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Abstract. The conditions on A, B, β and γ are obtained for an analytic function p

defined on the open unit disc D and normalized by p(0) = 1 to be subordinate to

(1 + Az)/(1 + Bz), −1 ≤ B < A ≤ 1 when p(z) + zp′(z)/(βp(z) + γ) is subordinate to

ez. The conditions on these parameters are derived for the function p to be subordinate

to
√

1 + z or ez when p(z) + zp′(z)/(βp(z) + γ) is subordinate to (1 + Az)/(1 + Bz).

The conditions on β and γ are determined for the function p to be subordinate to ez

when p(z)+zp′(z)/(βp(z)+γ) is subordinate to
√

1 + z. Related result for the function

p(z) + zp′(z)/(βp(z) + γ) to be in the parabolic region bounded by the Rew = |w− 1|
is investigated. Sufficient conditions for the Bernardi’s integral operator to belong to

the various subclasses of starlike functions are obtained as applications.
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1. Introduction

Let H denote the class of analytic functions in the unit disc D. For a natural
number n, let H[a, n] be the subset of H consisting of functions p of the form
p(z) = a+pnz

n+pn+1z
n+1+ · · · . Suppose that h is a univalent function defined

on D with h(0) = a and the function p ∈ H[a, n]. The Briot–Bouquet differential
subordination is the first order differential subordination of the form

p(z) +
zp′(z)

βp(z) + γ
≺ h(z), (1)

where β 6= 0, γ ∈ C. This particular differential subordination has many interest-
ing applications in the theory of univalent functions. Ruschewyh and Singh [28]
proved that if the function p ∈ H[1, 1], β > 0,Re γ ≥ 0 and h(z) = (1+z)/(1−z)
in (1) and the function q ∈ H satisfy the differential equation

q(z) +
zp′(z)

βp(z) + γ
=

1 + z

1− z
,

then min|z|=r Re p(z) ≥ min|z|=r Re q(z). More related results are proved in [17,
19, 8]. For c > −1 and f ∈ H[0, 1], the function F ∈ H[0, 1] given by Bernardi’s
integral operator is defined as

F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt. (2)

There is an important connection between Briot–Bouquet differential equations
and the Bernardi’s integral operator. If we set p(z) = zF ′(z)/F (z), where F
is given by (2), then the functions f and p are related through the following
Briot–Bouquet differential equation

zf ′(z)

f(z)
= p(z) +

zp′(z)

p(z) + c
.

Several authors have investigated results on Briot–Bouquet differential sub-
ordination. For example, Ali et al. [3] determined the conditions on A,B,D
and E for p(z) ≺ (1 + Az)/(1 + Bz) when p(z) + zp′(z)/(βp(z) + γ) is sub-
ordinate to (1 + Dz)/(1 + Ez), (A,B,D,E ∈ [−1, 1]). For related results, see
[4, 8, 17, 19, 21, 22, 28]. Recently, Kumar and Ravichandran [14] obtained the
conditions on β so that p(z) is subordinate to ez or (1+Az)/(1+Bz) whenever
1 + βp(z)/p′(z) is subordinate to

√
1 + z or (1 + Az)/(1 + Bz), (−1 ≤ B <

A ≤ 1). We investigate generalised problems for regions that were considered
recently by many authors. In Section 2, we find conditions on γ and β so that
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p(z) + zp′(z)/(βp(z) + γ) is subordinate to
√
1 + z implies p(z) ≺ ez. Condi-

tions on A,B, β and γ are also determined so that p(z) + zp′(z)/(βp(z) + γ) ≺
(1 + Az)/(1 + Bz) implies p(z) ≺

√
1 + z or ez. We determine conditions on

A,B, β and γ so that p(z) ≺ (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1) when
p(z)+zp′(z)/(βp(z)+γ) ≺ ez or ϕPAR(z). The function ϕPAR : D → C is given
by

ϕPAR(z) := 1 +
2

π2

(

log
1 +

√
z

1−√
z

)2

, Im
√
z ≥ 0 (3)

and ϕPAR(D) =
{

w = u+ iv : v2 < 2u− 1
}

= {w : Rew > |w − 1|} =: ΩP . As
an application of our results, we give sufficient conditions for the Bernardi’s
integral operator to belong to the various subclasses of starlike functions which
we define below.

Let A be the class of all functions f ∈ H normalized by the conditions
f(0) = 0 and f ′(0) = 1. Let S denote the subclass of A consisting of univalent
(one-to-one) functions. For an analytic function ϕ with ϕ(0) = 1, let

S∗(ϕ) :=

{

f ∈ A :
zf ′(z)

f(z)
≺ ϕ(z)

}

.

This class unifies various classes of starlike functions when Reϕ > 0. Shan-
mugam [30] studied the convolution properties of this class when ϕ is convex
while Ma and Minda [15] investigated the growth, distortion and coefficient esti-
mates under less restrictive assumption that ϕ is starlike and ϕ(D) is symmetric
with respect to the real axis. Notice that, for −1 ≤ B < A ≤ 1, the class
S∗[A,B] := S∗((1 + Az)/(1 + Bz)) is the class of Janowski starlike functions
[10, 23]. For 0 ≤ α < 1, the class S∗[1 − 2α,−1] =: S∗(α) is the familiar
class of starlike functions of order α, introduced by Robertson [26]. The class
S∗ := S∗(0) is the class of starlike function. The class SP := S∗(ϕPAR) is
the class of parabolic starlike functions, introduced by Rønning [29], consists of
function f ∈ A satisfying

Re

(

zf ′(z)

f(z)

)

>

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

, z ∈ D.

