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Abstract. The conditions on A, B, 8 and ~ are obtained for an analytic function p
defined on the open unit disc D and normalized by p(0) = 1 to be subordinate to
(14 A2)/(1+ Bz), =1 < B < A <1 when p(2) + 2p'(2)/(Bp(z) + ) is subordinate to
e®. The conditions on these parameters are derived for the function p to be subordinate
to v/1+ z or e when p(z) + 2p’(2)/(Bp(2) + ~) is subordinate to (1 + Az)/(1 + Bz).
The conditions on § and 7 are determined for the function p to be subordinate to e”
when p(z)+42p’(2)/(Bp(z) +7) is subordinate to v/T 4 z. Related result for the function
p(z) + 20’ (2)/(Bp(2) + ) to be in the parabolic region bounded by the Rew = |w — 1|
is investigated. Sufficient conditions for the Bernardi’s integral operator to belong to
the various subclasses of starlike functions are obtained as applications.
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1. Introduction

Let H denote the class of analytic functions in the unit disc . For a natural
number n, let H[a,n] be the subset of H consisting of functions p of the form
p(2) = a+pp2" +ppr12" T+ .. Suppose that h is a univalent function defined
on D with h(0) = a and the function p € H[a,n]. The Briot—Bouquet differential
subordination is the first order differential subordination of the form

zp'(2)
p(z) + ———— < h(z), 1
(2)+ gy 2 < (2 1)
where 8 # 0, € C. This particular differential subordination has many interest-
ing applications in the theory of univalent functions. Ruschewyh and Singh [28§]
proved that if the function p € H[1,1], 8 > 0,Rey > 0 and h(z) = (1+2)/(1—2)
in (1) and the function ¢ € H satisfy the differential equation

2p'(z) 14z

S TS B

then min,|—, Rep(z) > min,—, Re¢(z). More related results are proved in [17,
19, 8]. For ¢ > —1 and f € H]0, 1], the function F' € H][0, 1] given by Bernardi’s
integral operator is defined as

Plz) = <1 /0 e (b dt. 2)

ZC

There is an important connection between Briot—Bouquet differential equations
and the Bernardi’s integral operator. If we set p(z) = zF’(z)/F(z), where F
is given by (2), then the functions f and p are related through the following
Briot—Bouquet differential equation

T 2L

p(z) +¢

Several authors have investigated results on Briot—Bouquet differential sub-
ordination. For example, Ali et al. [3] determined the conditions on A, B, D
and E for p(z) < (1 + Az)/(1 + Bz) when p(z) + 2zp'(2)/(Bp(z) + ) is sub-
ordinate to (1 4+ Dz)/(1+ Ez), (A,B,D,E € [—1,1]). For related results, see
[4, 8, 17, 19, 21, 22, 28]. Recently, Kumar and Ravichandran [14] obtained the
conditions on f so that p(z) is subordinate to e* or (1 + Az)/(1+ Bz) whenever
1+ Bp(z)/p'(2) is subordinate to v/1+ z or (1 + Az)/(1+ Bz), (-1 < B <
A < 1). We investigate generalised problems for regions that were considered
recently by many authors. In Section 2, we find conditions on v and £ so that
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p(z) + zp'(2)/(Bp(z) + ) is subordinate to /1 + z implies p(z) < e*. Condi-
tions on A, B, 8 and ~ are also determined so that p(z) + zp'(2)/(Bp(2) + 7) <
(1 4+ Az)/(1 + Bz) implies p(z) < /14 z or e*. We determine conditions on
A,B, B and v so that p(z) < (1 4+ Az)/(1+ Bz),(—1 < B < A < 1) when
p(z)+2p'(2)/(Bp(2) +7) < €* or ¢par(z). The function ppagr : D — C is given
by

2
vpar(2) ::1—|—% (logit£> , Imyz>0 (3)
and ppar(D) = {w=u+iv:v? <2u—1} = {w:Rew > [w— 1|} =: Qp. As
an application of our results, we give sufficient conditions for the Bernardi’s
integral operator to belong to the various subclasses of starlike functions which
we define below.

