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Abstract. The notions of weak GE-morphism, weak GE-endomorphism are introduced

and investigated its properties. Conditions for a self-map on a GE-algebra to be an

idempotent and to be a weak GE-endomorphism are provided. The notion of qualified

GE-algebra is introduced and its properties are investigated. Condition for a qualified

GE-algebra to be an idempotent weak GE-endomorphism is given. The notion of

qualified self-map is defined and a necessary and condition for a given self-map on

a GE-algebra, the product of two GE-algebras under the qualified self-map to be a

qualified GE-algebra is given. For a given qualified GE-algebra, using its kernel, an

equivalence relation is induced, and then the quotient set is constructed. A binary

operation is given on the quotient set to create a quotient qualified GE-algebra.
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1. Introduction

BCK-algebras (see [9, 10]) were introduced by Y. Imai and K. Iséki in 1966 as the
algebraic semantics for a non-classical logic possessing only implication. Since
then, the generalized concepts of BCK-algebras have been studied by various
scholars. Hilbert algebras were introduced by L. Henkin and T. Skolem in the
fifties for investigations in intuitionistic and other non-classical logics. A. Diego
established that Hilbert algebras form a locally finite variety (see [7]). Later
several researchers extended the theory on Hilbert algebras (see [5, 6, 8, 11, 13]).
The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a gen-
eralization of a dual BCK-algebra (see [14]). A. Rezaei et al. discussed relations
between Hilbert algebras and BE-algebras (see [16]). In the study of algebraic
structures, the generalization process is also an important topic. As a gen-
eralization of Hilbert algebras, R.K. Bandaru et al. introduced the notion of
GE-algebras, and investigated several properties (see [1]). A. Rezaei et al. in-
troduced the concept of prominent GE-filters in GE-algebras and discussed its
properties (see [17]). M.A. Ozturk et al. introduced the concept of Strong GE-
filters, GE-ideals of bordered GE-algebras and investigated its properties (see
[15]). S.Z. Song et al. introduced the concept of Imploring GE-filters of GE-
algebras and discussed its properties (see [18]). The isomorphism theorems play
an important role in a general logical algebra, which were studied by several re-
searches. Jun et al. derived isomorphism theorems by using Chinese Remainder
Theorem in BCI-algebras (see [12]). Recently, R.K. Bandaru et al. introduced
the notion of GE-morphism and established fundamental GE-morphism theo-
rem. They investigated some isomorphism theorems in GE-algebras (see [3]).

In this paper, we introduce the notions of weak GE-morphism, weak GE-
endomorphism and study its properties. We provide conditions for a given self-
map on a GE-algebra to be an idempotent and to be a weak GE-endomorphism.
We introduce the notion of qualified GE-algebra and investigate its properties.
We give condition for a qualified GE-algebra to be an idempotent weak GE-
endomorphism. We define the notion of qualified self-map and give a necessary
and condition for a given self-map on a GE-algebra, the product of two GE-
algebras under the qualified self-map to be a qualified GE-algebra. In qualified
GE-algebras, we use kernel to induce an equivalence relation, and then construct
the quotient set. We define a binary operation on the quotient set to construct
a quotient qualified GE-algebra.

2. Preliminaries

Definition 2.1. [1] By a GE-algebra we mean a nonempty set X with a constant
1 and a binary operation “∗” satisfying the following axioms:
(GE1) u ∗ u = 1,

(GE2) 1 ∗ u = u,

(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))
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for all u, v, w ∈ X.

Definition 2.2. [1, 2] A GE-algebra X is said to be

(i) transitive if it satisfies:

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (1)

(ii) antisymmetric if the binary relation “≤” is antisymmetric.

Proposition 2.3. [1] Every GE-algebra X satisfies the following items.

(∀u ∈ X) (u ∗ 1 = 1) . (2)

(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) . (3)

(∀u, v ∈ X) (u ≤ v ∗ u) . (4)

(∀u, v, w ∈ X) (u ∗ (v ∗ w) ≤ v ∗ (u ∗ w)) . (5)

(∀u ∈ X) (1 ≤ u ⇒ u = 1) . (6)

(∀u, v ∈ X) (u ≤ (v ∗ u) ∗ u) . (7)

(∀u, v ∈ X) (u ≤ (u ∗ v) ∗ v) . (8)

(∀u, v, w ∈ X) (u ≤ v ∗ w ⇔ v ≤ u ∗ w) . (9)

If X is transitive, then

(∀u, v, w ∈ X) (u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w) . (10)

(∀u, v, w ∈ X) (u ∗ v ≤ (v ∗ w) ∗ (u ∗ w)) . (11)

(∀u, v, w ∈ X) (u ≤ v, v ≤ w ⇒ u ≤ w) . (12)

Definition 2.4. [1] A subset F of a GE-algebra X is called a GE-filter of X if it
satisfies:

1 ∈ F, (13)

(∀u, v ∈ X)(u ∈ F, u ∗ v ∈ F ⇒ v ∈ F ). (14)

Lemma 2.5. [1] In a GE-algebra X, every GE-filter F of X satisfies:

(∀x, y ∈ X) (x ≤ y, x ∈ F ⇒ y ∈ F ) . (15)

In [17], the concept of GE-morphisms in GE-algebras is defined as follows:

Definition 2.6. [17] Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. A mapping
ξ : X → Y is called a GE-morphism if it satisfies:

(∀x1, x2 ∈ X)(ξ(x1 ∗X x2) = ξ(x1) ∗Y ξ(x2)). (16)
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If a GE-morphism ξ : X → Y is onto (resp., one-to-one), we say it is a GE-
epimorphism (resp., GE-monomorphism). If a GE-morphism ξ : X → Y is both
onto and one-to-one, we say it is a GE-isomorphism.

