Briot-Bouquet Differential Subordination and Bernardi's Integral Operator

Kanika Sharma
Department of Mathematics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi-110 021, India
E-mail: ksharma@arsd.du.ac.in; kanika.divika@gmail.com
Rasoul Aghalary
Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran
E-mail: raghalary@yahoo.com; r.aghalary@urmia.ac.ir
V. Ravichandran
Department of Mathematics, National Institute of Technology, Tiruchirappalli-620 015, India
E-mail: ravic@nitt.edu; vravi68@gmail.com

Received 17 January 2021
Accepted 10 July 2021
Communicated by H.M. Srivastava
Dedicated to Prof. Dato' Indera Rosihan M. Ali
AMS Mathematics Subject Classification(2020): 130C80, 30C45

Abstract

The conditions on A, B, β and γ are obtained for an analytic function p defined on the open unit disc \mathbb{D} and normalized by $p(0)=1$ to be subordinate to $(1+A z) /(1+B z),-1 \leq B<A \leq 1$ when $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ is subordinate to e^{z}. The conditions on these parameters are derived for the function p to be subordinate to $\sqrt{1+z}$ or e^{z} when $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ is subordinate to $(1+A z) /(1+B z)$. The conditions on β and γ are determined for the function p to be subordinate to e^{z} when $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ is subordinate to $\sqrt{1+z}$. Related result for the function $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ to be in the parabolic region bounded by the $\operatorname{Re} w=|w-1|$ is investigated. Sufficient conditions for the Bernardi's integral operator to belong to the various subclasses of starlike functions are obtained as applications.

Keywords: Starlike functions; Briot-Bouquet differential subordination; Bernardi's integral operator; Lemniscate of Bernoulli; Parabolic starlike.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disc \mathbb{D}. For a natural number n, let $\mathcal{H}[a, n]$ be the subset of \mathcal{H} consisting of functions p of the form $p(z)=a+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots$. Suppose that h is a univalent function defined on \mathbb{D} with $h(0)=a$ and the function $p \in \mathcal{H}[a, n]$. The Briot-Bouquet differential subordination is the first order differential subordination of the form

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \tag{1}
\end{equation*}
$$

where $\beta \neq 0, \gamma \in \mathbb{C}$. This particular differential subordination has many interesting applications in the theory of univalent functions. Ruschewyh and Singh [28] proved that if the function $p \in \mathcal{H}[1,1], \beta>0, \operatorname{Re} \gamma \geq 0$ and $h(z)=(1+z) /(1-z)$ in (1) and the function $q \in \mathcal{H}$ satisfy the differential equation

$$
q(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}=\frac{1+z}{1-z}
$$

then $\min _{|z|=r} \operatorname{Re} p(z) \geq \min _{|z|=r} \operatorname{Re} q(z)$. More related results are proved in [17, $19,8]$. For $c>-1$ and $f \in \mathcal{H}[0,1]$, the function $F \in \mathcal{H}[0,1]$ given by Bernardi's integral operator is defined as

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{2}
\end{equation*}
$$

There is an important connection between Briot-Bouquet differential equations and the Bernardi's integral operator. If we set $p(z)=z F^{\prime}(z) / F(z)$, where F is given by (2), then the functions f and p are related through the following Briot-Bouquet differential equation

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+c}
$$

Several authors have investigated results on Briot-Bouquet differential subordination. For example, Ali et al. [3] determined the conditions on A, B, D and E for $p(z) \prec(1+A z) /(1+B z)$ when $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ is subordinate to $(1+D z) /(1+E z),(A, B, D, E \in[-1,1])$. For related results, see [4, $8,17,19,21,22,28]$. Recently, Kumar and Ravichandran [14] obtained the conditions on β so that $p(z)$ is subordinate to e^{z} or $(1+A z) /(1+B z)$ whenever $1+\beta p(z) / p^{\prime}(z)$ is subordinate to $\sqrt{1+z}$ or $(1+A z) /(1+B z),(-1 \leq B<$ $A \leq 1$). We investigate generalised problems for regions that were considered recently by many authors. In Section 2, we find conditions on γ and β so that
$p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)$ is subordinate to $\sqrt{1+z}$ implies $p(z) \prec e^{z}$. Conditions on A, B, β and γ are also determined so that $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma) \prec$ $(1+A z) /(1+B z)$ implies $p(z) \prec \sqrt{1+z}$ or e^{z}. We determine conditions on A, B, β and γ so that $p(z) \prec(1+A z) /(1+B z),(-1 \leq B<A \leq 1)$ when $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma) \prec e^{z}$ or $\varphi_{P A R}(z)$. The function $\varphi_{P A R}: \mathbb{D} \rightarrow \mathbb{C}$ is given by

$$
\begin{equation*}
\varphi_{P A R}(z):=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, \quad \operatorname{Im} \sqrt{z} \geq 0 \tag{3}
\end{equation*}
$$

and $\varphi_{P A R}(\mathbb{D})=\left\{w=u+i v: v^{2}<2 u-1\right\}=\{w: \operatorname{Re} w>|w-1|\}=: \Omega_{P}$. As an application of our results, we give sufficient conditions for the Bernardi's integral operator to belong to the various subclasses of starlike functions which we define below.

Let \mathcal{A} be the class of all functions $f \in \mathcal{H}$ normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of univalent (one-to-one) functions. For an analytic function φ with $\varphi(0)=1$, let

$$
\mathcal{S}^{*}(\varphi):=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)\right\} .
$$

This class unifies various classes of starlike functions when $\operatorname{Re} \varphi>0$. Shanmugam [30] studied the convolution properties of this class when φ is convex while Ma and Minda [15] investigated the growth, distortion and coefficient estimates under less restrictive assumption that φ is starlike and $\varphi(\mathbb{D})$ is symmetric with respect to the real axis. Notice that, for $-1 \leq B<A \leq 1$, the class $\mathcal{S}^{*}[A, B]:=\mathcal{S}^{*}((1+A z) /(1+B z))$ is the class of Janowski starlike functions $[10,23]$. For $0 \leq \alpha<1$, the class $\mathcal{S}^{*}[1-2 \alpha,-1]=: \mathcal{S}^{*}(\alpha)$ is the familiar class of starlike functions of order α, introduced by Robertson [26]. The class $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ is the class of starlike function. The class $\mathcal{S}_{P}:=\mathcal{S}^{*}\left(\varphi_{P A R}\right)$ is the class of parabolic starlike functions, introduced by Rønning [29], consists of function $f \in \mathcal{A}$ satisfying

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad z \in \mathbb{D}
$$

Sokól and Stankiewicz [38] introduced and studied the class $\mathcal{S}_{L}^{*}:=\mathcal{S}^{*}(\sqrt{1+z})$; the class \mathcal{S}_{L}^{*} consists of functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right-half of the lemniscate of Bernoulli given by $\Omega_{L}:=$ $\left\{w \in \mathbb{C}:\left|w^{2}-1\right|<1\right\}$. Another class $\mathcal{S}_{e}^{*}:=\mathcal{S}^{*}\left(e^{z}\right)$, introduced recently by Mendiratta et al. [16], consists of functions $f \in \mathcal{A}$ satisfying the condition $\left|\log \left(z f^{\prime}(z) / f(z)\right)\right|<1$. There has been several works $[9,2,13,24,31,36,37$, $25,35,34,32,1,39,33]$ related to these classes.

The following results are required in our investigation.