Sokól and Stankiewicz [38] introduced and studied the class S∗
L := S∗(

√
1 + z);

the class S∗
L consists of functions f ∈ A such that zf ′(z)/f(z) lies in the re-

gion bounded by the right-half of the lemniscate of Bernoulli given by ΩL :=
{

w ∈ C : |w2 − 1| < 1
}

. Another class S∗
e := S∗(ez), introduced recently by

Mendiratta et al. [16], consists of functions f ∈ A satisfying the condition
| log(zf ′(z)/f(z))| < 1. There has been several works [9, 2, 13, 24, 31, 36, 37,
25, 35, 34, 32, 1, 39, 33] related to these classes.

The following results are required in our investigation.

Lemma 1.1. [20, Theorem 2.1, p. 2] Let Ω ⊂ C and suppose that ψ : C2×D → C

satisfies the condition ψ(ee
it

, keitee
it

; z) /∈ Ω, where z ∈ D, t ∈ [0, 2π] and k ≥ 1.
If p ∈ H[1, 1] and ψ(p(z), zp′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ ez in D.
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Lemma 1.2. [27, Lemma 1.3, p. 28] Let w be a meromorphic function in D,

w(0) = 0. If for some z0 ∈ D, max|z|≤|z0| |w(z)| = |w(z0)|, then it follows that

z0w
′(z0)/w(z0) ≥ 1.

2. Briot–Bouquet Differential Subordination

In the first result, we find conditions on the real numbers β and γ so that
p(z) ≺ ez, whenever p(z) + (zp′(z))/(βp(z) + γ) ≺

√
1 + z, where p ∈ H with

p(0) = 1. This result gives the sufficient condition for f ∈ A to belong to the
class S∗

e by substituting p(z) = zf ′(z)/f(z).

Theorem 2.1. Let β, γ ∈ R satisfying max{−γ/e,−γe+e/(1−
√
2e)} ≤ β ≤ −eγ.

Let p ∈ H with p(0) = 1. If the function p satisfies

p(z) +
zp′(z)

βp(z) + γ
≺

√
1 + z,

then p(z) ≺ ez.

Proof. Define the functions ψ : C2 × D → C and q : D → C as follows:

ψ(r, s; z) = r +
s

βr + γ
and q(z) =

√
1 + z (4)

so that Ω := q(D) =
{

w ∈ C : |w2 − 1| < 1
}

and ψ(p(z), zp′(z); z) ∈ Ω for
z ∈ D. To prove p(z) ≺ ez, we use Lemma 1.1 so we need to show that

ψ(ee
it

, keitee
it

; z) /∈ Ω which is equivalent to show that |(ψ(eeit , keiteeit ; z))2 −
1| ≥ 1, where z ∈ D, t ∈ [−π, π] and k ≥ 1. A simple computation and (4) yield
that

ψ(ee
it

, keitee
it

; z) = ee
it

+
keitee

it

βeeit + γ
,

|(ψ(eeit , keiteeit ; z))2 − 1|2 =:
f(t)

g(t)
, (5)

for −π ≤ t ≤ π, where

f(t) =
(

e2 cos t cos(2 sin t)((γ + k cos t+ βecos t cos(sin t))2

− (k sin t+ β sin(sin t)ecos t)2)− 2 sin(2 sin t)e2 cos t(k sin t

+ β sin(sin t)ecos t)(γ + k cos t+ βecos t cos(sin t)) + β2 sin2(sin t)e2 cos t

− (γ + βecos t cos(sin t))2
)2

+
(

2e2 cos t cos(2 sin t)(k sin t

+ β sin(sin t)ecos t)(γ + k cos t+ βecos t cos(sin t))

+ sin(2 sin t)e2 cos t((γ + k cos t+ βecos t cos(sin t))2

− (k sin t+ β sin(sin t)ecos t)2)− 2β sin(sin t)ecos t(γ + βecos t cos(sin t))
)2
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and

g(t) = (β2 sin2(sin t)e2 cos t + (γ + βecos t cos(sin t))2)2.

Define the function h : [−π, π] → R by h(t) = f(t) − g(t). Since h(−t) = h(t),
we restrict to 0 ≤ t ≤ π. It can be easily verified that the function h attains its
minimum value either at t = 0 or t = π. For k ≥ 1, we have

h(0) = (e2(eβ + γ + k)2 − (eβ + γ)2)2 − (eβ + γ)4, (6)

h(π) =
((β/e+ γ − k

e

)2

−
(β

e
+ γ

)2)2

−
(β

e
+ γ

)4

. (7)

The given relation β ≥ −γ/e gives eβ+γ ≥ 0 so that e(k+eβ+γ) >
√
2(eβ+γ)

which implies e2(k + eβ + γ)2 − (eβ + γ)2 > (eβ + γ)2. Thus, the use of (6)
yields h(0) > 0.

The given condition 1/(1−
√
2e) ≤ γ+β/e ≤ 0 leads to (γ+β/e)(1−

√
2e) ≤ 1

which gives that −k + γ + β/e ≤ −1 + γ + β/e ≤
√
2e(γ + β/e) which implies

((−k+ γ + β/e)/e)2 ≥ 2(γ+ β/e)2 which further implies ((−k+ γ + β/e)/e)2 −
(γ + β/e)2 ≥ (γ + β/e)2. Hence, by using (7), we get that h(π) ≥ 0. So,

h(t) ≥ 0, (0 ≤ t ≤ π) and thus, (5) implies |(ψ(eeit , keiteeit ; z))2 − 1| ≥ 1 and
therefore p(z) ≺ ez.

