Southeast Asian Bulletin of Mathematics © SEAMS. 2023

Weak GE-Morphisms and Qualified GE-Algebras

Sun Shin Ahn

Department of Mathematics Education, Dongguk University, Seoul 04620, Korea Email: sunshine@dongguk.edu

Ravikumar Bandaru^{*} Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh-522237, India Email: ravimaths83@gmail.com

Young Bae Jun Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea Email: skywine@gmail.com

Received 16 November 2021 Accepted 13 May 2022

Communicated by Y.Q. Chen

AMS Mathematics Subject Classification(2020): 03G25, 06F35

Abstract. The notions of weak GE-morphism, weak GE-endomorphism are introduced and investigated its properties. Conditions for a self-map on a GE-algebra to be an idempotent and to be a weak GE-endomorphism are provided. The notion of qualified GE-algebra is introduced and its properties are investigated. Condition for a qualified GE-algebra to be an idempotent weak GE-endomorphism is given. The notion of qualified self-map is defined and a necessary and condition for a given self-map on a GE-algebra, the product of two GE-algebras under the qualified self-map to be a qualified GE-algebra is given. For a given qualified GE-algebra, using its kernel, an equivalence relation is induced, and then the quotient set is constructed. A binary operation is given on the quotient set to create a quotient qualified GE-algebra.

Keywords: GE-algebra; GE-filter; Weak GE-morphism; (Idempotent) Weak GE-endomorphism.

^{*}Correspondence author.

1. Introduction

BCK-algebras (see [9, 10]) were introduced by Y. Imai and K. Iséki in 1966 as the algebraic semantics for a non-classical logic possessing only implication. Since then, the generalized concepts of BCK-algebras have been studied by various scholars. Hilbert algebras were introduced by L. Henkin and T. Skolem in the fifties for investigations in intuitionistic and other non-classical logics. A. Diego established that Hilbert algebras form a locally finite variety (see [7]). Later several researchers extended the theory on Hilbert algebras (see [5, 6, 8, 11, 13]). The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a generalization of a dual BCK-algebra (see [14]). A. Rezaei et al. discussed relations between Hilbert algebras and BE-algebras (see [16]). In the study of algebraic structures, the generalization process is also an important topic. As a generalization of Hilbert algebras, R.K. Bandaru et al. introduced the notion of GE-algebras, and investigated several properties (see [1]). A. Rezaei et al. introduced the concept of prominent GE-filters in GE-algebras and discussed its properties (see [17]). M.A. Ozturk et al. introduced the concept of Strong GEfilters, GE-ideals of bordered GE-algebras and investigated its properties (see [15]). S.Z. Song et al. introduced the concept of Imploring GE-filters of GEalgebras and discussed its properties (see [18]). The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches. Jun et al. derived isomorphism theorems by using Chinese Remainder Theorem in BCI-algebras (see [12]). Recently, R.K. Bandaru et al. introduced the notion of GE-morphism and established fundamental GE-morphism theorem. They investigated some isomorphism theorems in GE-algebras (see [3]).

In this paper, we introduce the notions of weak GE-morphism, weak GEendomorphism and study its properties. We provide conditions for a given selfmap on a GE-algebra to be an idempotent and to be a weak GE-endomorphism. We introduce the notion of qualified GE-algebra and investigate its properties. We give condition for a qualified GE-algebra to be an idempotent weak GEendomorphism. We define the notion of qualified self-map and give a necessary and condition for a given self-map on a GE-algebra, the product of two GEalgebras under the qualified self-map to be a qualified GE-algebra. In qualified GE-algebras, we use kernel to induce an equivalence relation, and then construct the quotient set. We define a binary operation on the quotient set to construct a quotient qualified GE-algebra.

2. Preliminaries

Definition 2.1. [1] By a GE-algebra we mean a nonempty set X with a constant 1 and a binary operation "*" satisfying the following axioms: (GE1) u * u = 1, (GE2) 1 * u = u, (GE3) u * (v * w) = u * (v * (u * w)) for all $u, v, w \in X$.

Definition 2.2. [1, 2] A GE-algebra X is said to be

(i) transitive if it satisfies:

$$(\forall x, y, z \in X) (x * y \le (z * x) * (z * y)).$$
(1)

(ii) antisymmetric if the binary relation " \leq " is antisymmetric.