Lemma 1.1. [20, Theorem 2.1, p. 2] Let $\Omega \subset \mathbb{C}$ and suppose that $\psi: \mathbb{C}^{2} \times \mathbb{D} \rightarrow \mathbb{C}$ satisfies the condition $\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right) \notin \Omega$, where $z \in \mathbb{D}, t \in[0,2 \pi]$ and $k \geq 1$. If $p \in \mathcal{H}[1,1]$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for $z \in \mathbb{D}$, then $p(z) \prec e^{z}$ in \mathbb{D}.

Lemma 1.2. [27, Lemma 1.3, p. 28] Let w be a meromorphic function in \mathbb{D}, $w(0)=0$. If for some $z_{0} \in \mathbb{D}, \max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|$, then it follows that $z_{0} w^{\prime}\left(z_{0}\right) / w\left(z_{0}\right) \geq 1$.

2. Briot-Bouquet Differential Subordination

In the first result, we find conditions on the real numbers β and γ so that $p(z) \prec e^{z}$, whenever $p(z)+\left(z p^{\prime}(z)\right) /(\beta p(z)+\gamma) \prec \sqrt{1+z}$, where $p \in \mathcal{H}$ with $p(0)=1$. This result gives the sufficient condition for $f \in \mathcal{A}$ to belong to the class \mathcal{S}_{e}^{*} by substituting $p(z)=z f^{\prime}(z) / f(z)$.

Theorem 2.1. Let $\beta, \gamma \in \mathbb{R}$ satisfying $\max \{-\gamma / e,-\gamma e+e /(1-\sqrt{2} e)\} \leq \beta \leq-e \gamma$. Let $p \in \mathcal{H}$ with $p(0)=1$. If the function p satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \sqrt{1+z}
$$

then $p(z) \prec e^{z}$.
Proof. Define the functions $\psi: \mathbb{C}^{2} \times \mathbb{D} \rightarrow \mathbb{C}$ and $q: \mathbb{D} \rightarrow \mathbb{C}$ as follows:

$$
\begin{equation*}
\psi(r, s ; z)=r+\frac{s}{\beta r+\gamma} \quad \text { and } \quad q(z)=\sqrt{1+z} \tag{4}
\end{equation*}
$$

so that $\Omega:=q(\mathbb{D})=\left\{w \in \mathbb{C}:\left|w^{2}-1\right|<1\right\}$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for $z \in \mathbb{D}$. To prove $p(z) \prec e^{z}$, we use Lemma 1.1 so we need to show that $\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right) \notin \Omega$ which is equivalent to show that $\mid\left(\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)\right)^{2}-$ $1 \mid \geq 1$, where $z \in \mathbb{D}, t \in[-\pi, \pi]$ and $k \geq 1$. A simple computation and (4) yield that

$$
\begin{align*}
\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right) & =e^{e^{i t}}+\frac{k e^{i t} e^{e^{i t}}}{\beta e^{e^{i t}}+\gamma} \\
\left|\left(\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)\right)^{2}-1\right|^{2} & =: \frac{f(t)}{g(t)} \tag{5}
\end{align*}
$$

for $-\pi \leq t \leq \pi$, where

$$
\begin{aligned}
f(t)= & \left(e ^ { 2 \operatorname { c o s } t } \operatorname { c o s } (2 \operatorname { s i n } t) \left(\left(\gamma+k \cos t+\beta e^{\cos t} \cos (\sin t)\right)^{2}\right.\right. \\
& \left.-\left(k \sin t+\beta \sin (\sin t) e^{\cos t}\right)^{2}\right)-2 \sin (2 \sin t) e^{2 \cos t}(k \sin t \\
& \left.+\beta \sin (\sin t) e^{\cos t}\right)\left(\gamma+k \cos t+\beta e^{\cos t} \cos (\sin t)\right)+\beta^{2} \sin ^{2}(\sin t) e^{2 \cos t} \\
& \left.-\left(\gamma+\beta e^{\cos t} \cos (\sin t)\right)^{2}\right)^{2}+\left(2 e^{2 \cos t} \cos (2 \sin t)(k \sin t\right. \\
& \left.+\beta \sin (\sin t) e^{\cos t}\right)\left(\gamma+k \cos t+\beta e^{\cos t} \cos (\sin t)\right) \\
& +\sin (2 \sin t) e^{2 \cos t}\left(\left(\gamma+k \cos t+\beta e^{\cos t} \cos (\sin t)\right)^{2}\right. \\
& \left.\left.-\left(k \sin t+\beta \sin (\sin t) e^{\cos t}\right)^{2}\right)-2 \beta \sin (\sin t) e^{\cos t}\left(\gamma+\beta e^{\cos t} \cos (\sin t)\right)\right)^{2}
\end{aligned}
$$

and

$$
g(t)=\left(\beta^{2} \sin ^{2}(\sin t) e^{2 \cos t}+\left(\gamma+\beta e^{\cos t} \cos (\sin t)\right)^{2}\right)^{2}
$$

Define the function $h:[-\pi, \pi] \rightarrow \mathbb{R}$ by $h(t)=f(t)-g(t)$. Since $h(-t)=h(t)$, we restrict to $0 \leq t \leq \pi$. It can be easily verified that the function h attains its minimum value either at $t=0$ or $t=\pi$. For $k \geq 1$, we have

$$
\begin{align*}
h(0) & =\left(e^{2}(e \beta+\gamma+k)^{2}-(e \beta+\gamma)^{2}\right)^{2}-(e \beta+\gamma)^{4} \tag{6}\\
h(\pi) & =\left(\left(\frac{\beta / e+\gamma-k}{e}\right)^{2}-\left(\frac{\beta}{e}+\gamma\right)^{2}\right)^{2}-\left(\frac{\beta}{e}+\gamma\right)^{4} \tag{7}
\end{align*}
$$

The given relation $\beta \geq-\gamma / e$ gives $e \beta+\gamma \geq 0$ so that $e(k+e \beta+\gamma)>\sqrt{2}(e \beta+\gamma)$ which implies $e^{2}(k+e \beta+\gamma)^{2}-(e \beta+\gamma)^{2}>(e \beta+\gamma)^{2}$. Thus, the use of (6) yields $h(0)>0$.

The given condition $1 /(1-\sqrt{2} e) \leq \gamma+\beta / e \leq 0$ leads to $(\gamma+\beta / e)(1-\sqrt{2} e) \leq 1$ which gives that $-k+\gamma+\beta / e \leq-1+\gamma+\beta / e \leq \sqrt{2} e(\gamma+\beta / e)$ which implies $((-k+\gamma+\beta / e) / e)^{2} \geq 2(\gamma+\beta / e)^{2}$ which further implies $((-k+\gamma+\beta / e) / e)^{2}-$ $(\gamma+\beta / e)^{2} \geq(\gamma+\beta / e)^{2}$. Hence, by using (7), we get that $h(\pi) \geq 0$. So, $h(t) \geq 0,(0 \leq t \leq \pi)$ and thus, (5) implies $\left|\left(\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)\right)^{2}-1\right| \geq 1$ and therefore $p(z) \prec e^{z}$.

We will illustrate Theorem 2.1 by the following example:

Example 2.2. By taking $\beta=1$ and $\gamma=c(c>-1)$ in Theorem 2.1, we get $-1 / e+1 /(1-\sqrt{2} e) \leq c \leq-1 / e$. By taking $\beta=1,-1 / e+1 /(1-\sqrt{2} e) \leq$ $\gamma \leq-1 / e, n=1, h(z)=\sqrt{1+z}, a=1$ in [18, Theorem 3.2d, p. 86] , we get $\operatorname{Re}(a \beta+\gamma)>0$ and $\beta h(z)+\gamma \prec R_{a \beta+\gamma, n}(z)$, where $R_{d, f}(z)$ is the open door mapping given by $R_{d, f}(z):=d(1+z) /(1-z)+(2 f z) /\left(1-z^{2}\right)$. Thus by the use of $[18$, Theorem 3.2d, p. 86], we get

$$
p(z)=-\gamma+\int_{0}^{1} \frac{t^{-\gamma} e^{2 \sqrt{z+1}-2 \sqrt{t z+1}}(\sqrt{t z+1}+1)^{2}}{(\sqrt{z+1}+1)^{2}} d t
$$

which satisy Eq. $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)=h(z)$. Then $p(z) \prec e^{z}$.