We will illustrate Theorem 2.1 by the following example:

Example 2.2. By taking β = 1 and γ = c (c > −1) in Theorem 2.1, we get
−1/e + 1/(1 −

√
2e) ≤ c ≤ −1/e. By taking β = 1, −1/e + 1/(1 −

√
2e) ≤

γ ≤ −1/e, n = 1, h(z) =
√
1 + z, a = 1 in [18, Theorem 3.2d, p. 86], we get

Re(aβ + γ) > 0 and βh(z) + γ ≺ Raβ+γ,n(z), where Rd,f(z) is the open door
mapping given by Rd,f(z) := d(1+ z)/(1− z)+ (2fz)/(1− z2). Thus by the use
of [18, Theorem 3.2d, p. 86], we get

p(z) = −γ +

∫ 1

0

t−γe2
√
z+1−2

√
tz+1

(√
tz + 1 + 1

)2

(√
z + 1 + 1

)2 dt

which satisy Eq. p(z) + zp′(z)/(βp(z) + γ) = h(z). Then p(z) ≺ ez.

Suppose that the function F be given by Bernardi’s integral (2). Now we
discuss the sufficient conditions for the function F to belong to various subclasses
of starlike functions. We will illustrate Theorem 2.1 by the following corollary.

Corollary 2.3.

(i) If the function f ∈ S∗
L and the conditions of Theorem 2.1 hold with β = 1

and γ = c, then F ∈ S∗
e .

(ii) If the function f ′(z) ≺
√
1 + z and the conditions of Theorem 2.1 hold with

β = 0 and γ = c+ 1, then F ′(z) ≺ ez.
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Proof. (i) Let the function p : D → C be defined by p(z) = zF ′(z)/F (z). Then
p is analytic in D with p(0) = 1. Upon differentiating Bernardi’s integral given
by (2), we obtain

(c+ 1)f(z) = zF ′(z) + cF (z). (8)

A computation now yields

zf ′(z)

f(z)
= p(z) +

zp′(z)

p(z) + c
.

By taking β = 1 and γ = c, the first part of the corollary follows from Theo-
rem 2.1.

(ii) By defining a function p by p(z) = F ′(z) and using (8), we get

f ′(z) =
zF ′′(z)

c+ 1
+ F ′(z).

By taking β = 0 and γ = c+ 1, the result follows from Theorem 2.1.

In the following result, we derive conditions on the real numbers A,B, β and
γ so that p(z)+(zp′(z))/(βp(z)+γ) ≺ ez implies p(z) ≺ (1+Az)/(1+Bz), (−1 ≤
B < A ≤ 1), where p ∈ H with p(0) = 1. This result gives the sufficient condition
for f ∈ A to belong to the class S∗[A,B] by substituting p(z) = zf ′(z)/f(z).

Theorem 2.4. Let −1 < B < A ≤ 1 and β, γ ∈ R. Suppose that

(i)
(

A−B
)

/
(

(1 ∓B)((1 ∓A)β + (1∓B)γ)
)

≥ ±(1∓A)/(1∓B) + e.

(ii) β(1±A) + γ(1±B) > 0.
Let p ∈ H with p(0) = 1. If the function p satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ ez,

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. Define the functions P and w as follows:

P (z) = p(z) +
zp′(z)

βp(z) + γ
and w(z) =

p(z)− 1

A−Bp(z)
(9)

so that p(z) = (1 + Aw(z))/(1 + Bw(z)). Clearly, w(z) is analytic in D with
w(0) = 0. In order to prove p(z) ≺ (1 + Az)/(1 + Bz), we need to show that
|w(z)| < 1 in D. If possible, suppose that there exists z0 ∈ D such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then by Lemma 1.2, it follows that there exists k ≥ 1 so that z0w
′(z0) = kw(z0).

Let w(z0) = eit, (−π ≤ t ≤ π) and G := Aβ +Bγ. A simple calculation and by
using (9), we get

P (z0) =
keit(A−B) +

(

1 +Aeit
) (

β + γ +Geit
)

(1 +Beit) (β + γ +Geit)
=: u+ iv, (10)
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for −π ≤ t ≤ π. We derive a contradiction by showing | logP (z0)|2 ≥ 1. This
later inequality is equivalent to

f(t) := 4(arg(u + iv))2 + (log
(

u2 + v2
)

)2 − 4 ≥ 0 (−π ≤ t ≤ π). (11)

From (10), we get

u =
1

(B2 + 2B cos t+ 1) ((β + γ)2 +G2 + 2G(β + γ) cos t)

(

G(A+B)(β + γ)

cos 2t+ cos t
(

A(BG(2(β + γ) + k) +G2 + (β + γ)(β + γ + k))−B2Gk

+ 2G(β + γ) +B
(

G2 − (β + γ)(−β − γ + k)
) )

+ (β + γ)(AB(β + γ + k)

+ β −B2k + γ) +G2(AB + 1) +G(A(β + γ + k) +B(β + γ − k))
)

and

v =
(A−B) sin t

(

−BGk +G2 + 2G(β + γ) cos t+ (β + γ)(β + γ + k)
)

(B2 + 2B cos t+ 1) ((β + γ)2 +G2 + 2G(β + γ) cos t)
.

Substituting these values of u and v in (11), we observe that f(t) is an even
function of t and so, it is enough to show that f(t) ≥ 0 for t ∈ [0, π]. It can be
easily verified that the function f(t) attains its minimum value either at t = 0
or t = π. We show that both f(0) and f(π) are non negative. Note that, for
k ≥ 1,

f(0) = −4 + 4(argψ(k))2 + (log(ψ2(k)))2 (12)

and
f(π) = −4 + 4(arg(−φ(k)))2 + (log(φ2(k)))2, (13)

where ψ(k) :=
(

A2β +A(2β +Bγ + γ + k) + β +B(γ − k) + γ
)

/
(

(1 +B)(β(1 +

A) + γ(1 + B))
)

and φ(k) :=
(

A2β − 2Aβ + (A − 1)(B − 1)γ − Ak + β +

Bk
)

/
(

(B − 1)(−Aβ + β − Bγ + γ)
)

. The function ψ is increasing as ψ′(k) =

(A−B)/
(

(1 +B)(β(1 +A) + γ(1 +B))
)

> 0 using the given condition (ii) and
therefore, the given hypothesis (i) yields that ψ(k) ≥ ψ(1) = (1 +A)/(1 +B) +
(A−B)/

(

(1 +B)(β(1 +A) + γ(1 +B))
)

≥ e which gives that argψ(k) = 0 and
(log(ψ2(k)))2 ≥ (2 log e)2 = 4. Thus, the use of (12) yields f(0) ≥ 0.