It is clear that the identity mapping ξ : X → X is a GE-isomorphism.

3. Weak GE-Morphisms

Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. Given a mapping ξ : X → Y ,
consider the following condition:

(∀x1, x2 ∈ X)(ξ(x1 ∗X x2) ≤Y ξ(x1) ∗Y ξ(x2)). (17)

If a mapping ξ : X → Y satisfies the condition (17), then ξ(1X) ≤Y 1Y . In
fact, ξ(1X) = ξ(x ∗X x) ≤Y ξ(x) ∗Y ξ(x) = 1Y for all x ∈ X . But, the inequality

1Y ≤Y ξ(1X) (18)

does not hold in general as seen in the following example.

Example 3.1. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with
binary operations “∗X” and “∗Y ”, respectively, which are given by Table 1.

Table 1: Cayley tables for the binary operations “∗X” and “∗Y ”

∗X 0 1 2 3 4
0 1 1 1 3 3
1 0 1 2 3 4
2 0 1 1 4 4
3 0 1 1 1 1
4 0 1 1 1 1

∗Y 0 1 2 3 4
0 1 1 1 3 4
1 0 1 2 3 4
2 0 1 1 3 3
3 1 1 1 1 1
4 1 1 1 1 1

Then (X, ∗X , 1X) and (Y, ∗Y , 1Y ) are GE-algebras. Let ξ : X → Y be a mapping
defined by

ξ(x) =

{

0 if x ∈ {0, 1, 2, 3},

2 if x = 4.

Then ξ satisfies (17). But ξ does not satisfy (18) since

1Y ∗Y ξ(1X) = 1Y ∗Y 0 = 0 6= 1Y .

Definition 3.2. Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. A mapping
ξ : X → Y is called a weak GE-morphism if it satisfies (17) and (18).
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If X = Y , the weak GE-morphism ξ : X → X is called a weak GE-
endomorphism.

If a weak GE-morphism ξ : X → Y is onto (resp., one-to-one), we say it
is a weak GE-epimorphism (resp., weak GE-monomorphism). If a weak GE-
morphism ξ : X → Y is both onto and one-to-one, we say it is a weak GE-
isomorphism.

It is clear that every GE-morphism is a weak GE-morphism. But the converse
is not true in general as seen in the following example.

Example 3.3. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with
binary operations “∗X” and “∗Y ”, respectively, which are given by Table 2.

Table 2: Cayley tables for the binary operations “∗X” and “∗Y ”

∗X 0 1 2 3 4
0 1 1 2 3 3
1 0 1 2 3 4
2 0 1 1 4 4
3 0 1 1 1 1
4 0 1 1 1 1

∗Y 0 1 2 3 4
0 1 1 1 1 4
1 0 1 2 3 4
2 0 1 1 0 4
3 1 1 2 1 1
4 1 1 1 1 1

Then (X, ∗X , 1X) and (Y, ∗Y , 1Y ) are GE-algebras. Let ξ : X → Y be a mapping
defined by

ξ(x) =



















0 if x ∈ {0, 2},

1 if x = 1,

3 if x = 3,

4 if x = 4.

Then ξ is a weak GE-morphism. But ξ is not a GE-morphism since

ξ(0 ∗X 2) = ξ(2) = 0 6= 1 = 0 ∗Y 0 = ξ(0) ∗Y ξ(2).

Proposition 3.4. Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. Given a weak
GE-morphism ξ : X → Y , we have

(i) ξ(1X) = 1Y .

(ii) (∀x, y ∈ X) (x ≤X y ⇒ ξ(x) ≤Y ξ(y)).

(iii) (∀x, y ∈ X) (ξ(x ∗X y) ≤Y ξ((x ∗X y) ∗X y) ∗Y ξ(y)).

(iv) The set Ker(ξ) := {x ∈ X | ξ(x) = 1Y }, which is called the kernel of ξ, is
a GE-filter of X.

(v) The inverse image ξ−1(FY ) of a GE-filter FY of Y under ξ is a GE-filter
of X.
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Proof. (i) is obtained by the combination of (6) and (18).

(ii) Let x, y ∈ X be such that x ≤X y. Then x ∗X y = 1X , and so

1Y = ξ(1X) = ξ(x ∗X y) ≤Y ξ(x) ∗Y ξ(y).

Hence 1Y = ξ(x) ∗Y ξ(y) by (6), and so ξ(x) ≤Y ξ(y).

(iii) Let x, y ∈ X . By (GE3), (GE1) and (2), we get

(x ∗X y) ∗X (((x ∗X y) ∗X y) ∗X y)

=(x ∗X y) ∗X (((x ∗X y) ∗X y) ∗X ((x ∗X y) ∗X y))

=(x ∗X y) ∗X ∗1X = 1X ,

and so x ∗X y ≤X ((x ∗X y) ∗X y) ∗X y. It follows from (ii) and (17) that

ξ(x ∗X y) ≤Y ξ(((x ∗X y) ∗X y) ∗X y) ≤Y ξ((x ∗X y) ∗X y) ∗Y ξ(y).

(iv) By (i), we get 1X ∈ Ker(ξ). Let x, y ∈ X be such that x ∈ Ker(ξ) and
x ∗X y ∈ Ker(ξ). Then ξ(x) = 1Y and ξ(x ∗X y) = 1Y . Hence, which imply from
(17) and (GE2) that

1Y = ξ(x ∗X y) ≤Y ξ(x) ∗Y ξ(y) = 1Y ∗Y ξ(y) = ξ(y).

Hence ξ(y) = 1Y by (6), that is, y ∈ Ker(ξ). Thus Ker(ξ) is a GE-filter of X .