Proposition 2.3. [1] Every GE-algebra X satisfies the following items.

$$(\forall u \in X) (u * 1 = 1). \tag{2}$$

$$(\forall u, v \in X) (u * (u * v) = u * v).$$
 (3)

$$(\forall u, v \in X) \, (u \le v * u) \, .$$

$$\forall u, v, w \in X$$
 $(u * (v * w) \le v * (u * w))$. (5)

$$(\forall u, v \in X) (u * (u * v) = u * v).$$

$$(\forall u, v \in X) (u \le v * u).$$

$$(\forall u, v, w \in X) (u * (v * w) \le v * (u * w)).$$

$$(\forall u \in X) (1 \le u \Rightarrow u = 1).$$

$$(\forall u, v \in X) (u \le (v * u) * u).$$

$$(\forall u, v \in X) (u \le (u * v) * v).$$

$$(\forall u, v \in X) (u \le (v * u) * u).$$

$$(\forall u, v \in X) (u \le (u * v) * v).$$
(8)

$$(\forall u, v, w \in X) (u \le v * w \iff v \le u * w).$$
(9)

If X is transitive, then

1

$$(\forall u, v, w \in X) (u \le v \implies w * u \le w * v, v * w \le u * w).$$

$$(10)$$

$$(\forall u, v, w \in X) (u * v \le (v * w) * (u * w)).$$
(11)

$$(\forall u, v, w \in X) (u \le v, v \le w \implies u \le w).$$
(12)

Definition 2.4. [1] A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

$$\in F$$
, (13)

$$(\forall u, v \in X)(u \in F, u * v \in F \implies v \in F).$$
(14)

Lemma 2.5. [1] In a GE-algebra X, every GE-filter F of X satisfies:

$$(\forall x, y \in X) (x \le y, x \in F \Rightarrow y \in F).$$
(15)

In [17], the concept of GE-morphisms in GE-algebras is defined as follows:

Definition 2.6. [17] Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. A mapping $\xi: X \to Y$ is called a GE-morphism if it satisfies:

$$(\forall x_1, x_2 \in X)(\xi(x_1 *_X x_2) = \xi(x_1) *_Y \xi(x_2)).$$
(16)

(4)

(6)

If a GE-morphism $\xi : X \to Y$ is onto (resp., one-to-one), we say it is a *GE*epimorphism (resp., *GE-monomorphism*). If a GE-morphism $\xi : X \to Y$ is both onto and one-to-one, we say it is a *GE-isomorphism*.

It is clear that the identity mapping $\xi : X \to X$ is a GE-isomorphism.

3. Weak GE-Morphisms

Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. Given a mapping $\xi : X \to Y$, consider the following condition:

$$(\forall x_1, x_2 \in X)(\xi(x_1 *_X x_2) \le_Y \xi(x_1) *_Y \xi(x_2)).$$
(17)

If a mapping $\xi : X \to Y$ satisfies the condition (17), then $\xi(1_X) \leq_Y 1_Y$. In fact, $\xi(1_X) = \xi(x *_X x) \leq_Y \xi(x) *_Y \xi(x) = 1_Y$ for all $x \in X$. But, the inequality

$$1_Y \le_Y \xi(1_X) \tag{18}$$

does not hold in general as seen in the following example.

Example 3.1. Consider two sets $X = \{0, 1, 2, 3, 4\}$ and $Y = \{0, 1, 2, 3, 4\}$ with binary operations " $*_X$ " and " $*_Y$ ", respectively, which are given by Table 1.

Table 1: Cayley tables for the binary operations " $*_X$ " and " $*_Y$ "

*X	0	1	2	3	4	$*_Y$	0	1	2	3	
0	1	1	1	3	3	0					
	0					1	0	1	2	3	
2	0	1	1	4	4	2	0	1	1	3	
3	0	1	1	1	1	3	1	1	1	1	
4	0	1	1	1	1	4	1	1	1	1	

Then $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ are GE-algebras. Let $\xi : X \to Y$ be a mapping defined by

$$\xi(x) = \begin{cases} 0 & \text{if } x \in \{0, 1, 2, 3\}, \\ 2 & \text{if } x = 4. \end{cases}$$

Then ξ satisfies (17). But ξ does not satisfy (18) since

$$1_Y *_Y \xi(1_X) = 1_Y *_Y 0 = 0 \neq 1_Y.$$

Definition 3.2. Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. A mapping $\xi : X \to Y$ is called a weak GE-morphism if it satisfies (17) and (18).

