is almost θ-Rothberger, almost θ-Rothberger space is weakly θ-Rothberger.

4. The Star α-Rothberger Spaces and Star θ-Rothberger Spaces

In this section we generalize the star semi-Rothberger [26], (star-Rothberger [10])
properties and introduce the star α-Rothberger (star θ-Rothberger) properties,
respectively. We prove that for an extremally disconnected S-paracompact-T2

spaces the star-Rothberger [10], star semi-Rothberger [26], star θ-Rothberger,
star α-Rothberger properties are equivalent. We also characterize the star α-
Rothberger property as well as see behavior of these properties under the various
types of maps.

A space X is called star semi-Rothberger in short SsR [26], ( resp., star-
Rothberger or SR [10]) if for each sequence (Ak : k ∈ N) of semi-open (resp.,
open) covers of X there is a sequence (Ak : k ∈ N) for each k, Ak ∈ Ak such
that

⋃
k∈N

St(Ak,Ak) = X , where St(Ak,Ak) =
⋃
{A ∈ Ak : A ∩ Ak 6= φ}.

In the similar way, we define two classes of spaces.

Definition 4.1. A space X is called star α-Rothberger in short SαR (resp., star
θ-Rothberger or SθR) if for each sequence (Ak : k ∈ N) of α-open ( resp., θ-open)
covers of X there is a sequence (Ak : k ∈ N), Ak ∈ Ak for each k ∈ N, such that⋃

k∈N
St(Ak,Ak) = X.

Then we have the following implications:

SsR ⇒ SαR ⇒ SR ⇒ SθR.

Presently, the authors do not know whether the reverse implications are true.
But note that the α-Rothberger space is star α-Rothberger, but converse need
not be true.
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Example 4.2. There is a star α-Rothberger space which is not α-Rothberger.

Let X be an uncountable space with the topology T = {X,φ, {a}}, where a
is a fixed point of X . Note that each subset of X containing point a is α-open.
Then A = {{a, x} : x ∈ X} is an α-open cover of X , but A does not contain a
countable subcover. Thus the space X cannot be α-Rothberger. On the other
hand, for any α-open cover A of X , we have St({a},A) = X . Hence X is a star
α-Rothberger space.

Next, a characterization of the SαR property is given.

Theorem 4.3. For a space X, the following statements are equivalent:

(1) X is star α-Rothberger;

(2) For each non-empty subset Y of X and each sequence (Ak : k ∈ N) of
α-open sets in X such that Y ⊂ ∪Ak for each k ∈ N, there is a sequence
(Ak : k ∈ N), Ak ∈ Ak for each k ∈ N, such that Y ⊂

⋃
k∈N

St(Ak,Ak).

Proof. (2) ⇒ (1) is obvious.

(1) ⇒ (2). Let Y be a non-empty subset of X and (Ak : k ∈ N) is a sequence
of α-open sets of X such that for each k ∈ N, Y ⊂ ∪Ak. Let Bk = Ak ∪{X \Y }
for each k ∈ N. Then (Bk : k ∈ N) is a sequence of α-open covers of X. Since
X is a star α-Rothberger space, there exists a sequence (Bk : k ∈ N), Bk ∈ Bk

for each k ∈ N, such that
⋃

k∈N
St(Bk,Bk) = X. Moreover, for each y ∈ Y ,

y ∈
⋃

k∈N
St(Bk,Bk) \ {X \ Y }. Hence we can find a sequence {Ak : k ∈ N},

where Ak ∈ Ak for each k ∈ N, such that Y ⊂
⋃

k∈N
St(Ak,Ak).

Theorem 4.4. A space X is star θ-Rothberger if for each sequence (Ak : k ∈ N)
of closed covers of X there exists a sequence (Ak : k ∈ N), where Ak ∈ Ak for
each k ∈ N, such that

⋃
k∈N

St(Ak,Ak) = X.

Proof. Let (Ak : k ∈ N) be a sequence of θ-open covers of X. For each x ∈ X,
there is a Ax,k ∈ Ak and open set Bx,k such that x ∈ Bx,k ⊂ Bx,k ⊂ Ax,k.
Then for each fixed k ∈ N, Bk = {Bx,k : x ∈ X} is a cover of X by closed
sets. Then by the assumption, for each k ∈ N, there is a Bk ∈ Bk such that⋃

k∈N
St(Bk,Bk) = X. Form the construction, for each Bk ∈ Bk, there is an

Ak ∈ Ak such that Bk ⊂ Ak. Hence the sequence (Ak : k ∈ N) where Bk ⊂ Ak

for each k ∈ N, is witness of the sequence (Ak : k ∈ N). That means X is star
θ-Rothberger space.