(v) Let FY be a GE-filter of Y . The result (i) induces 1X ∈ ξ−1(FY ). Let
x, y ∈ X be such that x ∈ ξ−1(FY ) and x ∗X y ∈ ξ−1(FY ). Then ξ(x) ∈ FY and
ξ(x ∗X y) ∈ FY . It follows from Lemma 2.5 and (17) that ξ(x) ∗Y ξ(y) ∈ FY .
Thus ξ(y) ∈ FY and so y ∈ ξ−1(FY ). Therefore ξ−1(FY ) is a GE-filter of X .

Corollary 3.5. Let ξ : X → Y be a weak GE-morphism from a GE-algebra
(X, ∗X , 1X) to a GE-algebra (Y, ∗Y , 1Y ). Then

(∀x, y ∈ X)(x ∈ Ker(ξ), x ≤X y ⇒ y ∈ Ker(ξ)). (19)

Theorem 3.6. Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. If ξ : X → Y is
a weak GE-monomorphism, then Ker(ξ) = {1X}.

Proof. Assume that ξ : X → Y is a weak GE-monomorphism. If x ∈ Ker(ξ),
then ξ(x) = 1Y = ξ(1X) by Proposition 3.4(i), and so x = 1X . Hence Ker(ξ) =
{1X}.

The converse of Theorem 3.6 is not true in general as seen in the following
example.

Example 3.7. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with
binary operations “∗X” and “∗Y ”, respectively, which are given by Table 3.
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Table 3: Cayley tables for the binary operations “∗X” and “∗Y ”

∗X 0 1 2 3 4
0 1 1 1 3 3
1 0 1 2 3 4
2 0 1 1 4 4
3 0 1 1 1 1
4 1 1 2 1 1

∗Y 0 1 2 3 4
0 1 1 1 3 1
1 0 1 2 3 4
2 0 1 1 1 4
3 1 1 1 1 1
4 0 1 2 3 1

Then (X, ∗X , 1X) and (Y, ∗Y , 1Y ) are GE-algebras. Let ξ : X → Y be a mapping
defined by

ξ(x) =

{

0 if x ∈ {0, 2, 3, 4},

1 if x = 1.

Then ξ is a weak GE-morphism and Ker(ξ) = {1X}. But ξ is not a weak
GE-monomorphism since ξ(0) = 0 = ξ(2) but 0 6= 2.

We want to strengthen the conditions so that the converse of Theorem 3.6
can be established.

Theorem 3.8. Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras, and let ξ : X → Y
be a weak GE-morphism. If X is antisymmetric and Ker(ξ) = {1X}, then ξ is
a weak GE-monomorphism.

Proof. Assume that Y is antisymmetric and Ker(ξ) = {1X}. Let x1, x2 ∈ X
be such that ξ(x1) = ξ(x2). Then ξ(x1 ∗X x2) = ξ(x1) ∗Y ξ(x2) = 1Y , and
thus x1 ∗X x2 ∈ Ker(ξ) = {1X}, that is, x1 ≤X x2. The similar way induces
x2 ≤X x1. Thus x1 = x2 by the antisymmetry of X , and therefore ξ is a weak
GE-monomorphism.

Definition 3.9. A weak GE-endomorphism ξ on a GE-algebra (X, ∗, 1) is said
to be idempotent if ξ2(x) := (ξ ◦ ξ)(x) = ξ(x) for all x ∈ X.

Example 3.10. Consider a set X := {0, 1, 2, 3, 4} with the binary operation “∗”,
which is given by Table 4.

Then (X, ∗, 1) is a GE-algebra. Let ξ : X → X be a mapping defined by

ξ(x) =











4 if x ∈ {0, 3, 4},

1 if x = 1,

2 if x = 2.

Then ξ is an idempotent weak GE-endomorphism.
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Table 4: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 1 1 1 4 4
1 0 1 2 3 4
2 0 1 1 3 3
3 1 1 2 1 1
4 1 1 1 1 1

Proposition 3.11. Let ξ be a weak GE-endomorphism on a GE-algebra (X, ∗, 1).
If ξ is idempotent, then Ker(ξ) ∩ ξ(X) = {1}.

Proof. Assume that ξ is idempotent and let x ∈ Ker(ξ) ∩ ξ(X). Then ξ(x) = 1
and there exists y ∈ X such that x = ξ(y). Hence

1 = ξ(x) = ξ(ξ(y)) = ξ(y) = x,

and therefore Ker(ξ) ∩ ξ(X) = {1}.

The following example shows that if ξ is not idempotent, then Proposition
3.11 is not valid.

Example 3.12. Consider a set X := {0, 1, 2, 3, 4} with the binary operation “∗”,
which is given by Table 5.

Table 5: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 1 1 2 3 3
1 0 1 2 3 4
2 0 1 1 4 4
3 0 1 1 1 1
4 1 1 2 1 1

Then (X, ∗, 1) is a GE-algebra. Let ξ : X → X be a mapping defined by

ξ(x) =



















2 if x = 0,

1 if x ∈ {1, 2},

4 if x = 3,

3 if x = 4.

Then ξ is a weak GE-endomorphism. We can observe that ξ is not idempotent
because of ξ(ξ(0) = ξ(2) = 1 6= 2 = ξ(0). Also, Ker(ξ) = {1, 2} and ξ(X) =
{1, 2, 3, 4}. But Ker(ξ) ∩ ξ(X) = {1, 2} 6= {1}.
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Given a self-map ξ on a GE-algebra (X, ∗, 1), consider the next assertions:

(∀x, y ∈ X)(ξ(ξ(x) ∗ ξ(y)) ≤ ξ(x) ∗ ξ(y)). (20)

(∀x, y ∈ X)(ξ(x ∗ y) ≤ ξ((x ∗ y) ∗ y) ∗ ξ(y)). (21)

By Proposition 3.4 (iii), every weak GE-endomorphism ξ on a GE-algebra
(X, ∗, 1) satisfies the conditions (21).