Let A be the class of all functions f € H normalized by the conditions
f(0) =0 and f'(0) = 1. Let S denote the subclass of A consisting of univalent
(one-to-one) functions. For an analytic function ¢ with ¢(0) =1, let

sto)={rea: T <o,

This class unifies various classes of starlike functions when Rey > 0. Shan-
mugam [30] studied the convolution properties of this class when ¢ is convex
while Ma and Minda [15] investigated the growth, distortion and coefficient esti-
mates under less restrictive assumption that ¢ is starlike and (D) is symmetric
with respect to the real axis. Notice that, for —1 < B < A < 1, the class
S*[A,B] := 8*((1 + Az)/(1 + Bz)) is the class of Janowski starlike functions
[10, 23]. For 0 < a < 1, the class S*[1 — 2, —1] =: §*(«) is the familiar
class of starlike functions of order «, introduced by Robertson [26]. The class
S* := 8§%(0) is the class of starlike function. The class Sp := S*(¢par) is
the class of parabolic starlike functions, introduced by Rgnning [29], consists of
function f € A satisfying
2f'(2)

2f'(2)

(55) >[5
Sokél and Stankiewicz [38] introduced and studied the class S} = S*(v/1+ 2);
the class S} consists of functions f € A such that zf'(z)/f(z) lies in the re-
gion bounded by the right-half of the lemniscate of Bernoulli given by Qj :=
{weC:|w?—1] <1}. Another class S} := S*(e?), introduced recently by
Mendiratta et al. [16], consists of functions f € A satisfying the condition
|log(zf'(2)/f(2))] < 1. There has been several works [9, 2, 13, 24, 31, 36, 37,
25, 35, 34, 32, 1, 39, 33] related to these classes.

The following results are required in our investigation.

—1‘, z € D.

Lemma 1.1. [20, Theorem 2.1, p. 2] Let Q C C and suppose that 1 : C?xD—C
satisfies the condition Y(e?  ke'te?";2) ¢ Q, where z € D, t € [0,27] and k > 1.
If p e H[1,1] and ¥(p(z),2p'(2);2) € Q for z € D, then p(z) < €* in D.
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Lemma 1.2. [27, Lemma 1.3, p. 28] Let w be a meromorphic function in D,
w(0) = 0. If for some zo € D, max,;|<|;| [w(z)| = [w(z0)|, then it follows that
zow'(20) /w(z0) > 1.

2. Briot—-Bouquet Differential Subordination

In the first result, we find conditions on the real numbers g and 7 so that
p(z) < €*, whenever p(z) + (2p'(2))/(Bp(2) +7v) < V1 + z, where p € H with
p(0) = 1. This result gives the sufficient condition for f € A to belong to the
class 8 by substituting p(z) = zf'(2)/ f(2).

Theorem 2.1. Let 3,y € R satisfying max{—v/e, —ye+e/(1—v/2¢e)} < B < —ev.
Let p € H with p(0) = 1. If the function p satisfies

2p'(2)

+ ———— <V1i+z,
Bp(z) +~

p(2)

then p(z) < e*.

Proof. Define the functions ¢ : C2 x D — C and ¢ : D — C as follows:

Y(rys;z) =1+ and ¢(z)=vV1+z (4)

s
Bt
so that Q := ¢(@) = {weC:|w?—1] <1} and ¥(p(z),2p'(2);2) € Q for
z € D. To prove p(z) < e*, we use Lemma 1.1 so we need to show that
(e keite?"; z) ¢ Q which is equivalent to show that |(1(e®", ke'te®”; 2))2 —
1] > 1, where z € D, ¢t € [—m, 7] and k > 1. A simple computation and (4) yield
that

it . it it ke“ee”
P  kelet ;2) = ¢ + —p,
Be” +
it - it t
(e kettee” 22 <1 = L, )

for —m <t < 7, where

f(t) =(e***" cos(2sint)((y + kcost + Be“** cos(sint))*
— (ksint 4 Bsin(sint)e®*)?) — 2sin(2sint)e? 5t (ksint
+ Bsin(sint)e“ ) (y 4 kcost + Be St cos(sint)) + 5% sin?(sin t)e?<°%*
— (7 + Bet cos(sin t))2)2 + (2€2°** cos(2sint)(k sint
+ Bsin(sin t)e“®") (y + k cost + Be°! cos(sin t)
+ sin(2sint)e? St ((y + k cost + Be°5? cos(sin t

)2
— (ksint + Bsin(sint)e*)?) — 28 sin(sint)e*S (v + S cos(sin t)))2
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and

g(t) = (B2 sin®(sint)e?“*** + (y + Bet cos(sint))?)?.
Define the function h : [—m, 7] — R by h(t) = f(t) — g(t). Since h(—t) = h(¢),
we restrict to 0 < ¢ < 7. It can be easily verified that the function h attains its
minimum value either at t = 0 or t = 7. For k > 1, we have

h0) = (e*(ef+v+k)* = (ef +7)*)? — (eB+7)", (6)
nmy = (20 () - (Bs) @

The given relation 8 > —v/e gives e+~ > 0 so that e(k+eB+7) > v2(ef+7)
which implies €?(k + eB + )% — (e +7)? > (e + )% Thus, the use of (6)
yields h(0) > 0.