If X = Y, the weak GE-morphism $\xi : X \to X$ is called a *weak GE-endomorphism*.

If a weak GE-morphism $\xi : X \to Y$ is onto (resp., one-to-one), we say it is a *weak GE-epimorphism* (resp., *weak GE-monomorphism*). If a weak GE-morphism $\xi : X \to Y$ is both onto and one-to-one, we say it is a *weak GE-isomorphism*.

It is clear that every GE-morphism is a weak GE-morphism. But the converse is not true in general as seen in the following example.

Example 3.3. Consider two sets $X = \{0, 1, 2, 3, 4\}$ and $Y = \{0, 1, 2, 3, 4\}$ with binary operations " $*_X$ " and " $*_Y$ ", respectively, which are given by Table 2.

Table 2: Cayley tables for the binary operations " $*_X$ " and " $*_Y$ "

$*_X$	0	1	2	3	4	$*_Y$	0	1	2	3	4
0						0	1	1	1	1	4
	0					1	0	1	2	3	4
2	0	1	1	4	4	2	0	1	1	0	4
3						3	1	1	2	1	1
4	0	1	1	1	1	4	1	1	1	1	1

Then $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ are GE-algebras. Let $\xi : X \to Y$ be a mapping defined by

$$\xi(x) = \begin{cases} 0 & \text{if } x \in \{0, 2\}, \\ 1 & \text{if } x = 1, \\ 3 & \text{if } x = 3, \\ 4 & \text{if } x = 4. \end{cases}$$

Then ξ is a weak GE-morphism. But ξ is not a GE-morphism since

$$\xi(0 *_X 2) = \xi(2) = 0 \neq 1 = 0 *_Y 0 = \xi(0) *_Y \xi(2).$$

Proposition 3.4. Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. Given a weak GE-morphism $\xi : X \to Y$, we have

- (i) $\xi(1_X) = 1_Y$.
- (ii) $(\forall x, y \in X) \ (x \leq_X y \Rightarrow \xi(x) \leq_Y \xi(y)).$
- (iii) $(\forall x, y \in X) \ (\xi(x *_X y) \leq_Y \xi((x *_X y) *_X y) *_Y \xi(y)).$
- (iv) The set $\text{Ker}(\xi) := \{x \in X \mid \xi(x) = 1_Y\}$, which is called the kernel of ξ , is a GE-filter of X.
- (v) The inverse image $\xi^{-1}(F_Y)$ of a GE-filter F_Y of Y under ξ is a GE-filter of X.

Proof. (i) is obtained by the combination of (6) and (18).

(ii) Let $x, y \in X$ be such that $x \leq_X y$. Then $x *_X y = 1_X$, and so

$$1_Y = \xi(1_X) = \xi(x *_X y) \leq_Y \xi(x) *_Y \xi(y).$$

Hence $1_Y = \xi(x) *_Y \xi(y)$ by (6), and so $\xi(x) \leq_Y \xi(y)$.

(iii) Let $x, y \in X$. By (GE3), (GE1) and (2), we get

$$(x *_X y) *_X (((x *_X y) *_X y) *_X y) = (x *_X y) *_X (((x *_X y) *_X y) *_X ((x *_X y) *_X y)) = (x *_X y) *_X *_1 = 1_X,$$

and so $x *_X y \leq_X ((x *_X y) *_X y) *_X y$. It follows from (ii) and (17) that

$$\xi(x *_X y) \leq_Y \xi(((x *_X y) *_X y) *_X y) \leq_Y \xi((x *_X y) *_X y) *_Y \xi(y).$$

(iv) By (i), we get $1_X \in \text{Ker}(\xi)$. Let $x, y \in X$ be such that $x \in \text{Ker}(\xi)$ and $x *_X y \in \text{Ker}(\xi)$. Then $\xi(x) = 1_Y$ and $\xi(x *_X y) = 1_Y$. Hence, which imply from (17) and (GE2) that

$$1_Y = \xi(x *_X y) \le_Y \xi(x) *_Y \xi(y) = 1_Y *_Y \xi(y) = \xi(y).$$

Hence $\xi(y) = 1_Y$ by (6), that is, $y \in \text{Ker}(\xi)$. Thus $\text{Ker}(\xi)$ is a GE-filter of X.