Suppose that the function F be given by Bernardi's integral (2). Now we discuss the sufficient conditions for the function F to belong to various subclasses of starlike functions. We will illustrate Theorem 2.1 by the following corollary.

Corollary 2.3.

(i) If the function $f \in \mathcal{S}_{L}^{*}$ and the conditions of Theorem 2.1 hold with $\beta=1$ and $\gamma=c$, then $F \in \mathcal{S}_{e}^{*}$.
(ii) If the function $f^{\prime}(z) \prec \sqrt{1+z}$ and the conditions of Theorem 2.1 hold with $\beta=0$ and $\gamma=c+1$, then $F^{\prime}(z) \prec e^{z}$.

Proof. (i) Let the function $p: \mathbb{D} \rightarrow \mathbb{C}$ be defined by $p(z)=z F^{\prime}(z) / F(z)$. Then p is analytic in \mathbb{D} with $p(0)=1$. Upon differentiating Bernardi's integral given by (2), we obtain

$$
\begin{equation*}
(c+1) f(z)=z F^{\prime}(z)+c F(z) \tag{8}
\end{equation*}
$$

A computation now yields

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+c}
$$

By taking $\beta=1$ and $\gamma=c$, the first part of the corollary follows from Theorem 2.1.
(ii) By defining a function p by $p(z)=F^{\prime}(z)$ and using (8), we get

$$
f^{\prime}(z)=\frac{z F^{\prime \prime}(z)}{c+1}+F^{\prime}(z)
$$

By taking $\beta=0$ and $\gamma=c+1$, the result follows from Theorem 2.1.

In the following result, we derive conditions on the real numbers A, B, β and γ so that $p(z)+\left(z p^{\prime}(z)\right) /(\beta p(z)+\gamma) \prec e^{z}$ implies $p(z) \prec(1+A z) /(1+B z),(-1 \leq$ $B<A \leq 1$), where $p \in \mathcal{H}$ with $p(0)=1$. This result gives the sufficient condition for $f \in \mathcal{A}$ to belong to the class $\mathcal{S}^{*}[A, B]$ by substituting $p(z)=z f^{\prime}(z) / f(z)$.

Theorem 2.4. Let $-1<B<A \leq 1$ and $\beta, \gamma \in \mathbb{R}$. Suppose that
(i) $(A-B) /((1 \mp B)((1 \mp A) \beta+(1 \mp B) \gamma)) \geq \pm(1 \mp A) /(1 \mp B)+e$.
(ii) $\beta(1 \pm A)+\gamma(1 \pm B)>0$.

Let $p \in \mathcal{H}$ with $p(0)=1$. If the function p satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec e^{z},
$$

then $p(z) \prec(1+A z) /(1+B z)$.
Proof. Define the functions P and w as follows:

$$
\begin{equation*}
P(z)=p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \quad \text { and } \quad w(z)=\frac{p(z)-1}{A-B p(z)} \tag{9}
\end{equation*}
$$

so that $p(z)=(1+A w(z)) /(1+B w(z))$. Clearly, $w(z)$ is analytic in \mathbb{D} with $w(0)=0$. In order to prove $p(z) \prec(1+A z) /(1+B z)$, we need to show that $|w(z)|<1$ in \mathbb{D}. If possible, suppose that there exists $z_{0} \in \mathbb{D}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then by Lemma 1.2, it follows that there exists $k \geq 1$ so that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$. Let $w\left(z_{0}\right)=e^{i t},(-\pi \leq t \leq \pi)$ and $G:=A \beta+B \gamma$. A simple calculation and by using (9), we get

$$
\begin{equation*}
P\left(z_{0}\right)=\frac{k e^{i t}(A-B)+\left(1+A e^{i t}\right)\left(\beta+\gamma+G e^{i t}\right)}{\left(1+B e^{i t}\right)\left(\beta+\gamma+G e^{i t}\right)}=: u+i v \tag{10}
\end{equation*}
$$

for $-\pi \leq t \leq \pi$. We derive a contradiction by showing $\left|\log P\left(z_{0}\right)\right|^{2} \geq 1$. This later inequality is equivalent to

$$
\begin{equation*}
f(t):=4(\arg (u+i v))^{2}+\left(\log \left(u^{2}+v^{2}\right)\right)^{2}-4 \geq 0 \quad(-\pi \leq t \leq \pi) \tag{11}
\end{equation*}
$$

From (10), we get

$$
\begin{aligned}
u= & \frac{1}{\left(B^{2}+2 B \cos t+1\right)\left((\beta+\gamma)^{2}+G^{2}+2 G(\beta+\gamma) \cos t\right)}(G(A+B)(\beta+\gamma) \\
& \cos 2 t+\cos t\left(A\left(B G(2(\beta+\gamma)+k)+G^{2}+(\beta+\gamma)(\beta+\gamma+k)\right)-B^{2} G k\right. \\
& \left.+2 G(\beta+\gamma)+B\left(G^{2}-(\beta+\gamma)(-\beta-\gamma+k)\right)\right)+(\beta+\gamma)(A B(\beta+\gamma+k) \\
& \left.\left.+\beta-B^{2} k+\gamma\right)+G^{2}(A B+1)+G(A(\beta+\gamma+k)+B(\beta+\gamma-k))\right)
\end{aligned}
$$

and

$$
v=\frac{(A-B) \sin t\left(-B G k+G^{2}+2 G(\beta+\gamma) \cos t+(\beta+\gamma)(\beta+\gamma+k)\right)}{\left(B^{2}+2 B \cos t+1\right)\left((\beta+\gamma)^{2}+G^{2}+2 G(\beta+\gamma) \cos t\right)}
$$

Substituting these values of u and v in (11), we observe that $f(t)$ is an even function of t and so, it is enough to show that $f(t) \geq 0$ for $t \in[0, \pi]$. It can be easily verified that the function $f(t)$ attains its minimum value either at $t=0$ or $t=\pi$. We show that both $f(0)$ and $f(\pi)$ are non negative. Note that, for $k \geq 1$,

$$
\begin{equation*}
f(0)=-4+4(\arg \psi(k))^{2}+\left(\log \left(\psi^{2}(k)\right)\right)^{2} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\pi)=-4+4(\arg (-\phi(k)))^{2}+\left(\log \left(\phi^{2}(k)\right)\right)^{2} \tag{13}
\end{equation*}
$$

where $\psi(k):=\left(A^{2} \beta+A(2 \beta+B \gamma+\gamma+k)+\beta+B(\gamma-k)+\gamma\right) /((1+B)(\beta(1+$ $A)+\gamma(1+B))$) and $\phi(k):=\left(A^{2} \beta-2 A \beta+(A-1)(B-1) \gamma-A k+\beta+\right.$ $B k) /((B-1)(-A \beta+\beta-B \gamma+\gamma))$. The function ψ is increasing as $\psi^{\prime}(k)=$ $(A-B) /((1+B)(\beta(1+A)+\gamma(1+B)))>0$ using the given condition (ii) and therefore, the given hypothesis (i) yields that $\psi(k) \geq \psi(1)=(1+A) /(1+B)+$ $(A-B) /((1+B)(\beta(1+A)+\gamma(1+B))) \geq e$ which gives that $\arg \psi(k)=0$ and $\left(\log \left(\psi^{2}(k)\right)\right)^{2} \geq(2 \log e)^{2}=4$. Thus, the use of (12) yields $f(0) \geq 0$.