Now, we show that for the class of extremally disconnected S-paracompact-
T2 spaces the star-Rothberger [10] and the star semi-Rothberger [26] properties
are equivalent.

Theorem 4.5. Let X be an extremally disconnected S-paracompact-T2 space. If
X is star-Rothberger then X is also star semi-Rothberger.
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Proof. Let (Ak : k ∈ N) be a sequence of semi-open covers of X. Then for each
x ∈ X there exists a Bk,x ∈ SO(X) such that x ∈ Bk,x ⊂ sCl(Bk,x) ⊂ A for
some A ∈ Ak, being a S-paracompact-T2 space is semi-regular. Put Bk = {Bk,x :
x ∈ X}. Then (Bk : k ∈ N) is a sequence of semi-open covers of X. Since the
space X is an extremally disconnected, B ⊂ Int(Cl(B)) for every B ∈ SO(X).
Let Ck = {Int(Cl(B)) : B ∈ Bk}. Then (Ck : k ∈ N) is a sequence of open covers
of X. Since X is a star-Rothberger space, there exists a sequence (Ck : k ∈ N),
Ck ∈ Ck for each k ∈ N, such that

⋃
k∈N

St(Ck, Ck) = X. By Lemma 2.4, for
each Ck ∈ Ck there is an ACk

∈ Ak such that Ck ⊂ ACk
. Hence we can construct

a sequence (Ak : k ∈ N) with Ak ∈ Ak containing Ck for each k ∈ N, such that⋃
k∈N

St(Ak,Ak) = X.

Since an extremally disconnected S-paracompact-T2 spaces are regular [1]
and in regular spaces, θ-open sets coincide with open sets, we have the following
corollary:

Corollary 4.6. For an extremally disconnected S-paracompact-T2 space X, the
following statements are equivalent:

(1) X is star semi-Rothberger;

(2) X is star α-Rothberger;

(3) X is star-Rothberger;

(4) X is star θ-Rothberger.

Let Tα and Tθ be the family of all α-open and θ-open sets of a space (X, T ),
respectively. Then Tα and Tθ is also forms topologies on X. Moreover T ⊂ Tα
and Tθ ⊂ T for details, see [23, 18].

We have some interesting results related to the star α-Rothberger and star
θ-Rothberger properties.

Theorem 4.7. A space (X, T ) is star α-Rothberger (resp., star θ-Rothberger) if
and only if (X, Tα), (resp., (X, Tθ)) is star-Rothberger.

Proof. The proof is straight forward and thus omitted.

Theorem 4.8. The star α-Rothbergerness is a semi-topological property.

Proof. Let (X, T ) be a star α-Rothberger space and f : (X, T ) → (Y, T ′) a semi-
homeomorphism from the space (X, T ) onto a space (Y, T ′). Then f : (X, Tα) →
(Y, T ′

α) is a homeomorphism [3]. Since (X, T ) is star α-Rothberger, so (X, Tα)
is star-Rothberger and star-Rothberger is a topological property. So (Y, T ′

α) is
star-Rothberger. Hence (Y, T ′) is star α-Rothberger.

Now we will discuss behavior of the star α-Rothberger and the star θ-Rothber-
ger spaces under the various types of maps.
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Theorem 4.9. An α-continuous image of a star α-Rothberger space is star-
Rothberger.

Proof. Let X be a star α-Rothberger space and f : X → Y be an α-continuous
map from X onto a space Y. Let (Ak : k ∈ N) be a sequence of open covers of
Y . Set Bk = {f−1(Ak) : Ak ∈ Ak}, for each k ∈ N. Since f is an α-continuous
map, (Bk : k ∈ N) is a sequence of α-open covers of X . As space X is an star
α-Rothberger, there exists a Bk ∈ Bk such that X =

⋃
k∈N

St(Bk,Bk). Let
ABk

= f(Bk), k ∈ N. Then the sequence (ABk
: k ∈ N) witness for the sequence

(Ak : k ∈ N). That means Y is a star-Rothberger.

Similarly, we have the following theorem.

Theorem 4.10. An α-irresolute image of a star α-Rothberger space is star α-
Rothberger.

Theorem 4.11. Let (X, T ) be a star α-Rothberger space. Then the following
statements hold:

(1) (X, T ) is an α-continuous image of a star-Rothberger space;

(2) (X, T ) is an α-open preimage of a star-Rothberger space.