The given condition 1/(1—+/2¢) < y+8/e < 0leads to (y+3/e)(1—v2¢) < 1
which gives that —k 4+~ + /e < —1 4+~ + B/e < v/2e(y + B/e) which implies
((=k+~+pB/e)/e)? > 2(y+ B/e)? which further implies ((—k +~ + 3/e)/e)? —
(v + B/e)* > (v + B/e)®. Hence, by using (7), we get that h(mw) > 0. So,
h(t) > 0,(0 < t < m) and thus, (5) implies |(¢(e¢, keife?;2))2 — 1| > 1 and
therefore p(z) < e*. [

We will illustrate Theorem 2.1 by the following example:

Ezample 2.2. By taking 8 = 1 and v = ¢ (¢ > —1) in Theorem 2.1, we get
—1/e+1/(1 —v2¢e) < ¢ < —1/e. By taking 8 = 1, —1/e + 1/(1 — /2e) <
v < —=1/e,n =1, h(z) =1+ 2z, a=11in [18, Theorem 3.2d, p. 86], we get
Re(aB + ) > 0 and Bh(z) + v < Rag+y,n(2), where Rq f(2) is the open door
mapping given by Ry (z) := d(1+2)/(1—2)+(2fz)/(1—2?). Thus by the use
of [18, Theorem 3.2d, p. 86], we get

1y VT2V (T 4 1)
p(Z) =—+ D) dt
0 (Vz+1+1)

which satisy Eq. p(z) + 2p'(2)/(Bp(z) +v) = h(z). Then p(z) < e*.

Suppose that the function F' be given by Bernardi’s integral (2). Now we
discuss the sufficient conditions for the function F' to belong to various subclasses
of starlike functions. We will illustrate Theorem 2.1 by the following corollary.

Corollary 2.3.

(i) If the function f € S; and the conditions of Theorem 2.1 hold with § =1
and vy =c, then F' € S}.

(ii) If the function f'(z) < v/1+ z and the conditions of Theorem 2.1 hold with
B=0andy=c+1, then F'(2) < €*.
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Proof. (i) Let the function p : D — C be defined by p(z) = 2F’(z)/F(z). Then
p is analytic in D with p(0) = 1. Upon differentiating Bernardi’s integral given
by (2), we obtain

(c+1)f(2) = 2F'(2) + cF(2). (8)

A computation now yields

S )
f(z) p(z) +c
By taking § = 1 and 7 = ¢, the first part of the corollary follows from Theo-
rem 2.1.
(ii) By defining a function p by p(z) = F'(z) and using (8), we get

/ 2F"z)
= F .
o= e
By taking 8 = 0 and v = ¢ + 1, the result follows from Theorem 2.1. ]

In the following result, we derive conditions on the real numbers A, B, 5 and
50 that p(z)-+ (' () (Bp(2)+) < ¢ implies p(z) < (1+Az)/(1+Bz), (—1 <
B < A< 1), wherep € H with p(0) = 1. This result gives the sufficient condition
for f € A to belong to the class S*[A4, B] by substituting p(z) = zf'(2)/f(2).

Theorem 2.4. Let —1 < B < A <1 and 3,7 € R. Suppose that
i) (A-B)/(AFB(Q1FA)B+(1FB)) >+1FA)/(1FB)+e.
(i) B(1+ A)+~(1+ B) > 0.
Let p € H with p(0) = 1. If the function p satisfies

p(2) + zp'(2) .

- e

Bp(z) +

?

then p(z) < (14 Az)/(1 + Bz).

Proof. Define the functions P and w as follows:

zp'(2) p(z) -1
P(z)=p(z)+—-——"— and w(z)=—""="——— 9
() =2(2) Bp(z) + =) A — Bp(z) ©)
so that p(z) = (1 + Aw(2))/(1 + Bw(z)). Clearly, w(z) is analytic in D with
w(0) = 0. In order to prove p(z) < (14 Az)/(1 + Bz), we need to show that
|w(z)| < 1in D. If possible, suppose that there exists zp € D such that

max |w(z)| = |w(z)| =1,
|z|<|zol

then by Lemma 1.2, it follows that there exists k > 1 so that zow'(z0) = kw(zp).
Let w(zg) = e, (—m <t <) and G := AB + B~y. A simple calculation and by
using (9), we get

ke''(A — B) + (1 + Ae') (B + v + Ge™)

PE) = T B By + G

=:u+ v, (10)
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for —m <t < m. We derive a contradiction by showing |log P(2)|? > 1. This
later inequality is equivalent to

f(t) == 4(arg(u +iv))* + (log (u* +0v?))* =4 >0 (7w <t < ). (11)
From (10), we get