The function ϕ is increasing as $\phi^{\prime}(k)=(A-B) /((1-B)(\beta(1-A)+\gamma(1-$ $B)))>0$ using the given condition (ii) and therefore, the given hypothesis (i) yields that $\phi(k) \geq \phi(1)=-(1-A) /(1-B)+(A-B) /((1-B)(\beta(1-A)+\gamma(1-$ $B))$) $\geq e$ which further implies $\arg (-\phi(k))=\pi$ and $\left(\log \left(\phi^{2}(k)\right)\right)^{2} \geq(2 \log e)^{2}=$ 4 . Hence, by using (13), we get $f(\pi) \geq 4 \pi^{2}>0$. This completes the proof.

We will illustrate Theorem 2.4 by the following example:

Example 2.5. By taking $A=1 / 2, B=-1 / 2, \beta=1$ and $\gamma=c(c>-1)$ in Theorem 2.4, we get $-1 / 3 \leq c \leq(1-e) /(1+3 e)$. By taking $\beta=1,-1 / 3 \leq$ $\gamma \leq(1-e) /(1+3 e), n=1, h(z)=e^{z}, a=1$ in [18, Theorem 3.2d, p. 86], we
get $\operatorname{Re}(a \beta+\gamma)>0$ and $\beta h(z)+\gamma \prec R_{a \beta+\gamma, n}(z)$, where $R_{d, f}(z)$ is the open door mapping given by $R_{d, f}(z):=d(1+z) /(1-z)+(2 f z) /\left(1-z^{2}\right)$. Thus by using [18, Theorem 3.2d, p. 86], we get

$$
p(z)=\int_{0}^{1} t^{1-\gamma} e^{-\operatorname{Chi}(t z)+\operatorname{Chi}(z)-\operatorname{Shi}(t z)+\operatorname{Shi}(z)} d t-\gamma
$$

which satisy Eq. $p(z)+z p^{\prime}(z) /(\beta p(z)+\gamma)=h(z)$. Then $p(z) \prec(2+z) /(2-z)$. Here, $C h i(z)$ and $S h i(z)$ are the hyperbolic cosine integral function and the hyperbolic sine integral function respectively defined as follows:

$$
C h i(z)=\eta+\log (z)+\int_{0}^{z} \frac{\cosh (t)-1}{t} d t \quad \text { and } \quad \operatorname{Shi}(z)=\int_{0}^{z} \frac{\sinh (t)}{t} d t
$$

where η is the Euler's constant.

The next corollary is obtained by substituting $p(z)=z f^{\prime}(z) / f(z)$ with $\gamma=0$, $B=0$ and $A=1-\alpha,(0 \leq \alpha<1)$ in Theorem 2.4.

Corollary 2.6. Let $0 \leq \alpha<1$ and $\beta>0$ satisfy the conditions $\alpha+e+\beta^{-1} \leq$ $(\alpha \beta)^{-1}$ and $1-\alpha \geq \beta(2-\alpha)(e-2+\alpha)$. If the function $f \in \mathcal{A}$ satisfies the subordination

$$
\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec e^{z}
$$

then $f \in \mathcal{S}_{\alpha}^{*}$.

Our next corollary deals with the class $\mathcal{R}[A, B]$ defined by

$$
\mathcal{R}[A, B]=\left\{f \in \mathcal{A}: f^{\prime}(z) \prec \frac{1+A z}{1+B z}\right\} .
$$

The two parts of the following corollary are obtained by taking $p(z)$ to be $z F^{\prime}(z) / F(z)$ with $\beta=1, \gamma=c$ and $p(z)=F^{\prime}(z)$ with $\beta=0, \gamma=c+1$ respectively in Theorem 2.4.

Corollary 2.7.

(i) If the function $f \in \mathcal{S}_{e}^{*}$ and the conditions of Theorem 2.4 hold with $\beta=1$ and $\gamma=c$, then $F \in \mathcal{S}^{*}[A, B]$.
(ii) The function $f^{\prime}(z) \prec e^{z}$ and the conditions of Theorem 2.4 hold with $\beta=0$ and $\gamma=c+1$, then $F \in \mathcal{R}[A, B]$.

In the next result, we find the conditions on the real numbers A, B, β and γ so that $p(z) \prec \sqrt{1+z}$, whenever $p(z)+\left(z p^{\prime}(z)\right) /(\beta p(z)+\gamma) \prec(1+A z) /(1+B z)$, $-1 \leq B<A \leq 1$, where $p \in \mathcal{H}$ with $p(0)=1$. As an application of the next result, it provides sufficient conditions for $f \in \mathcal{A}$ to belong to the class \mathcal{S}_{L}^{*}.

Theorem 2.8. Let $-1 \leq B<A \leq 1$ and $\beta, \gamma \in \mathbb{R}$ satisfy the following conditions:
(i) $1+4(\sqrt{2}-1) \beta-2(\sqrt{2}-2) \gamma \geq B(-2 A(2 \beta+\sqrt{2} \gamma)+B(1+4(\sqrt{2} \beta+\gamma)))$.
(ii) $(1+4(\sqrt{2}-1) \beta-2(\sqrt{2}-2) \gamma)^{2} \geq(-2 A(2 \beta+\sqrt{2} \gamma)+B(1+4(\sqrt{2} \beta+\gamma)))^{2}$.

Let $p \in \mathcal{H}$ with $p(0)=1$. If the function p satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+A z}{1+B z},
$$

then $p(z) \prec \sqrt{1+z}$.
Proof. Define the functions P and w as follows:

$$
\begin{equation*}
P(z)=p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \quad \text { and } \quad w(z)=p^{2}(z)-1 \tag{14}
\end{equation*}
$$

which implies $p(z)=\sqrt{1+w(z)}$. Clearly, $w(z)$ is analytic in \mathbb{D} with $w(0)=0$. In order to complete our proof, we need to show that $|w(z)|<1$ in \mathbb{D}. Assume that there exists $z_{0} \in \mathbb{D}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then by Lemma 1.2, it follows that there exists $k \geq 1$ so that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$. Let $w\left(z_{0}\right)=e^{i t},(-\pi \leq t \leq \pi)$. By using (14), we get

$$
P(z)=\sqrt{1+w(z)}+\frac{z w^{\prime}(z)}{2 \sqrt{1+w(z)}(\beta \sqrt{1+w(z)}+\gamma)} .
$$