Proof. The space (X, Tα) is star-Rothberger because (X, T ) is a star α-
Rothberger space. Then the identity map 1X : (X, Tα) → (X, T ) is an α-
continuous. On the other hand, 1X : (X, T ) → (X, Tα) is an α-open map.

Theorem 4.12. A strongly θ-continuous image of a star θ-Rothberger space X is
star-Rothberger.

Proof. Let f : X → Y be a strongly θ-continuous map from a star θ-Rothberger
space X onto a space Y. Consider a sequence (Ak : k ∈ N) of open covers of
Y . For x ∈ X, f(x) ∈ Ak for some Ak ∈ Ak for each k ∈ N. By the strongly
θ-continuity of f , there exists an open set Bx,k of x such that f(Cl(Bx,k)) ⊂ Ak.
That is f−1(Ak) is θ-open set. Put Bk := {f−1(A) : A ∈ Ak}. Then (Bk : k ∈ N)
is a sequence of θ-open covers of X. Since X is a star θ-Rothberger space, there
exists Bk ∈ Bk for each k ∈ N, such that X =

⋃
k∈N

St(Bk,Bk). For each k ∈ N,
we can choose Ak ∈ Ak such that Bk = f−1(Ak). Then we have

Y = f(X) = f(
⋃

k∈N
St(Bk,Bk)) =

⋃
k∈N

St(Ak,Ak).

Hence, Y is star-Rothberger.

Theorem 4.13. An θ-continuous image of a star θ-Rothberger space X is star
θ-Rothberger.

Proof. Let f : X → Y be an θ-continuous map from a star θ-Rothberger space
X onto a space Y. Let (Ak : k ∈ N) be a sequence of θ-open covers of Y . From



490 G. Kumar et al.

the θ-continuity of map f , Bk = {f−1(A) : A ∈ Ak} is an θ-open cover of X for
each k ∈ N. Using the fact that X is a star θ-Rothberger space, there exists a
Bk ∈ Bk for each k ∈ N, such that X =

⋃
k∈N

St(Bk,Bk). For each k ∈ N and
for Bk ∈ Bk, we may choose Ak ∈ Ak such that Bk = f−1(Ak). We have

Y = f(X) = f(
⋃

k∈N
St(Bk,Bk)) =

⋃
k∈N

St(Ak,Ak).

Hence, Y is star θ-Rothberger.

Since continuity implies θ-continuity, we have the following corollary:

Corollary 4.14. A continuous image of a star θ-Rothberger space is star θ-
Rothberger.

We end this section with the following remark:

It is interesting to use the α-closure operator [2], and the θ-closure operator
[31] to define and explore the following two classes of spaces. A space X is said
to be almost star α-Rothberger in short ASαR (resp., almost star θ-Rothberger,
in short ASθR) if for each sequence (Ak : k ∈ N) of α-open (resp., θ-open) covers
of X there exists a sequence (Ak : k ∈ N) such that for each k, Ak is a member
of Ak such that X =

⋃
k∈N

Clα(St(Ak,Ak)) (resp., X =
⋃

k∈N
Clθ(St(Ak,Ak)).

Observe that ASαR and ASθR spaces are generalizations of SαR and SθR spaces,
respectively.

5. The Strongly Star α-Rothberger Spaces and Strongly Star
θ-Rothberger Spaces

In this section we introduce new strongly star-selection principles using the α-
open and θ-open sets. We further study their hereditary properties and the
relation with other known spaces.

A space X is called strongly star semi-Rothberger in short SSsR [26], (resp.,
strongly star-Rothberger or SSR [10]) if for each sequence (Ak : k ∈ N) of semi-
open (resp., open) covers of X there exists a sequence (xk : k ∈ N) of elements
of X such that

⋃
k∈N

St(xk,Ak) = X.

Definition 5.1. A space X is called strongly star θ-Rothberger in short SSθR
(resp., strongly star α-Rothberger or SSαR) if for each sequence (Ak : k ∈ N) of
θ-open (resp., α-open) covers of X there is a sequence (xk : k ∈ N) of elements
of X such that

⋃
k∈N

St(xk,Ak) = X

Clearly, the following implications hold:

SSsR ⇒ SSαR⇒ SSR ⇒ SSθR.
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By the similar argument as in Remark 1, for the class of regular spaces the SSθR
property is equivalent to the SSR property. Here also, the authors do not know
whether the reverse implications are true. But we have a class of spaces for
which these properties are equivalents.

