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Abstract. We introduce the probability of cyclicity of chains in finite groups and among

other results we give explicit formulas for such probability of dihedral groups D2n,

quasi-dihedral groups QD2n , generalized quaternion groupsQ2n , and modular p-groups

Mpn .
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1. Introduction

The concept of different probabilities in finite groups have been studied by many
authors, in recent years. One of the usual ones, is the probability of commuta-
tivity of two randomly chosen elements of a finite group (see [4, 3, 5]). Also the
probablistic notion on the subgroup lattice, L(G), of a finite group G has been
investigated in [8]. For instance, assume N(G) and C(G) denote the normal
subgroup lattice and the poset of cyclic subgroups of G. Then one can study
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the probrbilities of choosing an arbiterary subgroup of G, whether it is normal

or cyclic and these probabilities are defined as the ratios of |N(G)|
|L(G)| or |C(G)|

|L(G)| ,

respectively (for more information see [8] and the references in).

Now, in the present article we study the probability of a random chosen chain
of subgroups of G, whether it will be cyclic chain. More precisely, let

H1 ( H2 ( · · · ( Hn = G

be a chain of subgroups of a given finite groupG, which starts from any subgroup
H1 (including the identity) and ending in G. The set of all such chains of the
group G is denoted by Ch(G).

A chain of subgroups of G that ends in the group G is called cyclic, whenever
all of its components are cyclic except possibly for Hn = G (see also [2] for
counting the number of cyclic subgroups of a group G). We denote the set of
all cyclic chains of G by C∗(G), and introduce the probability of cyclicity (or
cyclicity degree) of chains of G, denoted by pcc(G), as follows:

pcc(G) =
|C∗(G)|

|Ch(G)|
.

Throughout this article, we consider all groups to be finite and by a chain
we mean a chain of subgroups of a group G, which starts from any subgroup
and ends in G. The properties and counting the number of chains in a given
group has been investigated by many authors in latter years. For example, the
number of chains of finite cyclic groups and finite elementary abelian p-groups
are obtained in [8]. Also, the number of chains of nonabelian groups D2n, Q4n,
QD2n , and Mpn are computed in [1]. Our aim is to compute the probability of
cyclicity of chains of the groups D2n, Q2n , QD2n , and Mpn .

2. Preliminaries

Clearly the probability of cyclicity of chains of any finite group G satisfies 0 <
pcc(G) ≤ 1, and pcc(G) = 1 if and only if G is cyclic.

Clearly the group G itself is a chain. So as in [1] using the subgroup lattice of
a group G, we define the number of chains start from any non-trivial subgroup
H of G and end in G in the following way

n(H) =

r∑

i=1

n(Hi),

in which Hi’s are the subgroups of G containing H, properly. Clearly n(G)=1
and if H = 〈e〉 is the trivial subgroup, then the number of all chains of subgroups
of G is |Ch(G)| = 2n(〈e〉).

The following example shows the subgroup lattice and the diagram of cyclic
subgroups of dihedral group D18.
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Example 2.1. The lattice of subgroups and the poset of cyclic subgroups of
dihedral group D18 are given below. One can also obtain the probability of
cyclicity of chains of D18. D18

〈x〉

〈x3〉

〈x3, y〉 〈x3, xy〉 〈x3, x2y〉

〈y〉

〈x3y〉 〈x6y〉 〈xy〉 〈x4y〉

〈x7y〉
〈x2y〉

〈x5y〉

〈x8y〉

{e}

Fig. 1. Subgroup lattice of D18.

Using the above method, the number of chains of subgroups of the group D18

can be obtained as follows:

n(D18) = 1,

n(〈x〉) = n(〈x3, y〉) = n(〈x3, xy〉) = n(〈x3, x2y〉) = 1,

n(〈x3〉) = 5,

n(〈xiy〉) = 2 (0 ≤ i ≤ 8),

n(〈e〉) = 1 + (1 + 1 + 1 + 1) + 5 + 9(2) = 28.