Question 3.13. Does every weak GE-endomorphism ξ on a GE-algebra (X, ∗,
1) satisfy the condition (20)?

The answer to Question 3.13 is negative as seen in the following example.

Example 3.14. Consider a set X := {0, 1, 2, 3, 4} with the binary operation “∗”,
which is given by Table 6.

Table 6: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 1 1 1 3 1
1 0 1 2 3 4
2 4 1 1 3 4
3 0 1 2 1 0
4 1 1 2 3 1

Then (X, ∗, 1) is a GE-algebra. Let ξ : X → X be a mapping defined by

ξ(x) =



















0 if x = 0,

1 if x ∈ {1, 2},

2 if x = 3,

4 if x = 4.

Then ξ is a weak GE-endomorphism. But ξ does not satisfy (20) because of

(ξ(ξ(2) ∗ ξ(3))) ∗ (ξ(2) ∗ ξ(3)) = ξ(1 ∗ 2) ∗ (1 ∗ 2) = ξ(2) ∗ 2 = 1 ∗ 2 = 2 6= 1.

Proposition 3.15. Every weak GE-endomorphism ξ on a GE-algebra (X, ∗, 1)
satisfies the condition (20) when it is idempotent.

Proof. Let ξ : X → X be an idempotent weak GE-endomorphism. Then

ξ(ξ(x) ∗ ξ(y)) ≤ ξ2(x) ∗ ξ2(y) = ξ(x) ∗ ξ(y)
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for all x, y ∈ X .

Given a self-map ξ on a GE-algebra (X, ∗, 1), consider the next assertions:

(∀x, y ∈ X)(ξ(ξ(x) ∗ ξ(y)) = ξ(x) ∗ ξ(y)). (22)

(∀x, y ∈ X)(ξ(x ∗ y) = ξ((x ∗ y) ∗ y) ∗ ξ(y)). (23)

Question 3.16. Does every weak GE-endomorphism ξ on a GE-algebra (X, ∗,
1) satisfy the conditions (22) and (23)?

The answer to Question 3.16 is negative as seen in the following example.

Example 3.17. Consider the weak GE-endomorphism ξ in Example 3.14. It
does not satisfy (22) because of

(ξ(ξ(2) ∗ ξ(3))) = ξ(1 ∗ 2) = ξ(2) = 1 6= 2 = 1 ∗ 2 = ξ(2) ∗ ξ(3).

Also, the weak GE-endomorphism ξ in Example 3.12 does not satisfy (23) be-
cause of

ξ(2 ∗ 3) = ξ(4) = 3 6= 4 = ξ(3) = 1 ∗ ξ(3) = ξ(1) ∗ ξ(3)

= ξ(4 ∗ 3) ∗ ξ(3) = ξ((2 ∗ 3) ∗ 3) ∗ ξ(3).

Proposition 3.18. Let ξ be a self-map on a GE-algebra (X, ∗, 1). If ξ satisfies:

(∀x, y ∈ X)(ξ((x ∗ y) ∗ y) ∗ ξ(y) ≤ ξ(x ∗ y)), (24)

then ξ(1) = 1. If ξ satisfies (22) and (24), then ξ2(x) = ξ(x) for all x ∈ X.

Proof. Assume that ξ satisfies the condition (24). Using (GE1) and (24), we get

1 = ξ(1) ∗ ξ(1) = ξ((1 ∗ 1) ∗ 1) ∗ ξ(1) ≤ ξ(1 ∗ 1) = ξ(1),

and so ξ(1) = 1 by (6). If ξ satisfies (22) and (24), then

ξ2(x) = ξ(ξ(x)) = ξ(1 ∗ ξ(x)) = ξ(ξ(1) ∗ ξ(x)) = ξ(1) ∗ ξ(x) = 1 ∗ ξ(x) = ξ(x)

for all x ∈ X .

Corollary 3.19. Let ξ be a self-map on a GE-algebra (X, ∗, 1). If ξ satisfies
(23), then ξ(1) = 1.

We provide conditions for a self-map on a GE-algebra to be a weak GE-
endomorphism.
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Proposition 3.20. Let ξ be a self-map on a transitive GE-algebra (X, ∗, 1). If ξ
satisfies (23) and

(∀x, y ∈ X)(x ≤ y ⇒ ξ(x) ≤ ξ(y)), (25)

then ξ is a weak GE-endomorphism.

Proof. SupposeX is transitive and ξ satisfies (23) and (25). Corollary 3.19 shows
that 1 ≤ ξ(1). By the combination of (8) and (25), we get ξ(x) ≤ ξ((x ∗ y) ∗ y)
for all x, y ∈ X . It follows from (10) and (23) that

ξ(x ∗ y) = ξ((x ∗ y) ∗ y) ∗ ξ(y) ≤ ξ(x) ∗ ξ(y)

for all x, y ∈ X . Therefore ξ is a weak GE-endomorphism.

Question 3.21. If a self-map ξ on a GE-algebra (X, ∗, 1) satisfies (20), (21) and
(25), then is ξ a weak GE-endomorphism?

The next example verify that the answer to Question 3.21 is negative.

Example 3.22. Consider a set X := {0, 1, 2, 3, 4, 5} with the binary operation
“∗”, which is given by Table 7.