Theorem 5.2. For an extremally disconnected S-paracompact-T2 space X, the
SSR property implies the SSsR property.

Proof. The proof is almost similar to that of Theorem 4.5 and thus omitted.

The extremally disconnected S-paracompact-T2 space is regular [1]. Then we
have the following corollary:

Corollary 5.3. For an extremally disconnected S-paracompact-T2 space X, the
following statements are equivalent:

(1) X is SSsR;

(2) X is SSαR;

(3) X is SSR;

(4) X is SSθR.

Theorem 5.4. A space X is SSθR if for each sequence (Ak : k ∈ N) of closed
covers of X, there exists a sequence (xk : k ∈ N) of elements of X such that⋃

k∈N
St(xk,Ak) = X.

Proof. In the proof, we use the almost similar facts in Theorem 4.4. Thus the
proof is omitted.

Next we will show that SSαR property need not be hereditary.

Example 5.5. A subspace of an SSαR space need not be SSαR.

Let x0 be a fixed point of an uncountable set X. The family T = {A ⊂ X :
x0 /∈ A} ∪ {A ⊂ X : X \A is finite set} of subsets of X forms a topology on X,
for more details see [5, Example 1.1.8]. It is easy to check that the space X is
SSαR. Consider the subspace Y = X \ {x0}. The one point subsets {x}, x ∈ Y
are α-open. Then the α-open cover A = {{x} : x ∈ Y } of Y has no countable
subcover. Hence the subspace Y cannot be a SSαR space.

Remark 5.6. Note that in Example 5.5, Y is an α-open (open) subset of X . So,
the α-open (open) subspace of a SSαR space need not be SSαR.

Remark 5.7. Let X be a space of Example 5.5. It is also easy to check that X
is a SSθR space and Y = X \ {x0} is an open subspace of X , which is not SSθR.
It means SSθR is not a hereditary property.
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Theorem 5.8. The SSαR property is preserved by open Fσ-subspaces.

Proof. Let X be a SSαR space and Y =
⋃

k∈N
Mk an open Fσ-subspace of

X , where each Mk is closed subset of X . Without loss of generality, we may
assume Mk ⊆ Mk+1 for all k ∈ N. Let (Ak : k ∈ N) be a sequence of α-open
covers of Y. Since Y is open in X , so each α-open subset of Y is α-open in X.
Then Bk = Ak ∪ {X \ Mk} is an α-open cover of X for each k ∈ N. Since
X is SSαR space, there is a sequence (xk : k ∈ N) of elements of X such that⋃

k∈N
St(xk,Bk) = X. Let C = Y ∩ {xk : k ∈ N}. Then for every y ∈ Y , there

exists k ∈ N such that y ∈ St(xk,Bk). Hence y ∈ St(C,Ak). This means Y is
strongly star α-Rothberger.

Corollary 5.9. A clopen subspace of an SSαR space is SSαR.

Recall that, for a continuous real valued function f : X → R from a space X
to R. The set of the form f−1(R \ {0}) is called cozero-set in a space X . The
cozero-set is an open Fσ-set. Then we have the following corollary:

Corollary 5.10. A cozero-set of an SSαR space is SSαR.

Theorem 5.11. An α-continuous image of an SSαR space is SSR.

Proof. The proof is almost similar to the proof of Theorem 4.9, with some suit-
able adjustments, thus omitted.

Theorem 5.12. An θ-continuous image of an SSθR space X is SSθR.

Proof. The proof is almost similar to the proof of Theorem 4.13, with some
minor changes, thus ommited.

Corollary 5.13. The continuous image of an SSθR space is SSθR.

Theorem 5.14. For a space (X, T ) the following statements are equivalent:

(1) (X, T ) is SSαR;

(2) (X, T ) admits a strongly α-open bijection onto an SSR space (Y, T ′).

Proof. (1)⇒(2) Since (X, T ) is SSαR space, (X, Tα) is SSR space. The identity
map IX : (X, T ) → (X, Tα) is a strongly α-open bijection.

(2)⇒ (1) Let f : (X, T ) → (Y, T ′) be a strongly α-open bijection from a
space (X, T ) onto a SSR space (Y, T ′). Let (Ak : k ∈ N) be a sequence of
α-open covers of (X, T ). Then Bk = (f(Ak) : Ak ∈ Ak) is a sequence of open
covers of Y . Choose yk ∈ Y such that Y =

⋃
k∈N

St(yk,Bk). Evidently, then
X =

⋃
k∈N

St(xk,Ak), where xk = f(yk).
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