Therefore |Ch(D18)| = 2× 28 = 56.

As above, the number of cyclic subgroup chains of D18 is as follows:

n(D18) = 1,

n(〈x〉) = 1,

n(〈xiy〉) = 1 (0 ≤ i ≤ 8),

n(〈x3〉) = 2.

Therefore |C∗(D18)| = 2(1 + 1 + 9(1) + 2)− 1 = 25, and so pcc(D18) =
25
56 .

The number of all subgroup chains of a group G with maximum length 2
that end in G is the same as |L(G)|. Similarly, the number of all cyclic chains
of a group G with maximum length 2 is the same as the number of all cyclic
subgroups of the group G. Hence the probability of cyclic chains with maximum
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D18

〈x〉

〈x3〉
〈y〉

〈x3y〉 〈x6y〉 〈xy〉 〈x4y〉

〈x7y〉
〈x2y〉

〈x5y〉

〈x8y〉

{e}

Fig. 2. Diagram of cyclic subgroups of D18.

length 2 is equal to the probability cyclicity of chain of subgroups of G defined
in [9] and

pcc(G) = |C(G)|/|L(G)|,

where C(G) denotes the poset of all cyclic subgroups ofG and L(G) the subgroup
lattice of the group G. We investigate finite p-groups having a cycle maximal
subgroup.

Clearly, the following finite non-abelian groups are all have a cyclic maximal
subgroup. Hence, we calculate the probability of cyclicity of their chains in final
section.

D2n = 〈x, y : xn = y2 = 1, xy = x−1〉,

Q2n = 〈x, y : x2n−1

= y4 = 1, xy = x2n−1−1〉,

QD2n = 〈x, y : x2n−1

= y2 = 1, xy = x2n−2−1〉,

Mpn = 〈x, y : xpn−1

= yp = 1, xy = xpn−2+1〉.

The following theorem of [1] is needed in proving our main results.

Theorem 2.2. [1] For any natural number n.

(i) The number of all subgroup chains of the dihedral group D2n is

|Ch(D2n)| =
∑

k|n

n

k
|Ch(Zn

k
)|(k + |Ch(Zk)|)− (2n− 1)|Ch(Zn)|+ n.
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(ii) The number of all subgroup chains of the generalized quaternion group Q4n

is
|Ch(Q4n)| = |Ch(D2n)|+

∑

d|m

|Ch(Zd)||Ch(D 2n

d

)|,

where m is an odd integer such that n = 2km, for some k.

(iii) The number of all subgroup chains of the quasidihedral group QD2n(n ≥ 4)
is

|Ch(QD2n)| = 3 · 22n−3.

(iv) The number of all subgroup chains of modular p-group Mpn (n ≥ 3, pn 6= 8)
is

2n−1(n− 1)p+ 2n.

Clearly, pcc(G1) = pcc(G2) for any two isomorphic groups G1 and G2, but
the converse is not true in general. For example, pcc(Z6) = pcc(Z15) = 1, while
Z6 � Z15.

Also, it is obvious that pcc(G1 × G2) = pcc(G1)pcc(G2) for any two groups
G1 and G2 of coprime orders. For

pcc(G1 ×G2) =
|C∗(G1 ×G2)|

|Ch(G1 ×G2)|
=

|C∗(G1)||C
∗(G2)|

|Ch(G1)||Ch(G2)|
= pcc(G1)pcc(G2).

However, the above equality does not hold in general, for instance

pcc(S3 × Z2) =
23

68
6=

9

10
= pcc(S3)pcc(Z2).

On the other hand, if the groups in the direct factors are pairwize coprime
orders, then one can extend the above equality to arbitrary direct products of
finite groups.

Proposition 2.3. Assume G1, G2 . . . , and Gr are finite groups with pairwise
coprime orders. Then pcc(Πk

i=1Gi) = Πk
i=1pcc(Gi).

The following corollary explains that the probability of cyclicity of chains of
a finite nilpotent group can be obtained from its Sylow p-subgroups.