A simple computation shows that

$$
P\left(z_{0}\right)=\frac{k e^{i t}+2\left(1+e^{i t}\right)\left(\gamma+\beta \sqrt{1+e^{i t}}\right)}{2 \sqrt{1+e^{i t}}\left(\gamma+\beta \sqrt{1+e^{i t}}\right)} \quad(-\pi \leq t \leq \pi)
$$

and

$$
\begin{equation*}
\left|\frac{P\left(z_{0}\right)-1}{A-B P\left(z_{0}\right)}\right|^{2}=: \frac{f(t)}{g(t)} \quad(-\pi \leq t \leq \pi) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
f(t)= & \left((2 \beta \cos t+2(\beta-\gamma)) \sin \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right. \\
& \left.+\sin t\left(k+2\left(\gamma+\beta\left(-1+\cos \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)\right)\right)\right)^{2} \\
& +\left(-\cos t\left(k+2\left(\gamma+\beta\left(-1+\cos \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)\right)\right)\right. \\
& +2 \beta \sin t \sin \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}+2(\beta-\gamma) \\
& \left.\left(1-\cos \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
g(t)= & \left(-2 A\left(\beta \sin t+\gamma \sin \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)\right. \\
& +4 B \beta \cos ^{2}(t / 2) \sqrt{2 \cos (t / 2)} \sin \left(\arg \left(1+e^{i t}\right) / 2\right)+B \sin t(k+2 \gamma \\
& \left.\left.+2 \beta \cos \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)\right)^{2}+\left(-4 A \beta \cos ^{2}(t / 2)\right. \\
& +B(k+2 \gamma) \cos t+2 \gamma-2 B \beta \sin t \sin \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)} \\
& \left.+2(-A \gamma+B \beta \cos t+\beta) \cos \left(\arg \left(1+e^{i t}\right) / 2\right) \sqrt{2 \cos (t / 2)}\right)^{2} .
\end{aligned}
$$

Define $h(t)=f(t)-g(t)$. Since $h(t)$ is an even function of t, we restrict to $0 \leq t \leq \pi$. It can be easily verified that for both the cases (i) and (ii), the function $h(t)$ attains its minimum value either at $t=0$ or $t=\pi$. Note that for $k \geq 1, h(\pi)=\left(1-B^{2}\right) k^{2}>0$ and

$$
\begin{align*}
S(k):=h(0) & =(4(\sqrt{2}-1) \beta-2(\sqrt{2}-2) \gamma+k)^{2}-(B(4(\sqrt{2} \beta+\gamma)+k) \\
& -2 A(2 \beta+\sqrt{2} \gamma))^{2} \tag{16}
\end{align*}
$$

The function S^{\prime} is increasing as $S^{\prime \prime}(k)=2\left(1-B^{2}\right)>0$ and therefore, the given hypothesis (i) yields that $S^{\prime}(k) \geq S^{\prime}(1)=2(1+4(\sqrt{2}-1) \beta-2(\sqrt{2}-2) \gamma)-$ $2 B(-2 A(2 \beta+\sqrt{2} \gamma)+B(1+4(\sqrt{2} \beta+\gamma))) \geq 0$ which gives that $S(k) \geq S(1)=$ $(1+4(\sqrt{2}-1) \beta-2(\sqrt{2}-2) \gamma)^{2}-(-2 A(2 \beta+\sqrt{2} \gamma)+B(1+4(\sqrt{2} \beta+\gamma)))^{2}$. Thus, the use of given condition (ii) and (16) yields $h(0) \geq 0$. So, $h(t) \geq 0$ for all $t \in[0, \pi]$ and therefore, (15) implies $\left|\left(P\left(z_{0}\right)-1\right) /\left(A-B P\left(z_{0}\right)\right)\right| \geq 1$. This contradicts the fact that $P(z) \prec(1+A z) /(1+B z)$ and completes the proof.

The next corollary is obtained by substituting $p(z)=z f^{\prime}(z) / f(z)$ with $\gamma=0$, $A=1-2 \alpha,(0 \leq \alpha<1)$ and $B=-1$ in Theorem 2.8.

Corollary 2.9. Let $0 \leq \alpha<1$ and $f \in \mathcal{A}$. If the function f satisfies the subordination
$\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{1+(1-2 \alpha) z}{1-z} \quad\left(\frac{1}{4(\alpha-\sqrt{2})} \leq \beta<0\right)$,
then $f \in \mathcal{S}_{L}^{*}$.

By taking $p(z)=z F^{\prime}(z) / F(z)$ with $\beta=1$ and $\gamma=c$ in Theorem 2.8 gives the following corollary:

Corollary 2.10. Let $-1 \leq B<A \leq 1$ satisfy the following conditions:
(i) $1+4(\sqrt{2}-1)-2(\sqrt{2}-2) c \geq B(-2 A(2+\sqrt{2} c)+B(1+4(\sqrt{2}+c)))$.
(ii) $(1+4(\sqrt{2}-1)-2(\sqrt{2}-2) c)^{2} \geq(-2 A(2+\sqrt{2} c)+B(1+4(\sqrt{2}+c)))^{2}$.

If $f \in \mathcal{S}^{*}[A, B]$ then $F \in \mathcal{S}_{L}^{*}$.

By taking $p(z)=F^{\prime}(z)$ with $\beta=0$ and $\gamma=c+1$ in Theorem 2.8 gives the following corollary:

Corollary 2.11. Suppose that $-1 \leq B<A \leq 1$ satisfy the following conditions:
(i) $5-2 \sqrt{2}-2(\sqrt{2}-2) c \geq B(-2 \sqrt{2}(c+1) A+(5+4 c) B)$.
(ii) $(5-2 \sqrt{2}-2(\sqrt{2}-2) c)^{2} \geq(-2 \sqrt{2}(c+1) A+(5+4 c) B)^{2}$.

If $f \in \mathcal{R}[A, B]$ then $F^{\prime}(z) \prec \sqrt{1+z}$.

In the next result, we compute the conditions on the real numbers A, B, β and γ so that $p(z)+\left(z p^{\prime}(z)\right) /(\beta p(z)+\gamma) \prec(1+A z) /(1+B z),(-1 \leq B<A \leq 1)$ implies $p(z) \prec e^{z}$, where $p \in \mathcal{H}$ with $p(0)=1$. As an application of the next result, it provides sufficient conditions for $f \in \mathcal{A}$ to belong to the class \mathcal{S}_{e}^{*}.

Theorem 2.12. Let $-1 \leq B<A \leq 1$ and $\beta, \gamma \in \mathbb{R}$ satisfy the following conditions:
(i) $e^{2} \beta\left(1-B^{2}\right)+e(-B(-A \beta+B \gamma+B)-\beta+\gamma+1)+\gamma(A B-1) \geq 0$.
(ii) $(e((A+e-1) \beta-(e \beta+1) B+1)+\gamma(A+e(1-B)-1))(e(-(A-e+1) \beta+$ $B(e \beta+1)+1)+\gamma(-A+e(B+1)-1)) \geq 0$.
(iii) $e\left(\beta(1-A B)+B^{2}(\gamma-1)-\gamma+1\right)+e^{2} \gamma(1-A B)+\beta\left(B^{2}-1\right) \geq 0$.
(iv) $\left(e((A-1) \beta+(1-B)(\gamma-1))+e^{2}(A-1) \gamma+\beta(1-B)\right)(-e((A+1) \beta+$ $\left.(B+1)(1-\gamma))-e^{2}(A+1) \gamma+\beta(B+1)\right) \geq 0$.
Let $p \in \mathcal{H}$ with $p(0)=1$. If the function p satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+A z}{1+B z}
$$

then $p(z) \prec e^{z}$.
Proof. Define the functions $\psi: \mathbb{C}^{2} \times \mathbb{D} \rightarrow \mathbb{C}$ and $q: \mathbb{D} \rightarrow \mathbb{C}$ as follows:

$$
\begin{equation*}
\psi(r, s ; z)=r+\frac{s}{\beta r+\gamma} \quad \text { and } \quad q(z)=\frac{1+A z}{1+B z} \tag{17}
\end{equation*}
$$