1
“= (B2 +2Bcost+1)((8+7)2+ G? +2G(B + ) cost) (GA+B)(F+7)
cos2t + cost(A(BG(2(B +7) + k) + G* + (B +7)(B + v + k)) — B*Gk
+2G(B+7)+B (G = (B+N(=B-7v+k))+(B+NABB+~v+k)

+B-Bk+7)+G*(AB+ 1)+ G(A(B+~+k)+ B(B+v—k)))

and

(A— B)sint (—~BGk + G* +2G(B +v) cost + (B+7)(B+ v+ k))
(B2+2Bcost+1)((B+7)%?+ G% +2G(B + ) cost) '

v =

Substituting these values of w and v in (11), we observe that f(¢) is an even
function of ¢ and so, it is enough to show that f(¢t) > 0 for ¢ € [0,n]. It can be
easily verified that the function f(¢) attains its minimum value either at t = 0
or t = m. We show that both f(0) and f(m) are non negative. Note that, for
k>1,
£(0) = —4+ d(arg v(k))* + (log(v*(k)))? (12)
and
F(m) = —4 + 4(arg(—=¢(k)))* + (log(¢” (k)))?, (13)

where ¢(k) := (A?2B+ A28+ By+~y+k)+ 8+ B(y—k)+~)/((1+B)(B(1 +
A) + (1 + B))) and ¢(k) = (A?8 — 248+ (A - 1)(B — 1)y — Ak + 8 +
Bk)/((B—1)(—AB+ B — By +7)). The function ¢ is increasing as ¢/(k) =
(A—B)/((1+B)(B(1+ A) +~(1+ B))) > 0 using the given condition (ii) and
therefore, the given hypothesis (i) yields that ¢(k) > (1) = (1+ A)/(1 + B) +
(A-B)/((1+ B)(B(1 4 A) +~(1+ B))) > e which gives that arg (k) = 0 and
(log(v2(k)))? > (2loge)? = 4. Thus, the use of (12) yields f(0) > 0.

The function ¢ is increasing as ¢'(k) = (A — B)/((1 — B)(B(1 — A) + (1 —
B))) > 0 using the given condition (ii) and therefore, the given hypothesis (i)
yields that 6(k) > 6(1) = —(1— A)/(1— B)+ (A— B)/ ((1— B)(B(1— A)+(1 -
B))) > e which further implies arg(—¢(k)) = m and (log(¢?(k)))? > (2loge)? =
4. Hence, by using (13), we get f(7) > 472 > 0. This completes the proof. |

We will illustrate Theorem 2.4 by the following example:
Ezample 2.5. By taking A =1/2, B=-1/2, f=1and vy =c¢ (¢ > —1) in

Theorem 2.4, we get —1/3 < ¢ < (1 —e)/(1+ 3e). By taking § =1, —1/3 <
vy<(1-¢e)/(14+3e),n=1, h(z) =€*, a =1 in [18, Theorem 3.2d, p. 86], we
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get Re(af +y) > 0 and Bh(z) +7v < Rag+y,n(2), where Ry f(2) is the open door
mapping given by Ry f(z) :=d(1 + z)/(1 — 2) + (2fz)/(1 — 2%). Thus by using
[18, Theorem 3.2d, p. 86], we get
1
p(Z) — / tl—'ye—Chi(tz)-l—Chi(z)—Shi(tz)+Shi(z) di — v
0

which satisy Eq. p(z) + 2zp'(2)/(Bp(z) +7v) = h(2). Then p(z) < (2+2)/(2 - 2).
Here, Chi(z) and Shi(z) are the hyperbolic cosine integral function and the
hyperbolic sine integral function respectively defined as follows:

* sinh(t)

Chi(z)=ﬂ+log(z)+/ %dt and Shi(z):/ dt,
0 0

where 7 is the Euler’s constant.

The next corollary is obtained by substituting p(z) = zf'(2)/f(z) with v = 0,
B=0and A=1—-a, (0 <a<1)in Theorem 2.4.

Corollary 2.6. Let 0 < o < 1 and B > 0 satisfy the conditions o +e + 371 <
(aB)™t and 1 —a > B(2 — a)(e — 2 + «). If the function f € A satisfies the

subordination
SAEIRYNE A I (CA PP

fiz) "B i) f2)

then f € S;.

Our next corollary deals with the class R[A, B] defined by

1+ Az
1+ Bz’

R[A, B] = {feA:f’(z)<

The two parts of the following corollary are obtained by taking p(z) to be
2F'(2)/F(z) with 8 = 1, v = cand p(z) = F'(z) with 8 =0, y = c+ 1
respectively in Theorem 2.4.

Corollary 2.7.
(i) If the function f € 8 and the conditions of Theorem 2.4 hold with =1
and v = ¢, then F € S*[A, BJ.
(ii) The function f'(z) < e* and the conditions of Theorem 2.4 hold with 8 =0
and v =c+1, then F € R[A, BJ.