Table 7: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4 5
0 1 1 2 4 4 4
1 0 1 2 3 4 5
2 1 1 1 5 5 5
3 1 1 1 1 1 1
4 0 1 1 0 1 1
5 0 1 1 0 1 1

Then (X, ∗, 1) is a GE-algebra. Let ξ : X → X be a mapping defined by

ξ(x) =



















2 if x = 0,

1 if x = 1,

3 if x = 3,

4 if x ∈ {2, 4, 5}

Then ξ satisfies satisfies (20), (21) and (25). But ξ is not a weak GE-endomorphism
because of

ξ(2 ∗ 3) ∗ (ξ(2) ∗ ξ(3)) = ξ(5) ∗ (4 ∗ 3) = 4 ∗ 0 = 0 6= 1.
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Definition 3.23. A couple (X, ξ) is called a qualified GE-algebra (briefly, qGE-
algebra) if (X, ∗, 1) is a GE-algebra and ξ is a self-map on X that satisfies
conditions (22), (23) and (25).

Example 3.24. Consider a set X := {0, 1, 2, 3, 4} with the binary operation “∗”,
which is given by Table 8.

Table 8: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 1 1 2 3 3
1 0 1 2 3 4
2 1 1 1 4 4
3 0 1 1 1 1
4 0 1 1 1 1

Then (X, ∗, 1) is a GE-algebra. Let ξ : X → X be a mapping defined by

ξ(x) =











1 if x ∈ {0, 1},

2 if x = 2,

4 if x ∈ {3, 4}.

Then it is easy to verify that (X, ξ) is a qGE-algebra.

Theorem 3.25. Let (X, ξ) be a qGE-algebra. If X is transitive, then ξ is an
idempotent weak GE-endomorphism.

Proof. This is induced by Propositions 3.18 and 3.20.

Lemma 3.26. [2] Let (X1, ∗1, 11) and (X2, ∗2, 12) be GE-algebras with with
binary relations ≤1 and ≤2, respectively, and consider X̃ := X1 ×X2. Define a
binary operation “ ∗̃ ”, the special element 1̃ and a binary relation ≤(1,2) on X
as follows:

(x1, x2) ∗̃ (y1, y2) = (x1 ∗1 y1, x2 ∗2 y2), (26)

1̃ = (11, 12), (27)

(x1, x2) ≤(1,2) (y1, y2) ⇔ x1 ≤1 y1, x2 ≤2 y2 (28)

for all (x1, x2), (y1, y2) ∈ X̃. Then (X̃, ∗̃ , 1̃) is a GE-algebra.

Theorem 3.27. Let (X1, ξ1) and (X2, ξ2) be qGE-algebras. If we define a self-map
ξ̃ on X̃ as follows:

ξ̃ : X̃ → X̃, (x1, x2) 7→ (ξ1(x1), ξ2(x2)), (29)
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then (X̃, ξ̃) is a qGE-algebra.

Proof. By Lemma 3.26, (X̃, ∗̃ , 1̃) is a GE-algebra. Let (x1, x2), (y1, y2) ∈ X̃.
Then

ξ̃(ξ̃(x1, x2) ∗̃ ξ̃(y1, y2))

=ξ̃((ξ1(x1), ξ2(x2)) ∗̃ (ξ1(y1), ξ2(y2)))

=ξ̃((ξ1(x1) ∗ ξ1(y1)), (ξ2(x2) ∗ ξ2(y2)))

=(ξ1(ξ1(x1) ∗ ξ1(y1)), ξ2(ξ2(x2) ∗ ξ2(y2)))

=(ξ1(x1) ∗ ξ1(y1), ξ2(x2) ∗ ξ2(y2))

=(ξ1(x1), ξ2(x2)) ∗̃ (ξ1(y1), ξ2(y2))

=ξ̃(x1, x2) ∗̃ ξ̃(y1, y2)

and

ξ̃(((x1, x2) ∗̃ (y1, y2)) ∗̃ (y1, y2)) ∗̃ ξ̃(y1, y2)

=ξ̃((x1 ∗ y1, x2 ∗ y2) ∗̃ (y1, y2)) ∗̃ ξ̃(y1, y2)

=ξ̃((x1 ∗ y1) ∗ y1, (x2 ∗ y2) ∗ y2) ∗̃ ξ̃(y1, y2)

=(ξ1((x1 ∗ y1) ∗ y1), ξ2((x2 ∗ y2) ∗ y2)) ∗̃ (ξ1(y1), ξ2(y2))

=(ξ1((x1 ∗ y1) ∗ y1) ∗ ξ1(y1), ξ2((x2 ∗ y2) ∗ y2) ∗ ξ2(y2))

=(ξ1(x1 ∗ y1), ξ2(x2 ∗ y2))

=ξ̃(x1 ∗ y1, x2 ∗ y2)

=ξ̃((x1, x2) ∗̃ (y1, y2)).

Assume that (x1, x2) ≤(1,2) (y1, y2). Then x1 ≤1 y1 and x2 ≤2 y2, and so
ξ1(x1) ≤1 ξ1(y1) and ξ2(x2) ≤2 ξ2(y2). It follows that

ξ̃(x1, x2) ∗̃ ξ̃(y1, y2) = (ξ1(x1), ξ2(x2)) ∗̃ (ξ1(y1), ξ2(y2))

= (ξ1(x1) ∗ ξ1(y1), ξ2(x2) ∗ ξ2(y2))

= (11, 12) = 1̃,

that is, ξ̃(x1, x2) ≤(1,2) ξ̃(y1, y2). Therefore (X̃, ξ̃) is a qGE-algebra.

Definition 3.28. Let g be a self-map on a GE-algebra (X, ∗, 1). A self-map ξg
on (X̃, ∗̃ , 1̃) given by

(∀(x, y) ∈ X̃)(ξg(x, y) = (g(x), g(y))) (30)

is called a qualified self-map on (X̃, ∗̃ , 1̃) .