Corollary 2.4. If G is a finite nilpotent group and P1, P2, . . . , Pr are its Sylow
pi-subgroups, then

pcc(G) = Πr
i=1pcc(Pi).

In general, if G and H are two lattices of isomorphic groups, then pcc(G) =
pcc(H), as lattice isomorphisms preserve cyclic subgroups (for more details see
[6, Theorem 1.2.10]).
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Clearly, for non-cyclic groups in which all their proper subgroups are cyclic,
all chains are cyclic except the chain G. For such groups the probability of
cyclicity of chain can be computed simply as follows:

Theorem 2.5. Let G be a finite group. Then

pcc(G) =
|Ch(G)| − 1

|Ch(G)|

if and only if G is either a semidirect product of a normal subgroup of prime
order p by a cyclic subgroup of prime power order qn, an elementary abelian
p-group of rank two, or the quaternion group Q8.

Proof. According to [9, Theorem 2.1], such groups form the class of all noncyclic
groups in which all proper subgroups are cyclic. Hence, the result follows.

3. Main Results

In this section, we obtain the probability of cyclicity of chains of the groups D2n,
Q2n , QD2n , and Mpn .

Theorem 3.1. The probability of cyclicity of chains of the dihedral group D2n is

pcc(D2n) =

∑

k|n |Ch(Zk)|+ 2n
∑

k|n
n
k
|Ch(Zn

k
)|(k + |Ch(Zk)|)− (2n− 1)|Ch(Zn)|+ n

.

Proof. One notes that the cyclic subgroups of D2n are 〈xiy〉 and 〈xk〉, where
0 ≤ i ≤ n− 1 and k|n. Now, we count the number of chains of subgroups of D2n

in which all components are cyclic except D2n. These chains are of the following
form:

(1) · · · ⊆ 〈x
n

k 〉 ⊆ D2n,

(2) 〈xiy〉 ⊆ D2n (0 ≤ i ≤ n− 1),

(3) 1 ⊆ 〈xiy〉 ⊆ D2n (0 ≤ i ≤ n− 1).

The above cases shows that, the number of cyclic chains of the group D2n is
equal to the sum of

∑

k|n |Ch(Zk)|, n and n, respectively. Therefore

|C∗(D2n)| =
∑

k|n

|Ch(Zk)|+ 2n.

Now, the proof is completed by using Theorem 2.2(i).

Corollary 3.2. For a prime p, the probability of cyclicity of chains of dihedral
group D2pm is as follows:

pcc(D2pm) =
2m+1 + 2pm − 1
2m

p−1 (p
m+1 + p− 2)

.
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In particular,

pcc(D2m) =
2m+1 − 1

22m−1
.

Proof. By Theorem 3.1, the number of chains of subgroups of the group D2pm

ending in G is equal to |Ch(D2pm)| = 2m

p−1 (p
m+1 + p − 2). On the other hand,

we have

|C∗(D2pm)| =
∑

k|pm

|Ch(Zk)|+ 2pm =
∑

0≤i≤m

|Ch(Zpi )|+ 2pm

= 1 + 2 + · · ·+ 2m + 2pm = 2m+1 − 1 + 2pm.

Hence, the result holds.

Now we calculate the probability of cyclicity of chains of the generalized
quaternion group of order 2n, as follows

Q2n = 〈x, y : x2n−1

= y4 = 1, xy = x2n−1−1〉, n ≥ 3.

Clearly, Z(Q2n) = 〈x2n−2

〉 and Q2n/Z(Q2n) ∼= D2n−1 . Furthermore, if H is a
subgroup of Q2n such that H∩Z(Q2n) = 1, then either H = 1 or H = 〈x2iy〉 for

some 0 ≤ i ≤ 2n−2. Hence the cyclic subgroups of Q2n are 〈x2i〉 and 〈xjy〉, where
0 ≤ i ≤ n− 1 and 0 ≤ j ≤ 2n−2 − 1. Thus, by applying a recursive argument, it
follows that the number of cyclic subgroups of Q2n is equal to n+ 2n−2.