In the next result, we find the conditions on the real numbers A, B, § and ~

so that p(z) < v/1 + z, whenever p(z)+(zp'(2))/(Bp(z)+7) < (14+Az)/(1+ Bz),
—1 < B < A <1, where p € H with p(0) = 1. As an application of the next
result, it provides sufficient conditions for f € A to belong to the class S7.

Theorem 2.8. Let —1 < B < A <1 and 3,7 € R satisfy the following conditions:
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(i) 1+4(V2-1)8 - 2(V2-2)y > B(=24(26 + v27) + B(1 + 4(V28+7))).
(i) (1+4(vV2-1)8-2(V2-2)7)? > (-24(28+v27) + B(1+4(V28+7)))>.

Let p € H with p(0) = 1. If the function p satisfies

2p'(2) 1+ Az

P By e ST B
then p(z) < 1+ z.
Proof. Define the functions P and w as follows:
Py =p() + =2 and w(e) =) -1 (14)
Bp(2) + 7

which implies p(z) = /1 4+ w(z). Clearly, w(z) is analytic in I with w(0) = 0.
In order to complete our proof, we need to show that |w(z)| < 1 in D. Assume
that there exists zg € D such that

max |w(z)| = |w(z)] =1,
2| <20

then by Lemma 1.2, it follows that there exists & > 1 so that zow’(z0) = kw(zo).
Let w(zg) = €%, (—7 <t < 7). By using (14), we get

2)=+/1+w(z 2w'(2) .
P bt ()+2\/1+w(z)(6\/1+w(2)+’y)

A simple computation shows that

ke +2(1+€') (fy + BV1+ e“)

P(z) = —nm <t
= 2TT e (7 +BVITer) =t=m
and
Pt 50 (s
‘A—BP@»"gw (Fr<t<m) (15)
where

f(t) =((2Bcost + 2(3 — 7)) sin(arg(1 + €')/2)/2 cos(t/2)
+sint(k + 2(y + B(—1 + cos(arg(1l + &ezv"’)/Q)\/W))))2
+ (= cost(k + 2(v + B(—1 + cos(arg(1 + €") /2)1/2 cos(t/2))))
+ 2B sintsin(arg(1 + ¢™)/2)1/2 cos(t/2) + 2(8 — 7)
(1 — cos(arg(1 + €™)/2) /2 cos(t/2)))”
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and
g(t) =(—2A(Bsint + ysin(arg(1 + €')/2)/2 cos(t/2))
+4BB cos?(t/2)\/2 cos(t/2) sin(arg(1 + ') /2) + Bsint(k + 2y

+ 2B cos(arg(1 + e')/2)/2 cos(t/2)))2 + (—4ABcos®(t/2)
+ B(k + 2v) cost + 2y — 2B sint sin(arg(1 + ) /2)/2 cos(t/2)

+ 2(—Avy + BB cost + ) cos(arg(1 + e“)/2)\/2cos(t/2))2.

Define h(t) = f(t) — g(t). Since h(t) is an even function of ¢, we restrict to
0 <t < 7. Tt can be easily verified that for both the cases (i) and (ii), the
function h(t) attains its minimum value either at ¢ = 0 or ¢ = m. Note that for
k>1,h(r) = (1 - B*k?> >0 and

S(k) = h(0) = (4(V2 —1)8 —2(V2 — 2)y + k)2 — (B(4(V2B + ) + k)

16
— 2428+ V27))% (16)
The function S’ is increasing as S” (k) = 2(1 — B?) > 0 and therefore, the given
hypothesis (i) yields that S'(k) > S'(1) = 2(1 +4(v2 — 1)3 — 2(v/2 — 2)y) —
2B(—2A(28 + V2y) + B(1 +4(V2B +7))) > 0 which gives that S(k) > S(1) =
(1+4(V3 - 1B — 23 — 2)7)° — (~2A4(28 + v37) + B(1 + 4(v28 + 7))
Thus, the use of given condition (ii) and (16) yields h(0) > 0. So, h(t) > 0 for
all ¢ € [0, 7] and therefore, (15) implies |(P(z0) — 1)/(A — BP(2p))| > 1. This
contradicts the fact that P(z) < (1 + Az)/(1 4+ Bz) and completes the proof. m

The next corollary is obtained by substituting p(z) = zf'(2)/f(z) with v = 0,
A=1-2a,(0<a<1)and B=—1in Theorem 2.8.

Corollary 2.9. Let 0 < o < 1 and f € A. If the function f satisfies the
subordination

zf'(z) 1 2f"(z)  zf'(2) 14+ (1—2a)z 1
) B (” OIS ) T 1 (4<a—x/§>

then f € Sy.