The function φ is increasing as φ′(k) = (A − B)/
(

(1 −B)(β(1 − A) + γ(1 −
B))

)

> 0 using the given condition (ii) and therefore, the given hypothesis (i)

yields that φ(k) ≥ φ(1) = −(1−A)/(1−B)+(A−B)/
(

(1−B)(β(1−A)+γ(1−
B))

)

≥ e which further implies arg(−φ(k)) = π and (log(φ2(k)))2 ≥ (2 log e)2 =
4. Hence, by using (13), we get f(π) ≥ 4π2 > 0. This completes the proof.

We will illustrate Theorem 2.4 by the following example:

Example 2.5. By taking A = 1/2, B = −1/2, β = 1 and γ = c (c > −1) in
Theorem 2.4, we get −1/3 ≤ c ≤ (1 − e)/(1 + 3e). By taking β = 1, −1/3 ≤
γ ≤ (1 − e)/(1 + 3e), n = 1, h(z) = ez, a = 1 in [18, Theorem 3.2d, p. 86], we
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get Re(aβ+ γ) > 0 and βh(z)+ γ ≺ Raβ+γ,n(z), where Rd,f(z) is the open door
mapping given by Rd,f (z) := d(1 + z)/(1− z) + (2fz)/(1− z2). Thus by using
[18, Theorem 3.2d, p. 86], we get

p(z) =

∫ 1

0

t1−γe−Chi(tz)+Chi(z)−Shi(tz)+Shi(z) dt− γ

which satisy Eq. p(z)+ zp′(z)/(βp(z) + γ) = h(z). Then p(z) ≺ (2 + z)/(2− z).
Here, Chi(z) and Shi(z) are the hyperbolic cosine integral function and the
hyperbolic sine integral function respectively defined as follows:

Chi(z) = η + log(z) +

∫ z

0

cosh(t)− 1

t
dt and Shi(z) =

∫ z

0

sinh(t)

t
dt,

where η is the Euler’s constant.

The next corollary is obtained by substituting p(z) = zf ′(z)/f(z) with γ = 0,
B = 0 and A = 1− α, (0 ≤ α < 1) in Theorem 2.4.

Corollary 2.6. Let 0 ≤ α < 1 and β > 0 satisfy the conditions α + e + β−1 ≤
(αβ)−1 and 1 − α ≥ β(2 − α)(e − 2 + α). If the function f ∈ A satisfies the

subordination
zf ′(z)

f(z)
+

1

β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ ez,

then f ∈ S∗
α.

Our next corollary deals with the class R[A,B] defined by

R[A,B] =

{

f ∈ A : f ′(z) ≺ 1 +Az

1 +Bz

}

.

The two parts of the following corollary are obtained by taking p(z) to be
zF ′(z)/F (z) with β = 1, γ = c and p(z) = F ′(z) with β = 0, γ = c + 1
respectively in Theorem 2.4.

Corollary 2.7.

(i) If the function f ∈ S∗
e and the conditions of Theorem 2.4 hold with β = 1

and γ = c, then F ∈ S∗[A,B].

(ii) The function f ′(z) ≺ ez and the conditions of Theorem 2.4 hold with β = 0
and γ = c+ 1, then F ∈ R[A,B].

In the next result, we find the conditions on the real numbers A,B, β and γ
so that p(z) ≺

√
1 + z, whenever p(z)+(zp′(z))/(βp(z)+γ) ≺ (1+Az)/(1+Bz),

−1 ≤ B < A ≤ 1, where p ∈ H with p(0) = 1. As an application of the next
result, it provides sufficient conditions for f ∈ A to belong to the class S∗

L.

Theorem 2.8. Let −1 ≤ B < A ≤ 1 and β, γ ∈ R satisfy the following conditions:



Briot–Bouquet Differential Subordination 581

(i) 1 + 4(
√
2− 1)β − 2(

√
2− 2)γ ≥ B(−2A(2β +

√
2γ) +B(1 + 4(

√
2β + γ))).

(ii) (1+4(
√
2− 1)β− 2(

√
2− 2)γ)2 ≥ (−2A(2β+

√
2γ)+B(1+4(

√
2β+γ)))2.

Let p ∈ H with p(0) = 1. If the function p satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Az

1 +Bz
,

then p(z) ≺
√
1 + z.

Proof. Define the functions P and w as follows:

P (z) = p(z) +
zp′(z)

βp(z) + γ
and w(z) = p2(z)− 1 (14)

which implies p(z) =
√

1 + w(z). Clearly, w(z) is analytic in D with w(0) = 0.
In order to complete our proof, we need to show that |w(z)| < 1 in D. Assume
that there exists z0 ∈ D such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then by Lemma 1.2, it follows that there exists k ≥ 1 so that z0w
′(z0) = kw(z0).

Let w(z0) = eit, (−π ≤ t ≤ π). By using (14), we get

P (z) =
√

1 + w(z) +
zw′(z)

2
√

1 + w(z)(β
√

1 + w(z) + γ)
.