so that $\Omega:=q(\mathbb{D})=\{w \in \mathbb{C}:|(w-1) /(A-B w)|<1\}$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in$ Ω for $z \in \mathbb{D}$. To prove $p(z) \prec e^{z}$, we use Lemma 1.1 so we need to show that $\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right) \notin \Omega$ which is equivalent to show that $\mid\left(\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)-\right.$ 1) $/\left(A-B \psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)\right) \mid \geq 1$, where $z \in \mathbb{D}, t \in[-\pi, \pi]$ and $k \geq 1$. A simple computation and (17) yield that

$$
\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)=e^{e^{i t}}+\frac{k e^{i t} e^{e^{i t}}}{\beta e^{e^{i t}}+\gamma} \quad(-\pi \leq t \leq \pi)
$$

and

$$
\begin{equation*}
\left|\frac{\psi\left(e^{i t}, k e^{i t} e^{e^{i t}} ; z\right)-1}{A-B \psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)}\right|^{2}=: \frac{f(t)}{g(t)} \quad(-\pi \leq t \leq \pi) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
f(t)= & e^{3 \cos t}\left(2 \beta k \sin t \sin (\sin t)+2 \beta k \cos t \cos (\sin t)-2 \beta^{2} \cos (\sin t)\right. \\
& +2 \beta \gamma \cos (\sin t))+e^{2 \cos t}\left((\beta-\gamma)^{2}+k^{2}-2 \beta k \cos t+2 \gamma k \cos t\right. \\
& \left.+2 \beta \gamma \sin ^{2}(\sin t)-2 \beta \gamma \cos ^{2}(\sin t)\right)+e^{\cos t}(2 \gamma k \sin t \sin (\sin t) \\
& \left.-2 \gamma k \cos t \cos (\sin t)+2 \beta \gamma \cos (\sin t)-2 \gamma^{2} \cos (\sin t)\right)+\beta^{2} e^{4 \cos t}+\gamma^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
g(t)= & A^{2} \gamma^{2}+\beta^{2} B^{2} e^{4 \cos t}+2 \beta B e^{3 \cos t}((B \gamma-A \beta) \cos (\sin t)+B k \cos (t-\sin t)) \\
& +e^{2 \cos t}\left(B\left(B\left(\gamma^{2}+k^{2}\right)-2 A \beta \gamma\right)+2 B(B \gamma-A \beta) k \cos t\right. \\
& \left.-2 A B \beta \gamma \cos (2 \sin t)+A^{2} \beta^{2}\right)+2 A \gamma e^{\cos t}((A \beta-B \gamma) \cos (\sin t) \\
& -B k \cos (t+\sin t))
\end{aligned}
$$

Define $h(t)=f(t)-g(t)$. Since $h(-t)=h(t)$, we restrict to $0 \leq t \leq \pi$. It can be easily verified that the function $h(t)$ attains its minimum value either at $t=0$ or $t=\pi$. For $k \geq 1$, we have

$$
\begin{align*}
\phi(k):= & h(0)=e^{2}\left(\left(1-A^{2}\right) \beta^{2}+2 k\left(\beta(A B-1)+\left(1-B^{2}\right) \gamma\right)+4 \beta \gamma(A B\right. \\
& \left.-1)+\left(1-B^{2}\right)\left(\gamma^{2}+k^{2}\right)\right)+2 e \gamma\left(-A^{2} \beta+(A B-1)(\gamma+k)+\beta\right) \\
& +2 e^{3} \beta\left(\beta(A B-1)+\left(1-B^{2}\right)(\gamma+k)\right)+e^{4} \beta^{2}\left(1-B^{2}\right) \tag{19}\\
& +\left(1-A^{2}\right) \gamma^{2}
\end{align*}
$$

and

$$
\begin{align*}
h(\pi)= & \frac{-1}{e^{4}}\left(e((A-1) \beta+(1-B)(\gamma-k))+e^{2}(A-1) \gamma+\beta(1-B)\right) \tag{20}\\
& \left(e((1+A) \beta+(B+1)(k-\gamma))+e^{2}(A+1) \gamma-\beta(B+1)\right)=: \psi(k)
\end{align*}
$$

The function ϕ^{\prime} is increasing as $\phi^{\prime \prime}(k)=2\left(1-B^{2}\right) e^{2}>0$ and therefore, the given hypothesis (i) yields that $\phi^{\prime}(k) \geq \phi^{\prime}(1)=2 e(e(-B(-A \beta+B \gamma+B)-$ $\left.\beta+\gamma+1)+\gamma(A B-1)+e^{2} \beta\left(1-B^{2}\right)\right) \geq 0$ which gives that $\phi(k) \geq \phi(1)=$ $(e((A+e-1) \beta-(e \beta+1) B+1)+\gamma(A+e(1-B)-1))(e(-(A-e+1) \beta+B(e \beta+$ 1) +1$)+\gamma(-A+e(B+1)-1))$. Thus, the use of given condition (ii) and (19) yields $h(0) \geq 0$.

In view of (iii), observe that $\psi^{\prime \prime}(k)=2\left(1-B^{2}\right) / e^{2}>0$ and therefore, $\min \psi^{\prime}(k)=\psi^{\prime}(1)=2\left(e\left(\beta(1-A B)+B^{2}(\gamma-1)-\gamma+1\right)+e^{2} \gamma(1-A B)+\beta\left(B^{2}-\right.\right.$ 1)) $/ e^{3} \geq 0$ which implies $\min \psi(k)=\psi(1)=\left(\left(e((A-1) \beta+(1-B)(\gamma-1))+e^{2}(A-\right.\right.$ 1) $\left.\gamma+\beta(1-B))\left(-e((A+1) \beta+(B+1)(1-\gamma))-e^{2}(A+1) \gamma+\beta(B+1)\right)\right) / e^{4}$. Hence, the use of given condition (iv) and (20) yields that $h(\pi) \geq 0$. So, $h(t) \geq 0,(0 \leq$ $t \leq \pi)$ and thus, (18) implies $\left|\left(\psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)-1\right) /\left(A-B \psi\left(e^{e^{i t}}, k e^{i t} e^{e^{i t}} ; z\right)\right)\right| \geq$ 1 and therefore, $p(z) \prec e^{z}$.

The next corollary is obtained by substituting $p(z)=z f^{\prime}(z) / f(z)$ with $\gamma=0$, $B=0$ and $A=1-\alpha,(0 \leq \alpha<1)$ in Theorem 2.12.

Corollary 2.13. Suppose $0 \leq \alpha<1$ and $\beta \geq 1 /(1-e)$ satisfy the conditions $(-\alpha \beta+\beta e+1)(\beta(\alpha+e-2)+1) \geq 0$ and $(\beta-e((2-\alpha) \beta+1))(\beta+e(-\alpha \beta-1)) \geq 0$. If the function $f \in \mathcal{A}$ satisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)-1\right|<1-\alpha
$$

then $f \in \mathcal{S}_{e}^{*}$.

The two parts of the following corollary are obtained by taking $p(z)=$ $z F^{\prime}(z) / F(z)$ with $\beta=1, \gamma=c$ and $p(z)=F^{\prime}(z)$ with $\beta=0, \gamma=c+1$ respectively in Theorem 2.12.

Corollary 2.14.

(i) If the function $f \in \mathcal{S}^{*}[A, B]$ and the conditions of the Theorem 2.12 hold with $\beta=1$ and $\gamma=c$, then $F \in \mathcal{S}_{e}^{*}$.
(ii) The function $f \in \mathcal{R}[A, B]$ and the conditions of Theorem 2.12 hold with $\beta=0$ and $\gamma=c+1$, then $F^{\prime}(z) \prec e^{z}$.