(v) Let F_Y be a GE-filter of Y. The result (i) induces $1_X \in \xi^{-1}(F_Y)$. Let $x, y \in X$ be such that $x \in \xi^{-1}(F_Y)$ and $x *_X y \in \xi^{-1}(F_Y)$. Then $\xi(x) \in F_Y$ and $\xi(x *_X y) \in F_Y$. It follows from Lemma 2.5 and (17) that $\xi(x) *_Y \xi(y) \in F_Y$. Thus $\xi(y) \in F_Y$ and so $y \in \xi^{-1}(F_Y)$. Therefore $\xi^{-1}(F_Y)$ is a GE-filter of X.

Corollary 3.5. Let $\xi : X \to Y$ be a weak GE-morphism from a GE-algebra $(X, *_X, 1_X)$ to a GE-algebra $(Y, *_Y, 1_Y)$. Then

$$(\forall x, y \in X)(x \in \operatorname{Ker}(\xi), x \leq_X y \Rightarrow y \in \operatorname{Ker}(\xi)).$$
 (19)

Theorem 3.6. Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. If $\xi : X \to Y$ is a weak GE-monomorphism, then $\text{Ker}(\xi) = \{1_X\}$.

Proof. Assume that $\xi : X \to Y$ is a weak GE-monomorphism. If $x \in \text{Ker}(\xi)$, then $\xi(x) = 1_Y = \xi(1_X)$ by Proposition 3.4(i), and so $x = 1_X$. Hence $\text{Ker}(\xi) = \{1_X\}$.

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7. Consider two sets $X = \{0, 1, 2, 3, 4\}$ and $Y = \{0, 1, 2, 3, 4\}$ with binary operations " $*_X$ " and " $*_Y$ ", respectively, which are given by Table 3.

Table 3: Cayley tables for the binary operations " $*_X$ " and " $*_Y$ "

$*_X$	0	1	2	3	4	$*_Y$	0	1	2	3	4
0	1	1	1	3	3	0	1	1	1	3	1
	0					1	0	1	2	3	4
2	0	1	1	4	4	2	0	1	1	1	4
3	0	1	1	1	1	3	1	1	1	1	1
4	1	1	2	1	1	4	0	1	2	3	1

Then $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ are GE-algebras. Let $\xi : X \to Y$ be a mapping defined by

$$\xi(x) = \begin{cases} 0 & \text{if } x \in \{0, 2, 3, 4\}, \\ 1 & \text{if } x = 1. \end{cases}$$

Then ξ is a weak GE-morphism and Ker $(\xi) = \{1_X\}$. But ξ is not a weak GE-monomorphism since $\xi(0) = 0 = \xi(2)$ but $0 \neq 2$.

We want to strengthen the conditions so that the converse of Theorem 3.6 can be established.

Theorem 3.8. Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras, and let $\xi : X \to Y$ be a weak GE-morphism. If X is antisymmetric and $\text{Ker}(\xi) = \{1_X\}$, then ξ is a weak GE-monomorphism.

Proof. Assume that Y is antisymmetric and $\operatorname{Ker}(\xi) = \{1_X\}$. Let $x_1, x_2 \in X$ be such that $\xi(x_1) = \xi(x_2)$. Then $\xi(x_1 *_X x_2) = \xi(x_1) *_Y \xi(x_2) = 1_Y$, and thus $x_1 *_X x_2 \in \operatorname{Ker}(\xi) = \{1_X\}$, that is, $x_1 \leq_X x_2$. The similar way induces $x_2 \leq_X x_1$. Thus $x_1 = x_2$ by the antisymmetry of X, and therefore ξ is a weak GE-monomorphism.

Definition 3.9. A weak GE-endomorphism ξ on a GE-algebra (X, *, 1) is said to be idempotent if $\xi^2(x) := (\xi \circ \xi)(x) = \xi(x)$ for all $x \in X$.

Example 3.10. Consider a set $X := \{0, 1, 2, 3, 4\}$ with the binary operation "*", which is given by Table 4.

Then (X, *, 1) is a GE-algebra. Let $\xi : X \to X$ be a mapping defined by

$$\xi(x) = \begin{cases} 4 & \text{if } x \in \{0, 3, 4\} \\ 1 & \text{if } x = 1, \\ 2 & \text{if } x = 2. \end{cases}$$

Then ξ is an idempotent weak GE-endomorphism.