Example 3.29. Consider a set X = {0, 1, 2} with binary operations “∗”, which
is given by Table 9.
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Table 9: Cayley table for the binary operation “∗”

∗ 0 1 2
0 1 1 1
1 0 1 2
2 0 1 1

Then (X, ∗, 1) is a GE-algebra. We can observe that

X̃ := X ×X = {w1, w2, w3, w4, w5, w6, w7, w8, w9}

where w1 = (0, 0), w2 = (0, 1), w3 = (0, 2), w4 = (1, 0), w5 = (1, 1), w6 = (1, 2),
w7 = (2, 0), w8 = (2, 1), and w9 = (2, 2). Define a binary operation “ ∗̃ ” on X̃
by Table 10.

Table 10: Cayley table for the binary operation “ ∗̃ ”

∗̃ w1 w2 w3 w4 w5 w6 w7 w8 w9

w1 w5 w5 w5 w5 w5 w5 w5 w5 w5

w2 w4 w5 w6 w4 w5 w6 w4 w5 w6

w3 w4 w5 w5 w4 w5 w5 w4 w5 w5

w4 w2 w2 w2 w5 w5 w5 w8 w8 w8

w5 w1 w2 w3 w4 w5 w6 w7 w8 w9

w6 w1 w2 w2 w4 w5 w5 w7 w8 w8

w7 w2 w2 w2 w5 w5 w5 w5 w5 w5

w8 w1 w2 w3 w4 w5 w6 w4 w5 w6

w9 w1 w2 w2 w4 w5 w5 w4 w5 w5

Then (X̃, ∗̃ , 1̃), where 1̃ = (1, 1) = w5, is a GE-algebra. Define a self-map g on
(X, ∗, 1) by

g(x) =

{

0 if x ∈ {0, 2},

1 if x = 1.

Let ξg : X̃ → X̃ be a mapping defined by (30). Then

ξg(x) =



















w1 if x ∈ {w1, w3, w7, w9},

w2 if x ∈ {w2, w8},

w4 if x ∈ {w4, w6},

w5 if x = w5,

and it is a qualified self-map on (X̃, ∗̃ , 1̃).
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Theorem 3.30. Given a self-map g on a GE-algebra (X, ∗, 1), let ξg be a qualified

self-map on (X̃, ∗̃ , 1̃) where X̃ = X ×X. Then (X, g) is a qGE-algebra if and
only if (X̃, ξg) is a qGE-algebra.

Proof. Assume that (X, g) is a qGE-algebra. Then (X̃, ∗̃ , 1̃) is a GE-algebra
by Lemma 3.26. For every (x1, x2), (y1, y2) ∈ X̃ , we have

ξg(ξg(x1, x2) ∗̃ ξg(y1, y2))

=ξg((g(x1), g(x2)) ∗̃ (g(y1), g(y2)))

=ξg((g(x1) ∗ g(y1)), (g(x2) ∗ g(y2)))

=(g(g(x1) ∗ g(y1)), g(g(x2) ∗ g(y2)))

=(g(x1) ∗ g(y1), g(x2) ∗ g(y2))

=(g(x1), g(x2)) ∗̃ (g(y1), g(y2))

=ξg(x1, x2) ∗̃ ξg(y1, y2)

and

ξg(((x1, x2) ∗̃ (y1, y2)) ∗̃ (y1, y2)) ∗̃ ξg(y1, y2)

=ξg((x1 ∗ y1, x2 ∗ y2) ∗̃ (y1, y2)) ∗̃ ξg(y1, y2)

=ξg((x1 ∗ y1) ∗ y1, (x2 ∗ y2) ∗ y2) ∗̃ ξg(y1, y2)

=(g((x1 ∗ y1) ∗ y1), g((x2 ∗ y2) ∗ y2)) ∗̃ (g(y1), g(y2))

=(g((x1 ∗ y1) ∗ y1) ∗ g(y1), g((x2 ∗ y2) ∗ y2) ∗ g(y2))

=(g(x1 ∗ y1), g(x2 ∗ y2))

=ξg(x1 ∗ y1, x2 ∗ y2)

=ξg((x1, x2) ∗̃ (y1, y2)).

Suppose that (x1, x2) ∗̃ (y1, y2) = (1, 1). Then (x1 ∗y1, x2 ∗y2) = (1, 1) and hence
x1 ∗ y1 = 1 and x2 ∗ y2 = 1. Thus g(x1) ∗ g(y1) = 1 and g(x2) ∗ g(y2) = 1, which
imply that

ξg(x1, x2) ∗̃ ξg(y1, y2) = (g(x1), g(x2)) ∗̃ (g(y1), g(y2))

= (g(x1) ∗ g(y1), g(x2) ∗ g(y2)) = (1, 1) = 1̃.

Hence (X̃, ξg) is a qGE-algebra.

Conversely, assume that (X̃, ξg) is a qGE-algebra. Then

(g(1), g(1)) = ξg(1, 1) = ξg((1, 1) ∗̃ (1, 1))

= ξg(((1, 1) ∗̃ (1, 1)) ∗̃ (1, 1)) ∗̃ ξg(1, 1)

= ξg((1 ∗ 1, 1 ∗ 1) ∗̃ (1, 1)) ∗̃ ξg(1, 1)

= ξg((1, 1) ∗̃ (1, 1)) ∗̃ ξg(1, 1)

= ξg((1 ∗ 1, 1 ∗ 1)) ∗̃ ξg(1, 1)

= ξg(1, 1) ∗̃ ξg(1, 1)

= (1, 1),
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and so g(1) = 1. It follows from that

(1, g(x) ∗ g(y)) = (g(x) ∗ g(x), g(x) ∗ g(y))