<B<O>a

By taking p(z) = zF'(2)/F(z) with 8 = 1 and v = ¢ in Theorem 2.8 gives
the following corollary:

Corollary 2.10. Let —1 < B < A <1 satisfy the following conditions:
(i) 14+4(v/2—1) = 2(v/2—2)c > B(—2A(2+V2¢) + B(1 +4(v/2 + ¢))).
(i) (1+4(vV2—-1)—2(vV2—-2)c)? > (—24(2+ V2¢c) + B(1 + 4(V2 + )%
If f € S*[A, B] then F € S;.
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By taking p(z) = F'(z) with 8 = 0 and v = ¢+ 1 in Theorem 2.8 gives the
following corollary:

Corollary 2.11. Suppose that —1 < B < A <1 satisfy the following conditions:
(i) 5—2v2—2(v2—2)c > B(—2v2(c+ 1) A+ (5 + 4¢)B).
(il) (5-2v2—2(v2-2)c)? > (—2v2(c+ 1)A + (5 + 4¢)B)2.
If f € R[A, B] then F'(z) < /1 + 2.

In the next result, we compute the conditions on the real numbers A, B,
and «y so that p(z)+(2p'(2))/(Bp(z)+7v) < (1+Az2)/(1+Bz),(-1< B< A<1)
implies p(z) < e?, where p € H with p(0) = 1. As an application of the next
result, it provides sufficient conditions for f € A to belong to the class S;.

Theorem 2.12. Let —1 < B < A <1 and 5,7 € R satisfy the following condi-
tions:
(i) e?B(1 = B?) +e(~=B(-AB+ By+B) - f+7y+1) +7(AB - 1) > 0.
(i) (e((A+e—-1)—(ef+1)B+1)+~v(A+e(l—B)—1))(e(—(A—e+1)8+
Bef+1)+1)+v(-A+e(B+1)—1)) >0.
(iii) e(B(1 — AB)+ B*(y—1) —y+1)+e?y(1— AB)+ 3(B* — 1) > 0.
(iv) (e((A—1)8+ (1 - B)(y - 1)) +€*(A—1)y+ B(1 — B))(—e((A+1)8 +
(B+1)(1—7)) — e2(A+1)y+B(B+1)) > 0.
Let p € H with p(0) = 1. If the function p satisfies

2p'(2) 1+ Az
Bp(z)+~ 14 Bz’

p(z) +

then p(z) < e*.
Proof. Define the functions ¢ : C2 x D — C and ¢ : D — C as follows:

B 14+ Az
1+ Bz

s
Br +

so that 2 :=¢(D) = {w € C: |(w—1)/(A — Bw)| < 1} and ¥ (p(2), z2p'(z);2) €
Q for z € D. To prove p(z) < e*, we use Lemma 1.1 so we need to show that
V(e ke'tec";z) ¢ Q which is equivalent to show that |(1(e¢", kete®; 2) —
1)/(A— Bip(e®”  ke'e; 2))| > 1, where z € D, t € [-7, 7] and k > 1. A simple
computation and (17) yield that

Ur,s;z) =r+ and ¢q(z) (17)

it . it it keitee“
e Jke'e® sz) =€ +—— (—m<t<m
W ) B i )
and 2
et Lett et -1 t
P(e®  ke'te ;z) —. @ (-7 <t <), (18)

A= Bip(e", ke'le”'; 2) g(t)
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where
f(t) =e3°5t(2Bksint sin(sint) + 28k cost cos(sint) — 23 cos(sin t)
+ 2By cos(sint)) 4+ €2 ((B — v)? + k* — 2Bk cost 4 27k cost
+ 2By sin?(sint) — 287 cos?(sint)) + €5 (2yk sin ¢ sin(sin t)

— 2yk cost cos(sint) 4+ 26y cos(sint) — 272 cos(sint)) + F2et St 4 42

and

g(t) =A%~% + 32 B2t L 23Be3 S ((By — Af) cos(sint) + Bk cos(t — sint))
+ 2 B(B(y? 4+ k%) — 24B7) + 2B(By — AB)k cost
— 2ABfycos(2sint) + A?B?) 4 2A7e°*St((AB — By) cos(sint)
— Bk cos(t +sint)).

Define h(t) = f(t) — g(t). Since h(—t) = h(t), we restrict to 0 < ¢ < w. It can be

easily verified that the function h(t) attains its minimum value either at ¢ = 0
ort = 7. For k > 1, we have

(k) :=h(0) = *((1 — A*)B? + 2k(B(AB — 1) + (1 — B?*)y) + 43~(AB
1)+ (1 - B+ k) +2ey(—A’B+ (AB = 1)(v + k) + )

+2e*B(B(AB — 1) + (1 — B*)(y + k) + €' 5%(1 — B?) 1)
+ (1 =A%)
and
h(m) =;—1(€((A —1)B+ (1= B)(y—k) +e*(A-1)y+ (1 - B)) (20)

(e((L+ DB+ (B+1)(k =) +e*(A+ 1)y = BB +1)) = 9(k).