Table 4: Cayley table for the binary operation "*"

*	0	1	2	3	4
0	1	1	1	4	4
1	0	1	2	3	4
2	0	1	1	3	3
3	1	1	2	1	1
4	1	1	1	1	1

Proposition 3.11. Let ξ be a weak GE-endomorphism on a GE-algebra (X, *, 1). If ξ is idempotent, then $\operatorname{Ker}(\xi) \cap \xi(X) = \{1\}.$

Proof. Assume that ξ is idempotent and let $x \in \text{Ker}(\xi) \cap \xi(X)$. Then $\xi(x) = 1$ and there exists $y \in X$ such that $x = \xi(y)$. Hence

$$1 = \xi(x) = \xi(\xi(y)) = \xi(y) = x_{1}$$

and therefore $\operatorname{Ker}(\xi) \cap \xi(X) = \{1\}.$

The following example shows that if ξ is not idempotent, then Proposition 3.11 is not valid.

Example 3.12. Consider a set $X := \{0, 1, 2, 3, 4\}$ with the binary operation "*", which is given by Table 5.

Table 5: Cayley table for the binary operation "*"

*	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	1	1	2	1	1

Then (X, *, 1) is a GE-algebra. Let $\xi : X \to X$ be a mapping defined by

$$\xi(x) = \begin{cases} 2 & \text{if } x = 0, \\ 1 & \text{if } x \in \{1, 2\}, \\ 4 & \text{if } x = 3, \\ 3 & \text{if } x = 4. \end{cases}$$

Then ξ is a weak GE-endomorphism. We can observe that ξ is not idempotent because of $\xi(\xi(0) = \xi(2) = 1 \neq 2 = \xi(0)$. Also, Ker $(\xi) = \{1, 2\}$ and $\xi(X) = \{1, 2\}$ $\{1, 2, 3, 4\}$. But Ker $(\xi) \cap \xi(X) = \{1, 2\} \neq \{1\}$.

Weak GE-Morphisms and Qualified GE-Algebras

Given a self-map ξ on a GE-algebra (X, *, 1), consider the next assertions:

$$(\forall x, y \in X)(\xi(\xi(x) * \xi(y)) \le \xi(x) * \xi(y)).$$

$$(20)$$

$$(\forall x, y \in X)(\xi(x * y) \le \xi((x * y) * y) * \xi(y)).$$
 (21)

By Proposition 3.4 (iii), every weak GE-endomorphism ξ on a GE-algebra (X, *, 1) satisfies the conditions (21).

Question 3.13. Does every weak GE-endomorphism ξ on a GE-algebra (X, *, 1) satisfy the condition (20)?

The answer to Question 3.13 is negative as seen in the following example.

Example 3.14. Consider a set $X := \{0, 1, 2, 3, 4\}$ with the binary operation "*", which is given by Table 6.

*	0	1	2	3	4
0	1	1	1	3	1
1	0	1	2	3	4
2	4	1	1	3	4
3	0	1	2	1	0
4	1	1	2	3	1

Table 6: Cayley table for the binary operation "*"

Then (X, *, 1) is a GE-algebra. Let $\xi : X \to X$ be a mapping defined by

$$\xi(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x \in \{1, 2\}, \\ 2 & \text{if } x = 3, \\ 4 & \text{if } x = 4. \end{cases}$$

Then ξ is a weak GE-endomorphism. But ξ does not satisfy (20) because of

$$(\xi(\xi(2) * \xi(3))) * (\xi(2) * \xi(3)) = \xi(1 * 2) * (1 * 2) = \xi(2) * 2 = 1 * 2 = 2 \neq 1.$$

Proposition 3.15. Every weak GE-endomorphism ξ on a GE-algebra (X, *, 1) satisfies the condition (20) when it is idempotent.

Proof. Let $\xi: X \to X$ be an idempotent weak GE-endomorphism. Then

$$\xi(\xi(x) * \xi(y)) \le \xi^2(x) * \xi^2(y) = \xi(x) * \xi(y)$$

for all $x, y \in X$.

Given a self-map ξ on a GE-algebra (X, *, 1), consider the next assertions:

$$(\forall x, y \in X)(\xi(\xi(x) * \xi(y)) = \xi(x) * \xi(y)).$$
 (22)

$$(\forall x, y \in X)(\xi(x * y) = \xi((x * y) * y) * \xi(y)).$$
(23)

Question 3.16. Does every weak GE-endomorphism ξ on a GE-algebra (X, *, 1) satisfy the conditions (22) and (23)?

The answer to Question 3.16 is negative as seen in the following example.