A simple computation shows that

P (z0) =
keit + 2

(

1 + eit
)

(

γ + β
√
1 + eit

)

2
√
1 + eit

(

γ + β
√
1 + eit

) (−π ≤ t ≤ π)

and
∣

∣

∣

∣

P (z0)− 1

A−BP (z0)

∣

∣

∣

∣

2

=:
f(t)

g(t)
(−π ≤ t ≤ π), (15)

where

f(t) =
(

(2β cos t+ 2(β − γ)) sin(arg(1 + eit)/2)
√

2 cos(t/2)

+ sin t(k + 2(γ + β(−1 + cos(arg(1 + eit)/2)
√

2 cos(t/2))))
)2

+
(

− cos t(k + 2(γ + β(−1 + cos(arg(1 + eit)/2)
√

2 cos(t/2))))

+ 2β sin t sin(arg(1 + eit)/2)
√

2 cos(t/2) + 2(β − γ)

(1− cos(arg(1 + eit)/2)
√

2 cos(t/2))
)2
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and

g(t) =
(

− 2A(β sin t+ γ sin(arg(1 + eit)/2)
√

2 cos(t/2))

+ 4Bβ cos2(t/2)
√

2 cos(t/2) sin(arg(1 + eit)/2) +B sin t(k + 2γ

+ 2β cos(arg(1 + eit)/2)
√

2 cos(t/2))
)2

+
(

− 4Aβ cos2(t/2)

+B(k + 2γ) cos t+ 2γ − 2Bβ sin t sin(arg(1 + eit)/2)
√

2 cos(t/2)

+ 2(−Aγ +Bβ cos t+ β) cos(arg(1 + eit)/2)
√

2 cos(t/2)
)2
.

Define h(t) = f(t) − g(t). Since h(t) is an even function of t, we restrict to
0 ≤ t ≤ π. It can be easily verified that for both the cases (i) and (ii), the
function h(t) attains its minimum value either at t = 0 or t = π. Note that for
k ≥ 1, h(π) = (1 −B2)k2 > 0 and

S(k) := h(0) = (4(
√
2− 1)β − 2(

√
2− 2)γ + k)2 − (B(4(

√
2β + γ) + k)

− 2A(2β +
√
2γ))2.

(16)

The function S′ is increasing as S′′(k) = 2(1−B2) > 0 and therefore, the given
hypothesis (i) yields that S′(k) ≥ S′(1) = 2(1 + 4(

√
2 − 1)β − 2(

√
2 − 2)γ) −

2B(−2A(2β +
√
2γ) + B(1 + 4(

√
2β + γ))) ≥ 0 which gives that S(k) ≥ S(1) =

(1 + 4(
√
2 − 1)β − 2(

√
2 − 2)γ)2 − (−2A(2β +

√
2γ) + B(1 + 4(

√
2β + γ)))2.

Thus, the use of given condition (ii) and (16) yields h(0) ≥ 0. So, h(t) ≥ 0 for
all t ∈ [0, π] and therefore, (15) implies |(P (z0) − 1)/(A − BP (z0))| ≥ 1. This
contradicts the fact that P (z) ≺ (1 +Az)/(1 +Bz) and completes the proof.

The next corollary is obtained by substituting p(z) = zf ′(z)/f(z) with γ = 0,
A = 1− 2α, (0 ≤ α < 1) and B = −1 in Theorem 2.8.

Corollary 2.9. Let 0 ≤ α < 1 and f ∈ A. If the function f satisfies the

subordination

zf ′(z)

f(z)
+

1

β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 + (1− 2α)z

1− z

(

1

4(α−
√
2)

≤ β < 0

)

,

then f ∈ S∗
L.

By taking p(z) = zF ′(z)/F (z) with β = 1 and γ = c in Theorem 2.8 gives
the following corollary:

Corollary 2.10. Let −1 ≤ B < A ≤ 1 satisfy the following conditions:

(i) 1 + 4(
√
2− 1)− 2(

√
2− 2)c ≥ B(−2A(2 +

√
2c) +B(1 + 4(

√
2 + c))).

(ii) (1 + 4(
√
2− 1)− 2(

√
2− 2)c)2 ≥ (−2A(2 +

√
2c) +B(1 + 4(

√
2 + c)))2.

If f ∈ S∗[A,B] then F ∈ S∗
L.
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By taking p(z) = F ′(z) with β = 0 and γ = c+ 1 in Theorem 2.8 gives the
following corollary:

Corollary 2.11. Suppose that −1 ≤ B < A ≤ 1 satisfy the following conditions:

(i) 5− 2
√
2− 2(

√
2− 2)c ≥ B(−2

√
2(c+ 1)A+ (5 + 4c)B).

(ii) (5− 2
√
2− 2(

√
2− 2)c)2 ≥ (−2

√
2(c+ 1)A+ (5 + 4c)B)2.

If f ∈ R[A,B] then F ′(z) ≺
√
1 + z.

In the next result, we compute the conditions on the real numbers A,B, β
and γ so that p(z)+(zp′(z))/(βp(z)+γ) ≺ (1+Az)/(1+Bz), (−1 ≤ B < A ≤ 1)
implies p(z) ≺ ez, where p ∈ H with p(0) = 1. As an application of the next
result, it provides sufficient conditions for f ∈ A to belong to the class S∗

e .

Theorem 2.12. Let −1 ≤ B < A ≤ 1 and β, γ ∈ R satisfy the following condi-

tions:

(i) e2β(1−B2) + e(−B(−Aβ +Bγ +B)− β + γ + 1) + γ(AB − 1) ≥ 0.

(ii) (e((A+ e− 1)β− (eβ+1)B+1)+ γ(A+ e(1−B)− 1))(e(−(A− e+1)β+
B(eβ + 1) + 1) + γ(−A+ e(B + 1)− 1)) ≥ 0.

(iii) e(β(1−AB) +B2(γ − 1)− γ + 1) + e2γ(1−AB) + β(B2 − 1) ≥ 0.

(iv) (e((A − 1)β + (1 − B)(γ − 1)) + e2(A − 1)γ + β(1 − B))(−e((A + 1)β +
(B + 1)(1− γ))− e2(A+ 1)γ + β(B + 1)) ≥ 0.