= (g(x), g(x)) ∗̃ (g(x), g(y))

= ξg(x, x) ∗̃ ξg(x, y)

= ξg(ξg(x, x) ∗̃ ξg(x, y))

= ξg((g(x), g(x)) ∗̃ (g(x), g(y)))

= ξg(g(x) ∗ g(x), g(x) ∗ g(y))

= ξg(1, g(x) ∗ g(y))

= (g(1), g(g(x) ∗ g(y)))

= (1, g(g(x) ∗ g(y)))

and

(1, g(x ∗ y)) = (g(1), g(x ∗ y))

= ξg(1, x ∗ y)

= ξg(1 ∗ 1, x ∗ y)

= ξg((1, x) ∗̃ (1, y))

= ξg(((1, x) ∗̃ (1, y)) ∗̃ (1, y)) ∗̃ ξg(1, y)

= ξg((1 ∗ 1, x ∗ y) ∗̃ (1, y)) ∗̃ ξg(1, y)

= ξg((1 ∗ 1) ∗ 1, (x ∗ y) ∗ y) ∗̃ ξg(1, y)

= ξg(1, (x ∗ y) ∗ y) ∗̃ ξg(1, y)

= (g(1), g((x ∗ y) ∗ y)) ∗̃ (g(1), g(y))

= (g(1) ∗ g(1), g((x ∗ y) ∗ y) ∗ g(y))

= (1, g((x ∗ y) ∗ y) ∗ g(y))

for all x, y ∈ X . Hence g(g(x)∗g(y)) = g(x)∗g(y) and g((x∗y)∗y)∗g(y)) = g(x∗y)
for all x, y ∈ X . Let x, y ∈ X be such that x ≤ y. Then

(1, x) ∗̃ (1, y) = (1 ∗ 1, x ∗ y) = (1, 1) = 1̃

and hence

(1, g(x) ∗ g(y)) = (g(1) ∗ g(1), g(x) ∗ g(y))

= (g(1), g(x)) ∗̃ (g(1), g(y))

= ξg(1, x) ∗̃ ξg(1, y)

= (1, 1)

which implies that g(x) ≤ g(y). Therefore (X, g) is qGE-algebra.

For every qGE-algebra (X, ξ), we define the image Im(ξ), kernel Ker(ξ) and
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diagonal set ∆(ξ) of ξ as follows:

Im(ξ) = {ξ(x) ∈ X | x ∈ X}, (31)

Ker(ξ) = {x ∈ X | ξ(x) = 1}, (32)

∆(ξ) = {x ∈ X | ξ(x) = x}. (33)

Proposition 3.31. If (X, ξ) is a qGE-algebra, then Im(ξ) is a sub-GE-algebra of
X, Ker(ξ) ∩∆(ξ) = {1} and Ker(ξ) is a GE-filter of X.

Proof. Let x, y ∈ Im(ξ). Then there exist a, b ∈ X such that x = ξ(a) and
y = ξ(b). Thus x ∗ y = ξ(a) ∗ ξ(b) = ξ(ξ(a) ∗ ξ(b)) ∈ Im(ξ), and hence Im(ξ)
is a sub-GE-algebra of X . Let x ∈ Ker(ξ) ∩ ∆(ξ). Then x = ξ(x) = 1 and so
Ker(ξ) ∩∆(ξ) = {1}. Since

1 = ξ(1) ∗ ξ(1) = ξ(1 ∗ 1) ∗ ξ(1) = ξ((1 ∗ 1) ∗ 1) ∗ ξ(1) = ξ(1 ∗ 1) = ξ(1),

we have 1 ∈ Ker(ξ). Let x, y ∈ X be such that x ∈ Ker(ξ) and x ∗ y ∈ Ker(ξ).
Then ξ(x) = 1 and ξ(x ∗ y) = 1. Since x ≤ (x ∗ y) ∗ y, we get

1 = ξ(x) ≤ ξ((x ∗ y) ∗ y)

by (25), and thus ξ((x ∗ y) ∗ y) = 1 by (6). It follows from (GE2) and (23) that

1 = ξ(x ∗ y) = ξ((x ∗ y) ∗ y) ∗ ξ(y) = 1 ∗ ξ(y) = ξ(y).

Hence y ∈ Ker(ξ) and therefore Ker(ξ) is a GE-filter of X .

Given a qGE-algebra (X, ξ), let δKer(ξ) be a subset of X ×X constructed to
satisfy the following conditions:

(∀x, y ∈ X)((x, y) ∈ δKer(ξ) ⇔ x ∗ y ∈ Ker(ξ), y ∗ x ∈ Ker(ξ)). (34)

It is routine to verify that δKer(ξ) is a congruence relation in X . Denote by
[x]Ker(ξ) the equivalence class of x in X under δKer(ξ), that is,

[x]Ker(ξ) := {y ∈ X | (x, y) ∈ δKer(ξ)},

and the collection of all such equivalence classes is denoted by X/δKer(ξ), i.e.,

X/δKer(ξ) = {[x]Ker(ξ) | x ∈ X}.

Theorem 3.32. Let δKer(ξ) be a congruence relation in a qGE-algebra (X, ξ)
where X is transitive and antisymmetric. Define a binary operation ∗δKer(ξ)

on

X/δKer(ξ) and a self-map ξ̃ on X/δKer(ξ) as follows:

[x]Ker(ξ) ∗δKer(ξ)
[y]Ker(ξ) = [x ∗ y]Ker(ξ) (35)
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and

ξ̃([x]Ker(ξ)) = [ξ(x)]Ker(ξ) (36)

respectively, for all [x]Ker(ξ), [y]Ker(ξ) ∈ X/δKer(ξ). Then (X/δKer(ξ), ξ̃) is a qGE-
algebra with the constant [1]Ker(ξ).