The function ¢’ is increasing as ¢” (k) = 2(1 — B?)e? > 0 and therefore, the
given hypothesis (i) yields that ¢'(k) > ¢'(1) = 2e(e(—B(—AB + By + B) —
B+7v+1)+~(AB — 1) + €28(1 — B%)) > 0 which gives that ¢(k) > ¢(1) =
(e((A+e—-1)8—(ef+1)B+1)+~v(A+e(l—B)—1))(e(—(A—e+1)8+ B(ef +
1)+ 1)+~v(—A+e(B+1)—1)). Thus, the use of given condition (ii) and (19)
yields h(0) > 0.

In view of (iii), observe that ¢”(k) = 2(1 — B?)/e? > 0 and therefore,
min ¢’ (k) = '(1) = 2(e(B(1— AB) + B*(y—1) —y+1) +e*y(1 - AB) + 3(B? —
1))/e® > 0 which implies min (k) = (1) = ((e((A—1)B+(1—B)(y—1))+e*(A—
Dy+8(1—=B))(—e((A+1)B+(B+1)(1—7))—e*(A+1)y+B(B+1)))/e*. Hence,
the use of given condition (iv) and (20) yields that h(w) > 0. So, h(t) > 0,(0 <
t < ) and thus, (18) implies |(1p(e¢", keite®; 2)—1) /(A—Bip(ec" , ke'te?'; 2))| >
1 and therefore, p(z) < e*. |

The next corollary is obtained by substituting p(z) = zf'(2)/f(z) with v = 0,
B=0and A=1-a, (0 <a<1)in Theorem 2.12.
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Corollary 2.13. Suppose 0 < o < 1 and 8 > 1/(1 — e) satisfy the conditions
(—aB+pe+1)(Bla+e—2)+1) = 0 and (B—e((2—a)B+1))(B+e(—af—1)) > 0.
If the function f € A satisfies the condition

') 1 (1+ 2f"(2) zf’(Z)) _1‘ “1-a

f'(z)  f(z)

[ B

then f € S;.

The two parts of the following corollary are obtained by taking p(z) =
zF'(2)/F(z) with § = 1, v = c and p(z) = F'(z) with 8 =0, vy = c+1
respectively in Theorem 2.12.

Corollary 2.14.
(i) If the function f € S*[A, B] and the conditions of the Theorem 2.12 hold
with 8 =1 and v =c, then F € S}.
(ii) The function f € R[A, B] and the conditions of Theorem 2.12 hold with
B=0and~y=c+1, then F'(2) < €*.

In the next result, we find the conditions on the real numbers A, B, § and
v so that p(z) < (1 4+ Az)/(1+ Bz),(—1 < B < A < 1), whenever p(z) +
(zp'(2))/(Bp(2) +7v) € Qp, where p € H with p(0) = 1. As an application of
the next result, it provides sufficient conditions for f € A to belong to the class
S*[A, BJ.

Theorem 2.15. Let -1 < B< A<l and B,y €R. Fork>1and0<m <1,
assume that G := A + By, L := k +  + . Further assume that
(i) BG(B+~) > 0.
(i) (G(AL + 4(3 + 7)) — 2B(AGL + 2(8 + 7)? + 2G?) + B*G(A(8 + 7) +
L))(G (AL — 4(B+7))+B (-2AGL + 4(8 + 7)* + 4G?) + BG(L—4(B+
7)) = 2G(A — B)?*(GL(A’L — 4(B + 7)) — 2B(AGL? + 2G*(L — 2(B +
7)) = 2L(B +7)(=B — 7 +2L)) + B*GL(L — 4(8 +7)))-
(iii) SG(A— B)2(3+ 7+ k) <2(B — 1?G(8+7) + 2B+ 7 — G)*.
(iv) 1+48+~v>0,G >0.
(v) 4m* (A= B)?*(B+~v+G+1)2 > (B+1)?*(8+~+ G)*.
Let p € H with p(0) = 1. If the function p satisfies
zp'(2)

p(z) + Bp(2) + 1 < ¢par(2),

then p(z) < (1 + Az)/(1 + Bz).