Let p ∈ H with p(0) = 1. If the function p satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Az

1 +Bz
,

then p(z) ≺ ez.

Proof. Define the functions ψ : C2 × D → C and q : D → C as follows:

ψ(r, s; z) = r +
s

βr + γ
and q(z) =

1 +Az

1 +Bz
(17)

so that Ω := q(D) = {w ∈ C : |(w − 1)/(A−Bw)| < 1} and ψ(p(z), zp′(z); z) ∈
Ω for z ∈ D. To prove p(z) ≺ ez, we use Lemma 1.1 so we need to show that

ψ(ee
it

, keitee
it

; z) /∈ Ω which is equivalent to show that |(ψ(eeit , keiteeit ; z) −
1)/(A−Bψ(ee

it

, keitee
it

; z))| ≥ 1, where z ∈ D, t ∈ [−π, π] and k ≥ 1. A simple
computation and (17) yield that

ψ(ee
it

, keitee
it

; z) = ee
it

+
keitee

it

βeeit + γ
(−π ≤ t ≤ π)

and
∣

∣

∣

∣

∣

ψ(ee
it

, keitee
it

; z)− 1

A−Bψ(eeit , keiteeit ; z)

∣

∣

∣

∣

∣

2

=:
f(t)

g(t)
(−π ≤ t ≤ π), (18)
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where

f(t) =e3 cos t(2βk sin t sin(sin t) + 2βk cos t cos(sin t)− 2β2 cos(sin t)

+ 2βγ cos(sin t)) + e2 cos t((β − γ)2 + k2 − 2βk cos t+ 2γk cos t

+ 2βγ sin2(sin t)− 2βγ cos2(sin t)) + ecos t(2γk sin t sin(sin t)

− 2γk cos t cos(sin t) + 2βγ cos(sin t)− 2γ2 cos(sin t)) + β2e4 cos t + γ2

and

g(t) =A2γ2 + β2B2e4 cos t + 2βBe3 cos t((Bγ −Aβ) cos(sin t) +Bk cos(t− sin t))

+ e2 cos t(B(B(γ2 + k2)− 2Aβγ) + 2B(Bγ −Aβ)k cos t

− 2ABβγ cos(2 sin t) +A2β2) + 2Aγecos t((Aβ −Bγ) cos(sin t)

−Bk cos(t+ sin t)).

Define h(t) = f(t)− g(t). Since h(−t) = h(t), we restrict to 0 ≤ t ≤ π. It can be
easily verified that the function h(t) attains its minimum value either at t = 0
or t = π. For k ≥ 1, we have

φ(k) :=h(0) = e2((1−A2)β2 + 2k(β(AB − 1) + (1−B2)γ) + 4βγ(AB

− 1) + (1−B2)(γ2 + k2)) + 2eγ(−A2β + (AB − 1)(γ + k) + β)

+ 2e3β(β(AB − 1) + (1 −B2)(γ + k)) + e4β2(1−B2)

+ (1−A2)γ2

(19)

and

h(π) =
−1

e4
(e((A− 1)β + (1−B)(γ − k)) + e2(A− 1)γ + β(1−B))

(e((1 +A)β + (B + 1)(k − γ)) + e2(A+ 1)γ − β(B + 1)) =: ψ(k).
(20)

The function φ′ is increasing as φ′′(k) = 2(1 − B2)e2 > 0 and therefore, the
given hypothesis (i) yields that φ′(k) ≥ φ′(1) = 2e(e(−B(−Aβ + Bγ + B) −
β + γ + 1) + γ(AB − 1) + e2β(1 − B2)) ≥ 0 which gives that φ(k) ≥ φ(1) =
(e((A+e−1)β− (eβ+1)B+1)+γ(A+e(1−B)−1))(e(−(A−e+1)β+B(eβ+
1) + 1) + γ(−A+ e(B + 1)− 1)). Thus, the use of given condition (ii) and (19)
yields h(0) ≥ 0.

In view of (iii), observe that ψ′′(k) = 2(1 − B2)/e2 > 0 and therefore,
minψ′(k) = ψ′(1) = 2(e(β(1−AB)+B2(γ−1)−γ+1)+e2γ(1−AB)+β(B2−
1))/e3 ≥ 0 which implies minψ(k) = ψ(1) = ((e((A−1)β+(1−B)(γ−1))+e2(A−
1)γ+β(1−B))(−e((A+1)β+(B+1)(1−γ))−e2(A+1)γ+β(B+1)))/e4. Hence,
the use of given condition (iv) and (20) yields that h(π) ≥ 0. So, h(t) ≥ 0, (0 ≤
t ≤ π) and thus, (18) implies |(ψ(eeit , keiteeit ; z)−1)/(A−Bψ(eeit , keiteeit ; z))| ≥
1 and therefore, p(z) ≺ ez.

The next corollary is obtained by substituting p(z) = zf ′(z)/f(z) with γ = 0,
B = 0 and A = 1− α, (0 ≤ α < 1) in Theorem 2.12.
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Corollary 2.13. Suppose 0 ≤ α < 1 and β ≥ 1/(1 − e) satisfy the conditions

(−αβ+βe+1)(β(α+e−2)+1) ≥ 0 and (β−e((2−α)β+1))(β+e(−αβ−1)) ≥ 0.
If the function f ∈ A satisfies the condition

∣

∣

∣

∣

zf ′(z)

f(z)
+

1

β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

− 1

∣

∣

∣

∣

< 1− α,

then f ∈ S∗
e .

The two parts of the following corollary are obtained by taking p(z) =
zF ′(z)/F (z) with β = 1, γ = c and p(z) = F ′(z) with β = 0, γ = c + 1
respectively in Theorem 2.12.

Corollary 2.14.

(i) If the function f ∈ S∗[A,B] and the conditions of the Theorem 2.12 hold

with β = 1 and γ = c, then F ∈ S∗
e .