Proof. Since Ker(ξ) is a GE-filter of X by Proposition 3.31, it is routine to verify
that (X/δKer(ξ), ∗δKer(ξ)

, [1]Ker(ξ)) is a GE-algebra. Let x, y ∈ X be such that
[x]Ker(ξ) = [y]Ker(ξ) in X/δKer(ξ). Then (x, y) ∈ δKer(ξ) and hence x ∗ y ∈ Ker(ξ)
and y ∗ x ∈ Kerξ, that is, ξ(x ∗ y) = 1 and ξ(y ∗ x) = 1. Since x ≤ (x ∗ y) ∗ y and
X is transitive, we have ξ(x) ≤ ξ((x ∗ y) ∗ y) and so

1 = ξ(x ∗ y) = ξ((x ∗ y) ∗ y) ∗ ξ(y) ≤ ξ(x) ∗ ξ(y)

Hence ξ(x) ∗ ξ(y) = 1. Similarly, we get ξ(y) ∗ ξ(x) = 1. Thus ξ(x) = ξ(y) since
X is antisymmetric. Therefore

ξ̃([x]Ker(ξ)) = [ξ(x)]Ker(ξ) = [ξ(y)]Ker(ξ) = ξ̃([y]Ker(ξ))

which shows that ξ̃ is well-defined. Let x, y ∈ X be such that [x]Ker(ξ), [y]Ker(ξ) ∈
X/δKer(ξ). Then

ξ̃(ξ̃([x]Ker(ξ)) ∗δKer(ξ)
ξ̃([y]Ker(ξ))) = ξ̃{[ξ(x)]Ker(ξ) ∗δKer(ξ)

[ξ(y)]Ker(ξ)}

=ξ̃([ξ(x) ∗ ξ(y)]Ker(ξ)) = [ξ(ξ(x) ∗ ξ(y))]Ker(ξ) = [ξ(x) ∗ ξ(y)]Ker(ξ)

=[ξ(x)]Ker(ξ) ∗δKer(ξ)
[ξ(y)]Ker(ξ) = ξ̃([x]Ker(ξ)) ∗δKer(ξ)

ξ̃([y]Ker(ξ))

and

ξ̃([x]Ker(ξ) ∗δKer(ξ)
[y]Ker(ξ)) = ξ̃([x ∗ y]Ker(ξ))

=[ξ(x ∗ y)]Ker(ξ) = [ξ((x ∗ y) ∗ y) ∗ ξ(y)]Ker(ξ)

=[ξ((x ∗ y) ∗ y)]Ker(ξ) ∗δKer(ξ)
[ξ(y)]Ker(ξ)

=ξ̃([(x ∗ y) ∗ y]Ker(ξ)) ∗δKer(ξ)
ξ̃([y]Ker(ξ))

=ξ̃(([x]Ker(ξ) ∗δKer(ξ)
[y]Ker(ξ)) ∗δKer(ξ)

[y]Ker(ξ)) ∗δKer(ξ)
ξ̃([y]Ker(ξ)).

Let x, y ∈ X be such that [x]Ker(ξ)∗δKer(ξ)
[y]Ker(ξ) = [1]Ker(ξ). Then [x∗y]Ker(ξ) =

[1]Ker(ξ), and so ξ(x∗y) = 1. Since ξ is a weak GE-endomorphism by Proposition
3.20, we have

[1]Ker(ξ) = [ξ(x ∗ y)]Ker(ξ) ⊆ [ξ(x) ∗ ξ(y)]Ker(ξ)

= [ξ(x)]Ker(ξ) ∗δKer(ξ)
[ξ(y)]Ker(ξ)

= ξ̃([x]Ker(ξ)) ∗δKer(ξ)
ξ̃([y]Ker(ξ))

and so ξ̃([x]Ker(ξ)) ∗δKer(ξ)
ξ̃([y]Ker(ξ)) = [1]Ker(ξ). Therefore (X/δKer(ξ), ξ̃) is a

qGE-algebra with the constant [1]Ker(ξ).



Weak GE-Morphisms and Qualified GE-Algebras 609

References

[1] R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, On GE-algebras, Bulletin of the
Section of Logic 50 (1) (2021) 81–96. https://doi.org/10.18778/0138-0680.2020.20

[2] R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, Belligerent GE-filter in GE-
algebras, Journal of the Indonesian Mathematical Society 28 (1) (2022) 31–43.

[3] R.K. Bandaru, M.K. Shaik, Y.B. Jun, GE-morphisms of GE-algebras, Southeast
Asian Bull. Math. 45 (6) (2021) 931–944.

[4] A. Borumand Saeid, A. Rezaei, R.K. Bandaru, Y.B. Jun, Voluntary GE-filters
and further results of GE-filters in GE-algebras, Journal of Algebraic Systems 10
(1) (2022) 31–47.

[5] S. Celani, A note on homomorphisms of Hilbert algebras, International Jour-
nal of Mathematics and Mathematical Sciences 29 (1) (2002) 55–61. DOI:
10.1155/S0161171202011134.

[6] I. Chajda, R. Halas, Y.B. Jun, Annihilators and deductive systems in commuta-
tive Hilbert algebras, Commentationes Mathematicae Universitatis Carolinae 43
(3) (2002) 407–417.

[7] A. Diego, Sur les Algebres de Hilbert, Collection de Logique Mathematique, Serie
A, XXI, Gauthier-Villars Publisher, Paris, 1966.

[8] S.M. Hong and Y.B. Jun, On deductive systems of Hilbert algebras, Communi-
cations of the Korean Mathematical Society 11 (3) (1996) 595–600.
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