In the next result, we find the conditions on the real numbers A, B, β and γ so that $p(z) \prec(1+A z) /(1+B z),(-1 \leq B<A \leq 1)$, whenever $p(z)+$ $\left(z p^{\prime}(z)\right) /(\beta p(z)+\gamma) \in \Omega_{P}$, where $p \in \mathcal{H}$ with $p(0)=1$. As an application of the next result, it provides sufficient conditions for $f \in \mathcal{A}$ to belong to the class $\mathcal{S}^{*}[A, B]$.

Theorem 2.15. Let $-1 \leq B<A \leq 1$ and $\beta, \gamma \in \mathbb{R}$. For $k \geq 1$ and $0 \leq m \leq 1$, assume that $G:=A \beta+B \gamma, L:=k+\beta+\gamma$. Further assume that
(i) $B G(\beta+\gamma)>0$.
(ii) $\left(G\left(A^{2} L+4(\beta+\gamma)\right)-2 B\left(A G L+2(\beta+\gamma)^{2}+2 G^{2}\right)+B^{2} G(4(\beta+\gamma)+\right.$ $L))\left(G\left(A^{2} L-4(\beta+\gamma)\right)+B\left(-2 A G L+4(\beta+\gamma)^{2}+4 G^{2}\right)+B^{2} G(L-4(\beta+\right.$ $\gamma))) \geq 2 G(A-B)^{2}\left(G L\left(A^{2} L-4(\beta+\gamma)\right)-2 B\left(A G L^{2}+2 G^{2}(L-2(\beta+\right.\right.$ $\left.\gamma))-2 L(\beta+\gamma)(-\beta-\gamma+2 L))+B^{2} G L(L-4(\beta+\gamma))\right)$.
(iii) $8 G(A-B)^{2}(\beta+\gamma+k) \leq 2(B-1)^{2} G(\beta+\gamma)+2 B(\beta+\gamma-G)^{2}$.
(iv) $1+\beta+\gamma \geq 0, G \geq 0$.
(v) $4 m^{4}(A-B)^{2}(\beta+\gamma+G+1)^{2} \geq(B+1)^{2}(\beta+\gamma+G)^{2}$.

Let $p \in \mathcal{H}$ with $p(0)=1$. If the function p satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \varphi_{P A R}(z)
$$

then $p(z) \prec(1+A z) /(1+B z)$.
Proof. Define the functions P and w as given by Eq. (9) which implies $p(z)=$ $(1+A w(z)) /(1+B w(z))$. Proceeding as in Theorem 2.4, we need to show that
$|w(z)|<1$ in \mathbb{D}. If possible suppose that there exists $z_{0} \in \mathbb{D}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then by Lemma 1.2, it follows that there exists $k \geq 1$ so that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$. Let $w\left(z_{0}\right)=e^{i t},(-\pi \leq t \leq \pi)$. A simple calculation and by using (9), we get

$$
\begin{equation*}
P\left(z_{0}\right)=\frac{k e^{i t}(A-B)+\left(1+A e^{i t}\right)\left(\beta+\gamma+G e^{i t}\right)}{\left(1+B e^{i t}\right)\left(\beta+\gamma+G e^{i t}\right)} \quad(-\pi \leq t \leq \pi) \tag{21}
\end{equation*}
$$

Define the function h by

$$
\begin{equation*}
h(z)=u+i v=\sqrt{(P(z)-1) \pi^{2} / 2} \tag{22}
\end{equation*}
$$

We show that $\left|\left(e^{h\left(z_{0}\right)}-1\right) /\left(e^{h\left(z_{0}\right)}+1\right)\right|^{2} \geq 1$; this condition is same as the inequality $\operatorname{Re} e^{h\left(z_{0}\right)} \leq 0$. This last inequality is indeed equivalent to $\cos v \leq 0$ or $1 / 2 \leq|v / \pi| \leq 1$. By using the definition of h given in (22) together with (21), we get

$$
\begin{equation*}
\frac{|v|}{\pi}=\frac{\sqrt{A-B}|m(t)|\left|G e^{i t}+L\right|^{1 / 2}}{\sqrt{2}\left|1+B e^{i t}\right|^{1 / 2}\left|G e^{i t}+\beta+\gamma\right|^{1 / 2}} \quad(-\pi \leq t \leq \pi) \tag{23}
\end{equation*}
$$

where $m(t)=\sin \left(\arg \left(\left(e^{i t}(A-B)\left(G e^{i t}+L\right)\right) /\left(\left(1+B e^{i t}\right)\left(G e^{i t}+\beta+\gamma\right)\right)\right) / 2\right)$.
(a) We will first show that $|v / \pi| \leq 1$ which by using the fact that $|m(t)| \leq 1$ and (23) is same as to show that $f(t) \geq 0(-\pi \leq t \leq \pi)$, where

$$
\begin{aligned}
f(t) & =4\left(1+B^{2}+2 B \cos t\right)\left((\beta+\gamma)^{2}+G^{2}+2(\beta+\gamma) G \cos t\right) \\
& -(A-B)^{2}\left(L^{2}+G^{2}+2 L G \cos t\right)
\end{aligned}
$$

After substituting $x=\cos t(-\pi \leq t \leq \pi)$, the above inequality reduces to $F(x) \geq 0$ for all x with $-1 \leq x \leq 1$, where
$F(x)=4\left(1+B^{2}+2 B x\right)\left((\beta+\gamma)^{2}+G^{2}+2(\beta+\gamma) G x\right)-(A-B)^{2}\left(L^{2}+G^{2}+2 L G x\right)$.
A simple computation shows that for

$$
\begin{aligned}
& \quad x_{0}=\frac{1}{16 B G(\beta+\gamma)}\left(G\left(A^{2} L-4(\beta+\gamma)\right)-2 B\left(A G L+2(\beta+\gamma)^{2}+2 G^{2}\right)\right. \\
& \left.\quad+B^{2} G(L-4(\beta+\gamma))\right), \\
& F^{\prime}\left(x_{0}\right)=0 \text { and } F^{\prime \prime}\left(x_{0}\right)=32 B G(\beta+\gamma)>0 \text { by the given condition (i). Therefore, } \\
& F(x) \geq F\left(x_{0}\right) . \text { Observe that }
\end{aligned}
$$

$$
\begin{aligned}
F\left(x_{0}\right)= & \frac{1}{16 B G(\beta+\gamma)}\left(\left(G\left(A^{2} L+4(\beta+\gamma)\right)-2 B\left(A G L+2(\beta+\gamma)^{2}+2 G^{2}\right)\right.\right. \\
& \left.+B^{2} G(4(\beta+\gamma)+L)\right)\left(G\left(A^{2} L-4(\beta+\gamma)\right)\right. \\
& +B^{2} G(L-4(\beta+\gamma))+B\left(-2 A G L+4(\beta+\gamma)^{2}\right. \\
& \left.\left.+4 G^{2}\right)\right)-2 G(A-B)^{2}\left(G L\left(A^{2} L-4(\beta+\gamma)\right)\right. \\
& +B^{2} G L(L-4(\beta+\gamma))-2 B\left(A G L^{2}\right. \\
& \left.\left.\left.+2 G^{2}(L-2(\beta+\gamma))-2 L(\beta+\gamma)(-\beta-\gamma+2 L)\right)\right)\right)
\end{aligned}
$$

and $F\left(x_{0}\right) \geq 0$ by the given condition (ii).
(b) We will next show that $|v / \pi| \geq 1 / 2$ which by using (23) is same as to show that $g(t) \geq 0(-\pi \leq t \leq \pi)$, where

$$
\begin{aligned}
g(t) & =4(A-B)^{2} m^{4}(t)\left(L^{2}+G^{2}+2 L G \cos t\right)-\left(1+B^{2}+2 B \cos t\right)\left((\beta+\gamma)^{2}\right. \\
& \left.+G^{2}+2(\beta+\gamma) G \cos t\right)
\end{aligned}
$$