Example 3.17. Consider the weak GE-endomorphism ξ in Example 3.14. It does not satisfy (22) because of

$$(\xi(\xi(2) * \xi(3))) = \xi(1 * 2) = \xi(2) = 1 \neq 2 = 1 * 2 = \xi(2) * \xi(3).$$

Also, the weak GE-endomorphism ξ in Example 3.12 does not satisfy (23) because of

$$\begin{split} \xi(2*3) &= \xi(4) = 3 \neq 4 = \xi(3) = 1 * \xi(3) = \xi(1) * \xi(3) \\ &= \xi(4*3) * \xi(3) = \xi((2*3) * 3) * \xi(3). \end{split}$$

Proposition 3.18. Let ξ be a self-map on a GE-algebra (X, *, 1). If ξ satisfies:

$$(\forall x, y \in X)(\xi((x * y) * y) * \xi(y) \le \xi(x * y)),$$
(24)

then $\xi(1) = 1$. If ξ satisfies (22) and (24), then $\xi^2(x) = \xi(x)$ for all $x \in X$.

Proof. Assume that ξ satisfies the condition (24). Using (GE1) and (24), we get

$$1 = \xi(1) * \xi(1) = \xi((1 * 1) * 1) * \xi(1) \le \xi(1 * 1) = \xi(1),$$

and so $\xi(1) = 1$ by (6). If ξ satisfies (22) and (24), then

$$\xi^{2}(x) = \xi(\xi(x)) = \xi(1 * \xi(x)) = \xi(\xi(1) * \xi(x)) = \xi(1) * \xi(x) = 1 * \xi(x) = \xi(x)$$
for all $x \in X$.

Corollary 3.19. Let ξ be a self-map on a GE-algebra (X, *, 1). If ξ satisfies (23), then $\xi(1) = 1$.

We provide conditions for a self-map on a GE-algebra to be a weak GE-endomorphism.

Proposition 3.20. Let ξ be a self-map on a transitive GE-algebra (X, *, 1). If ξ satisfies (23) and

$$(\forall x, y \in X)(x \le y \Rightarrow \xi(x) \le \xi(y)), \tag{25}$$

then ξ is a weak GE-endomorphism.

Proof. Suppose X is transitive and ξ satisfies (23) and (25). Corollary 3.19 shows that $1 \leq \xi(1)$. By the combination of (8) and (25), we get $\xi(x) \leq \xi((x * y) * y)$ for all $x, y \in X$. It follows from (10) and (23) that

$$\xi(x * y) = \xi((x * y) * y) * \xi(y) \le \xi(x) * \xi(y)$$

for all $x, y \in X$. Therefore ξ is a weak GE-endomorphism.

_

Question 3.21. If a self-map ξ on a GE-algebra (X, *, 1) satisfies (20), (21) and (25), then is ξ a weak GE-endomorphism?

The next example verify that the answer to Question 3.21 is negative.

Example 3.22. Consider a set $X := \{0, 1, 2, 3, 4, 5\}$ with the binary operation "*", which is given by Table 7.

Table 7: Cayley table for the binary operation "*"

*	0	1	2	3	4	5
0	1	1	2	4	4	4
1 2 3	0	1	$\overline{2}$	3	4	5
2	1	1	1	5	5	5
3	1	1	1	1	1	1
$\frac{4}{5}$	0	1	1	0	1	1
5	0	1	1	0	1	1

Then (X, *, 1) is a GE-algebra. Let $\xi : X \to X$ be a mapping defined by

$$\xi(x) = \begin{cases} 2 & \text{if } x = 0, \\ 1 & \text{if } x = 1, \\ 3 & \text{if } x = 3, \\ 4 & \text{if } x \in \{2, 4, 5\} \end{cases}$$

Then ξ satisfies satisfies (20), (21) and (25). But ξ is not a weak GE-endomorphism because of

$$\xi(2*3)*(\xi(2)*\xi(3)) = \xi(5)*(4*3) = 4*0 = 0 \neq 1.$$

Definition 3.23. A couple (X, ξ) is called a qualified GE-algebra (briefly, qGE-algebra) if (X, *, 1) is a GE-algebra and ξ is a self-map on X that satisfies conditions (22), (23) and (25).

Example 3.24. Consider a set $X := \{0, 1, 2, 3, 4\}$ with the binary operation "*", which is given by Table 8.