Proof. Define the functions P and w as given by Eq. (9) which implies p(z) =
(14 Aw(2))/(1 + Bw(z)). Proceeding as in Theorem 2.4, we need to show that
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|w(z)| < 1in D. If possible suppose that there exists zp € D such that

max |w(z)| = |w(z0)] =1,
|z|<20]

then by Lemma 1.2, it follows that there exists k > 1 so that zow'(z0) = kw(z0).
Let w(zg) = e, (—m <t < 7). A simple calculation and by using (9), we get

ke'(A— B) + (1 + Ae®) (B +~ + Ge'™)

P(z) = (4 Bet) (B4~ + Geit) (—m <t <m). (21)
Define the function h by
h(z) =u+iv=+/(P(z) — 1)n?/2. (22)

We show that |(e?(*0) — 1)/(eM*0) 4 1)|2 > 1; this condition is same as the
inequality Re e(*0) < 0. This last inequality is indeed equivalent to cosv < 0 or
1/2 < |v/mw| < 1. By using the definition of h given in (22) together with (21),
we get ‘

v _ VA= B|m(t)||Ge™ + L|'/?

T \/§|1+Beit|l/2|Geit +ﬁ+’y|1/2
where m(t) = sin (arg ((e"(A — B)(Ge™ + L)) /((1 + Be™)(Ge' + 3 +7))) /2) .

(a) We will first show that |v/7| < 1 which by using the fact that |m(t)| <1

and (23) is same as to show that f(¢t) > 0 (—7 <t <), where

f(t) =4(1+ B® +2Bcost)((8+7)* + G* +2(8 + 7)G cost)
— (A= B)*(L* + G* + 2LG cost).

(—r<t<m), (23)

After substituting x = cost (—7 < t < =), the above inequality reduces to
F(x) >0 for all x with —1 <z <1, where

F(x) = 41+ B?+2Bz)((B+7)*4+G*+2(8+7)Gz) — (A— B)?(L*+G*+2LGx).

A simple computation shows that for
1

" 16BG(5+7)
+B*G(L —4(8 +7))),
F'(z9) = 0and F"(z) = 32BG(B8+7) > 0 by the given condition (i). Therefore,
F(z) > F(x). Observe that

1
168G+
+ B*G(4(B+7) + L)) (G(A’L — 4(8 +7))
+B?G(L —4(8 + 7)) + B(~2AGL + 4(8 +7)°
+4G?)) —2G(A - B)>(GL(A’L — 4(B + 7))
+ B?GL(L — 4(B8 +7)) — 2B(AGL?
+2G*(L = 2(B+7)) = 2L(B +7)(=B — v +2L))))

o (G (A2L — 4(B+7)) — 2B (AGL +2(8 +7)* + 2G?)

F(zo) = G(A’L +4(B+7)) — 2B(AGL +2(8 +)* + 2G?)
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and F'(xg) > 0 by the given condition (ii).
(b) We will next show that |v/7| > 1/2 which by using (23) is same as to
show that ¢g(t) > 0 (—7 < ¢ < 7), where

g(t) = 4(A — B)*m*(t)(L? + G* + 2LG cost) — (1 4+ B% +2Bcost)((B +7)*
+G? +2(8 +7)G cost)

After substituting x = cost (—7 <t < 7) and m = m(t), the above inequality
reduces to H(x) > 0 for all z with —1 < 2 < 1, where

H(x) = 4(A—B)*m*(L*4+G?+2LGxz)—(1+B>*+2Bx) ((f+7)?+G*+2(8+7)Gx).

In view of (i), (iii), (iv) and the fact that —1 < m < 1, we see that H"(z) =
—8BG(B +v) < 0 and hence H'(z) < H'(-1) = 8m4G(A B) B+ +
k) —2(B — 1)’G(B +v) — 2B(-G + 8+ v)* < 0. Thus, H(z) > H(1) =

mi(A— BR(B+7+ G+ k) — (B+ 123+ +G)? = G(k). Using (iv),
we observe that (k) = 8m*(A — B)? > 0 and hence for k > 1, we have
P'(k) > /(1) = 8m*(A — B)?(8+~v+ G +1) > 0. Thus by using (v), we get
H(x) > ¢(k) > (1) = 4m* (A= B)*(B+7+ G+ 1) = (B+1)*(B+7+G)* > 0.
This completes the proof. ]

The next corollary is obtained by substituting p(z) = zf'(2)/f(z) with v = 0,
B=—-1land A=1-2a, (0 <« <1)in Theorem 2.15.

Corollary 2.16. Let 1/2 < a <1, —=1 < 3 <0 and k > 1 satisfy the conditions
(202 4+a—3)2B%+(4a*—12a3+13a%+20a—3) k2 +2(4a* - 2003 +17a% +2a—3) Bk <
0 and (a?+2a—1)32? < 4(a—1)2(2a—1)B(B+k). If the function f € A satisfies
the subordination

S 1 ) )
f()+ﬁ<1+f(2) )

> =< ¢par(2),

then f € §*(a).
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