After substituting $x=\cos t(-\pi \leq t \leq \pi)$ and $m=m(t)$, the above inequality reduces to $H(x) \geq 0$ for all x with $-1 \leq x \leq 1$, where
$H(x)=4(A-B)^{2} m^{4}\left(L^{2}+G^{2}+2 L G x\right)-\left(1+B^{2}+2 B x\right)\left((\beta+\gamma)^{2}+G^{2}+2(\beta+\gamma) G x\right)$.
In view of (i), (iii), (iv) and the fact that $-1 \leq m \leq 1$, we see that $H^{\prime \prime}(x)=$ $-8 B G(\beta+\gamma)<0$ and hence $H^{\prime}(x) \leq H^{\prime}(-1)=8 m^{4} G(A-B)^{2}(\beta+\gamma+$ $k)-2(B-1)^{2} G(\beta+\gamma)-2 B(-G+\beta+\gamma)^{2} \leq 0$. Thus, $H(x) \geq H(1)=$ $4 m^{4}(A-B)^{2}(\beta+\gamma+G+k)^{2}-(B+1)^{2}(\beta+\gamma+G)^{2}=: \psi(k)$. Using (iv), we observe that $\psi^{\prime \prime}(k)=8 m^{4}(A-B)^{2} \geq 0$ and hence for $k \geq 1$, we have $\psi^{\prime}(k) \geq \psi^{\prime}(1)=8 m^{4}(A-B)^{2}(\beta+\gamma+G+1) \geq 0$. Thus by using (v), we get $H(x) \geq \psi(k) \geq \psi(1)=4 m^{4}(A-B)^{2}(\beta+\gamma+G+1)^{2}-(B+1)^{2}(\beta+\gamma+G)^{2} \geq 0$. This completes the proof.

The next corollary is obtained by substituting $p(z)=z f^{\prime}(z) / f(z)$ with $\gamma=0$, $B=-1$ and $A=1-2 \alpha,(0 \leq \alpha<1)$ in Theorem 2.15.

Corollary 2.16. Let $1 / 2<\alpha<1,-1 \leq \beta<0$ and $k \geq 1$ satisfy the conditions $\left(2 \alpha^{2}+\alpha-3\right)^{2} \beta^{2}+\left(4 \alpha^{4}-12 \alpha^{3}+13 \alpha^{2}+2 \alpha-3\right) k^{2}+2\left(4 \alpha^{4}-20 \alpha^{3}+17 \alpha^{2}+2 \alpha-3\right) \beta k \leq$ 0 and $\left(\alpha^{2}+2 \alpha-1\right) \beta^{2} \leq 4(\alpha-1)^{2}(2 \alpha-1) \beta(\beta+k)$. If the function $f \in \mathcal{A}$ satisfies the subordination

$$
\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \varphi_{P A R}(z)
$$

then $f \in \mathcal{S}^{*}(\alpha)$.

References

[1] R.M. Ali, K. Sharma and V. Ravichandran, Starlikeness of analytic functions with subordinate ratios, J. Math. 2021 (2021), Art. ID 8373209.
[2] R.M. Ali, N.K. Jain, V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11) (2012) 6557-6565.
[3] R.M. Ali, V. Ravichandran, N. Seenivasagan, On Bernardi's integral operator and the Briot-Bouquet differential subordination, J. Math. Anal. Appl. 324 (2006) 663-668.
[4] D. Bansal and B.A. Frasin, Some results on convexity of integral operators, Southeast Asian Bull. Math. 38 (4) (2014) 487-491.
[5] N.E. Cho, A. Ebadian, S. Bulut, E.A. Adegani, Subordination implications and coefficient estimates for subclasses of starlike functions, Mathematics 8 (7) (2020), Arti. ID 1150.
[6] E. Deniz and H. Orhan, Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J. 60 (3) (2010) 699-713.
[7] E. Deniz and R. Szász, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl. 453 (1) (2017) 572-588.
[8] P. Eenigenburg, S.S. Miller, P.T. Mocanu, M.O. Reade, On a Briot-Bouquet differential subordination, Rev. Roumaine Math. Pures Appl. 29 (7) (1984) 567573.
[9] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973) 297-326.
[10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971) 159-177.
[11] A. Lecko and Y. J. Sim, Coefficient problems in the subclasses of close-to-star functions, Results Math. 74 (3) (2019), Paper No. 104, 14 pp.
[12] A. Lecko and A. Wiśniowska, Geometric properties of subclasses of starlike functions, J. Comput. Appl. Math. 155 (2) (2003) 383-387.
[13] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2) (2016) 199-212.
[14] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (5) (2018) 1179-1191.
[15] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA, 1994.
[16] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1) (2015) 365-386.
[17] S.S. Miller and P.T. Mocanu, Briot-Bouquet differential equations and differential subordinations, Complex Variables Theory Appl. 33 (1-4) (1997) 217-237.
[18] S.S. Miller and P.T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[19] S.S. Miller and P.T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (3) (1985) 297-309.
[20] A. Naz, S. Nagpal, V. Ravichandran, Starlikeness associated with the exponential function, Turkish J. Math. 43 (2019) 1353-1371.
[21] M. Nunokawa, S. Owa, O.S. Kwon, N.E. Cho, On Φ-like with respect to certain starlike functions, Southeast Asian Bull. Math. 38 (2) (2014) 271-274.
[22] J. Patel, On starlikeness and convexity of certain integral operator, Southeast Asian Bull. Math. 37 (1) (2013) 123-130.
[23] Y. Polatoğlu and M. Bolcal, Some radius problem for certain families of analytic functions, Turkish J. Math. 24 (4) (2000) 401-412.
[24] V. Ravichandran, F. Rønning, T.N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1-4) (1997) 265-280.
[25] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52 (4) (2015) 727-749.
[26] M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (2) (1985) 135-140.
[27] S. Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ. Montréal, Montreal, PQ, 1982.
[28] S. Ruscheweyh and V. Singh, On a Briot-Bouquet equation related to univalent
functions, Rev. Roumaine Math. Pures Appl. 24 (1979) 285-290.
[29] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1) (1993) 189-196.
[30] T.N. Shanmugam, Convolution and differential subordination, Int. J. Math. Math. Sci. 12 (2) (1989) 333-340.
[31] T.N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, In: Computational Methods And Function Theory (Penang, 1994), Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
[32] K. Sharma, N.E. Cho, V. Ravichandran, Sufficient conditions for strong starlikeness, Bull. Iranian Math. Soc. 47 (5) (2020) 1453-1475. doi:10.1007/s41980-020-00452-z.
[33] K. Sharma, N.K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. (Springer) 27 (5) (2016) 923-939.
[34] K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc. 42 (3) (2016) 761-777.
[35] K. Sharma and V. Ravichandran, Sufficient conditions for Janowski starlike functions, Stud. Univ. Babeş-Bolyai Math. 61 (1) (2016) 63-76.
[36] J. Sokót, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2) (2009) 349-353.
[37] J. Sokól, Radius problems in the class $\mathcal{S} \mathcal{L}$, Appl. Math. Comput. 214 (2) (2009) 569-573.
[38] J. Sokółand J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996) 101105.
[39] S. Yadav, K. Sharma, V. Ravichandran, Radius of starlikeness for some classes containing non-univalent functions, Asian-Eur J. Math. 15 (2022), Art. ID 2250009.