(ii) The function f ∈ R[A,B] and the conditions of Theorem 2.12 hold with

β = 0 and γ = c+ 1, then F ′(z) ≺ ez.

In the next result, we find the conditions on the real numbers A,B, β and
γ so that p(z) ≺ (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), whenever p(z) +
(zp′(z))/(βp(z) + γ) ∈ ΩP , where p ∈ H with p(0) = 1. As an application of
the next result, it provides sufficient conditions for f ∈ A to belong to the class
S∗[A,B].

Theorem 2.15. Let −1 ≤ B < A ≤ 1 and β, γ ∈ R. For k ≥ 1 and 0 ≤ m ≤ 1,
assume that G := Aβ +Bγ,L := k + β + γ. Further assume that

(i) BG(β + γ) > 0.

(ii)
(

G(A2L + 4(β + γ)) − 2B(AGL + 2(β + γ)2 + 2G2) + B2G(4(β + γ) +

L)
)(

G
(

A2L− 4(β + γ)
)

+B
(

−2AGL+ 4(β + γ)2 + 4G2
)

+B2G(L−4(β+

γ))
)

≥ 2G(A − B)2
(

GL(A2L − 4(β + γ)) − 2B(AGL2 + 2G2(L − 2(β +

γ))− 2L(β + γ)(−β − γ + 2L)) +B2GL(L− 4(β + γ))
)

.

(iii) 8G(A−B)2(β + γ + k) ≤ 2(B − 1)2G(β + γ) + 2B(β + γ −G)2.

(iv) 1 + β + γ ≥ 0, G ≥ 0.

(v) 4m4(A−B)2(β + γ +G+ 1)2 ≥ (B + 1)2(β + γ +G)2.

Let p ∈ H with p(0) = 1. If the function p satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ ϕPAR(z),

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. Define the functions P and w as given by Eq. (9) which implies p(z) =
(1 +Aw(z))/(1 +Bw(z)). Proceeding as in Theorem 2.4, we need to show that
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|w(z)| < 1 in D. If possible suppose that there exists z0 ∈ D such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then by Lemma 1.2, it follows that there exists k ≥ 1 so that z0w
′(z0) = kw(z0).

Let w(z0) = eit, (−π ≤ t ≤ π). A simple calculation and by using (9), we get

P (z0) =
keit(A−B) +

(

1 +Aeit
) (

β + γ +Geit
)

(1 + Beit) (β + γ +Geit)
(−π ≤ t ≤ π). (21)

Define the function h by

h(z) = u+ iv =
√

(P (z)− 1)π2/2. (22)

We show that |(eh(z0) − 1)/(eh(z0) + 1)|2 ≥ 1; this condition is same as the
inequality Re eh(z0) ≤ 0. This last inequality is indeed equivalent to cos v ≤ 0 or
1/2 ≤ |v/π| ≤ 1. By using the definition of h given in (22) together with (21),
we get

|v|
π

=

√
A−B|m(t)||Geit + L|1/2√

2|1 +Beit|1/2|Geit + β + γ|1/2
(−π ≤ t ≤ π), (23)

where m(t) = sin
(

arg
(

(eit(A−B)(Geit + L))/((1 +Beit)(Geit + β + γ))
)

/2
)

.

(a) We will first show that |v/π| ≤ 1 which by using the fact that |m(t)| ≤ 1
and (23) is same as to show that f(t) ≥ 0 (−π ≤ t ≤ π), where

f(t) = 4(1 +B2 + 2B cos t)((β + γ)2 +G2 + 2(β + γ)G cos t)

− (A−B)2(L2 +G2 + 2LG cos t).

After substituting x = cos t (−π ≤ t ≤ π), the above inequality reduces to
F (x) ≥ 0 for all x with −1 ≤ x ≤ 1, where

F (x) = 4(1+B2+2Bx)((β+γ)2+G2+2(β+γ)Gx)−(A−B)2(L2+G2+2LGx).

A simple computation shows that for

x0 =
1

16BG(β + γ)

(

G
(

A2L− 4(β + γ)
)

− 2B
(

AGL + 2(β + γ)2 + 2G2
)

+B2G(L− 4(β + γ))
)

,

F ′(x0) = 0 and F ′′(x0) = 32BG(β+γ) > 0 by the given condition (i). Therefore,
F (x) ≥ F (x0). Observe that

F (x0) =
1

16BG(β + γ)

((

G(A2L+ 4(β + γ))− 2B(AGL+ 2(β + γ)2 + 2G2)

+B2G(4(β + γ) + L)
)(

G(A2L− 4(β + γ))

+B2G(L − 4(β + γ)) +B(−2AGL+ 4(β + γ)2

+ 4G2)
)

− 2G(A−B)2
(

GL(A2L− 4(β + γ))

+B2GL(L− 4(β + γ))− 2B(AGL2

+ 2G2(L− 2(β + γ))− 2L(β + γ)(−β − γ + 2L))
))
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and F (x0) ≥ 0 by the given condition (ii).

(b) We will next show that |v/π| ≥ 1/2 which by using (23) is same as to
show that g(t) ≥ 0 (−π ≤ t ≤ π), where

g(t) = 4(A−B)2m4(t)(L2 +G2 + 2LG cos t)− (1 +B2 + 2B cos t)((β + γ)2

+G2 + 2(β + γ)G cos t)

After substituting x = cos t (−π ≤ t ≤ π) and m = m(t), the above inequality
reduces to H(x) ≥ 0 for all x with −1 ≤ x ≤ 1, where

H(x) = 4(A−B)2m4(L2+G2+2LGx)−(1+B2+2Bx)((β+γ)2+G2+2(β+γ)Gx).