Theorem 3.3. The probability of cyclicity of chains of the group Q2n is equal to

pcc(Q2n) =
3 · 2n−1 − 1

22n−2
.

Proof. Using the property |Ch(Q2n)| = 2n(〈e〉) and the above discussion, the
number of cyclic subgroups of Q2n is calculated as follows:

|C∗(Q2n)| = 2(1 + 2 + 22 + · · ·+ 2n−2 + 1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

2n−2

)− 1

= 3 · 2n−1 − 1.

On the other hand, Theorem 2.2(ii) implies that

|Ch(Q2n)| = |Ch(Q4.2n−2)| = |Ch(D2n−1)|+ 1× |Ch(D2n−1)|

= 2|Ch(D2n−1)| = 2 · 22n−3 = 22n−2,

from which the result follows.

Now, we obtain the probability of cyclicity of chains of quasi-dihedral group

QD2n = 〈x, y : x2n−1

= y2 = 1, xy = x2n−2−1〉,
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of order 2n.

Clearly, Z(QD2n) = 〈x2n−2

〉 and QD2n/Z(QD2n) ∼= D2n−1 . Furthermore, if
H is a subgroup of QD2n such that H ∩ Z(QD2n) = 1, then either H = 〈1〉 or

〈x2iy〉, for some 0 ≤ i ≤ 2n−2. Hence the cyclic subgroups ofQD2n are 〈x2i〉 with

0 ≤ i ≤ n− 1, 〈xiy〉 with 0 ≤ i ≤ 2n−2, and 〈x2n−2+2jy〉 with 1 ≤ j ≤ 2n−2 − 1.
Hence we obtain the following theorem.

Theorem 3.4. The probability of cyclicity of chains of the group QD2n is

pcc(QD2n) =
7 · 2n−2 − 1

3 · 22n−3
.

Proof. An argument similar to that of the proof of Theorem 3.3, it implies

|C∗(QD2n)| = 2(1 + 3.2n−3 + 1 + 2 + 22 + · · ·+ 2n−2)− 1

= 2(1 + 3.2n−3 + 2n−1 − 1)− 1

= 7 · 2n−2 − 1.

By Theorem 2.2(iii), we have |Ch(QD2n)| = 3.22n−3, from which the result
follows.

Finally, we calculate the probability of cyclicity of chains of the modular
p-groups of order pn, with the following presentation

Mpn = 〈x, y : xpn−1

= yp = 1, xy = xpn−2+1〉, n ≥ 3.

One observes that Z(Mpn) = 〈xpn−2

〉 and Mpn/Z(Mpn) ∼= Cpn−2 ×Cp. Now,
if H is a subgroup of Mpn such that H ∩ Z(Mpn) = 1, then either H = 〈1〉

or 〈xipn−2

y〉, for 0 ≤ i ≤ p. Hence the group Mpn has the following cyclic

subgroups: 〈xpi

〉 with 0 ≤ i ≤ n − 1 and 〈xjpi

y〉 for all 0 ≤ j ≤ p − 1 and
0 ≤ i ≤ n− 2, in which p is a prime number that pn 6= 8.

Theorem 3.5. The probability of cyclicity of chains of the modular p-group Mpn

(n ≥ 3 and pn 6= 8) is

pcc(Mpn) =
2n + 2(p− 1)(n− 1) + 1

2n−1(n− 1)p+ 2n
.

In particular

pcc(M2n) =
2n + 2n− 1

n2n
.

Proof. By the above discussion, one can easily calculate that

|C∗(Mpn)| = 2(1 + 1 + 2 + 22 + · · ·+ 2n−2 + (p− 1)(n− 1) + 1)− 1,

= 2n + 2(p− 1)(n− 1) + 1.
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Also, by Theorem 2.2(iv), the number of chains of the modular p-group Mpn

(n ≥ 3 and pn 6= 8) is equal to 2n−1(n− 1)p+ 2n. Hence, the result is obtained.
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