In view of (i), (iii), (iv) and the fact that −1 ≤ m ≤ 1, we see that H ′′(x) =
−8BG(β + γ) < 0 and hence H ′(x) ≤ H ′(−1) = 8m4G(A − B)2(β + γ +
k) − 2(B − 1)2G(β + γ) − 2B(−G + β + γ)2 ≤ 0. Thus, H(x) ≥ H(1) =
4m4(A − B)2(β + γ + G + k)2 − (B + 1)2(β + γ + G)2 =: ψ(k). Using (iv),
we observe that ψ′′(k) = 8m4(A − B)2 ≥ 0 and hence for k ≥ 1, we have
ψ′(k) ≥ ψ′(1) = 8m4(A − B)2(β + γ + G + 1) ≥ 0. Thus by using (v), we get
H(x) ≥ ψ(k) ≥ ψ(1) = 4m4(A−B)2(β+γ+G+1)2− (B+1)2(β+γ+G)2 ≥ 0.
This completes the proof.

The next corollary is obtained by substituting p(z) = zf ′(z)/f(z) with γ = 0,
B = −1 and A = 1− 2α, (0 ≤ α < 1) in Theorem 2.15.

Corollary 2.16. Let 1/2 < α < 1, −1 ≤ β < 0 and k ≥ 1 satisfy the conditions

(2α2+α−3)2β2+(4α4−12α3+13α2+2α−3)k2+2(4α4−20α3+17α2+2α−3)βk ≤
0 and (α2+2α−1)β2 ≤ 4(α−1)2(2α−1)β(β+k). If the function f ∈ A satisfies

the subordination

zf ′(z)

f(z)
+

1

β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ ϕPAR(z),

then f ∈ S∗(α).

References

[1] R.M. Ali, K. Sharma and V. Ravichandran, Starlikeness of analytic functions with
subordinate ratios, J. Math. 2021 (2021), Art. ID 8373209.

[2] R.M. Ali, N.K. Jain, V. Ravichandran, Radii of starlikeness associated with the
lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11)
(2012) 6557–6565.

[3] R.M. Ali, V. Ravichandran, N. Seenivasagan, On Bernardi’s integral operator and
the Briot–Bouquet differential subordination, J. Math. Anal. Appl. 324 (2006)
663–668.

[4] D. Bansal and B.A. Frasin, Some results on convexity of integral operators, South-
east Asian Bull. Math. 38 (4) (2014) 487–491.



588 K. Sharma et al.

[5] N.E. Cho, A. Ebadian, S. Bulut, E.A. Adegani, Subordination implications and
coefficient estimates for subclasses of starlike functions, Mathematics 8 (7) (2020),
Arti. ID 1150.

[6] E. Deniz and H. Orhan, Some properties of certain subclasses of analytic functions
with negative coefficients by using generalized Ruscheweyh derivative operator,
Czechoslovak Math. J. 60 (3) (2010) 699–713.

[7] E. Deniz and R. Szász, The radius of uniform convexity of Bessel functions, J.
Math. Anal. Appl. 453 (1) (2017) 572–588.

[8] P. Eenigenburg, S.S. Miller, P.T. Mocanu, M.O. Reade, On a Briot–Bouquet
differential subordination, Rev. Roumaine Math. Pures Appl. 29 (7) (1984) 567–
573.

[9] W. Janowski, Some extremal problems for certain families of analytic functions.
I, Ann. Polon. Math. 28 (1973) 297–326.

[10] W. Janowski, Extremal problems for a family of functions with positive real part
and for some related families, Ann. Polon. Math. 23 (1970/1971) 159–177.

[11] A. Lecko and Y. J. Sim, Coefficient problems in the subclasses of close-to-star
functions, Results Math. 74 (3) (2019), Paper No. 104, 14 pp.

[12] A. Lecko and A. Wísniowska, Geometric properties of subclasses of starlike func-
tions, J. Comput. Appl. Math. 155 (2) (2003) 383–387.

[13] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with
a rational function, Southeast Asian Bull. Math. 40 (2) (2016) 199–212.

[14] S. Kumar and V. Ravichandran, Subordinations for functions with positive real
part, Complex Anal. Oper. Theory 12 (5) (2018) 1179–1191.

[15] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent
functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992),
Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA, 1994.

[16] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38
(1) (2015) 365–386.

[17] S.S. Miller and P.T. Mocanu, Briot-Bouquet differential equations and differential
subordinations, Complex Variables Theory Appl. 33 (1-4) (1997) 217–237.

[18] S.S. Miller and P.T. Mocanu, Differential Subordinations, Monographs and Text-
books in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

[19] S.S. Miller and P.T. Mocanu, Univalent solutions of Briot–Bouquet differential
equations, J. Differential Equations 56 (3) (1985) 297–309.

[20] A. Naz, S. Nagpal, V. Ravichandran, Starlikeness associated with the exponential
function, Turkish J. Math. 43 (2019) 1353–1371.

[21] M. Nunokawa, S. Owa, O.S. Kwon, N.E. Cho, On Φ-like with respect to certain
starlike functions, Southeast Asian Bull. Math. 38 (2) (2014) 271–274.

[22] J. Patel, On starlikeness and convexity of certain integral operator, Southeast
Asian Bull. Math. 37 (1) (2013) 123–130.

[23] Y. Polatoğlu and M. Bolcal, Some radius problem for certain families of analytic
functions, Turkish J. Math. 24 (4) (2000) 401–412.

[24] V. Ravichandran, F. Rønning, T.N. Shanmugam, Radius of convexity and radius
of starlikeness for some classes of analytic functions, Complex Variables Theory
Appl. 33 (1-4) (1997) 265–280.

[25] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean
Math. Soc. 52 (4) (2015) 727–749.

[26] M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (2)
(1985) 135–140.

[27] S. Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ.
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[37] J. Sokó l, Radius problems in the class SL, Appl. Math. Comput. 214 (2) (2009)
569–573.
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