*	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
$\frac{2}{3}$	1	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

Then (X, *, 1) is a GE-algebra. Let $\xi : X \to X$ be a mapping defined by

$$\xi(x) = \begin{cases} 1 & \text{if } x \in \{0,1\}, \\ 2 & \text{if } x = 2, \\ 4 & \text{if } x \in \{3,4\}. \end{cases}$$

Then it is easy to verify that (X,ξ) is a qGE-algebra.

Theorem 3.25. Let (X,ξ) be a qGE-algebra. If X is transitive, then ξ is an idempotent weak GE-endomorphism.

Proof. This is induced by Propositions 3.18 and 3.20.

Lemma 3.26. [2] Let $(X_1, *_1, 1_1)$ and $(X_2, *_2, 1_2)$ be *GE*-algebras with with binary relations \leq_1 and \leq_2 , respectively, and consider $\tilde{X} := X_1 \times X_2$. Define a binary operation " $\tilde{*}$ ", the special element $\tilde{1}$ and a binary relation $\leq_{(1,2)}$ on X as follows:

$$(x_1, x_2)\tilde{*}(y_1, y_2) = (x_1 *_1 y_1, x_2 *_2 y_2),$$
(26)

$$1 = (1_1, 1_2), (27)$$

$$(x_1, x_2) \leq_{(1,2)} (y_1, y_2) \iff x_1 \leq_1 y_1, x_2 \leq_2 y_2$$
 (28)

for all $(x_1, x_2), (y_1, y_2) \in \tilde{X}$. Then $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra.

Theorem 3.27. Let (X_1, ξ_1) and (X_2, ξ_2) be qGE-algebras. If we define a self-map $\tilde{\xi}$ on \tilde{X} as follows:

$$\tilde{\xi}: \tilde{X} \to \tilde{X}, \ (x_1, x_2) \mapsto (\xi_1(x_1), \xi_2(x_2)), \tag{29}$$

then $(\tilde{X}, \tilde{\xi})$ is a qGE-algebra.

Proof. By Lemma 3.26, $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra. Let $(x_1, x_2), (y_1, y_2) \in \tilde{X}$. Then

$$\begin{split} \tilde{\xi}(\tilde{\xi}(x_1, x_2) \,\tilde{*}\, \tilde{\xi}(y_1, y_2)) \\ =& \tilde{\xi}((\xi_1(x_1), \xi_2(x_2)) \,\tilde{*}\, (\xi_1(y_1), \xi_2(y_2))) \\ =& \tilde{\xi}((\xi_1(x_1) * \xi_1(y_1)), (\xi_2(x_2) * \xi_2(y_2))) \\ =& (\xi_1(\xi_1(x_1) * \xi_1(y_1)), \xi_2(\xi_2(x_2) * \xi_2(y_2))) \\ =& (\xi_1(x_1) * \xi_1(y_1), \xi_2(x_2) * \xi_2(y_2)) \\ =& (\xi_1(x_1), \xi_2(x_2)) \,\tilde{*}\, (\xi_1(y_1), \xi_2(y_2)) \\ =& \tilde{\xi}(x_1, x_2) \,\tilde{*}\, \tilde{\xi}(y_1, y_2) \end{split}$$

and

$$\begin{split} &\tilde{\xi}(((x_1, x_2) \,\tilde{*} \,(y_1, y_2)) \,\tilde{*} \,(y_1, y_2)) \,\tilde{*} \,\tilde{\xi}(y_1, y_2) \\ &= \tilde{\xi}((x_1 * y_1, x_2 * y_2) \,\tilde{*} \,(y_1, y_2)) \,\tilde{*} \,\tilde{\xi}(y_1, y_2) \\ &= \tilde{\xi}((x_1 * y_1) * y_1, (x_2 * y_2) * y_2) \,\tilde{*} \,\tilde{\xi}(y_1, y_2) \\ &= (\xi_1((x_1 * y_1) * y_1), \xi_2((x_2 * y_2) * y_2)) \,\tilde{*} \,(\xi_1(y_1), \xi_2(y_2)) \\ &= (\xi_1((x_1 * y_1) * y_1) * \xi_1(y_1), \xi_2((x_2 * y_2) * y_2) * \xi_2(y_2)) \\ &= (\xi_1(x_1 * y_1), \xi_2(x_2 * y_2)) \\ &= \tilde{\xi}(x_1 * y_1, x_2 * y_2) \\ &= \tilde{\xi}((x_1, x_2) \,\tilde{*} \,(y_1, y_2)). \end{split}$$

Assume that $(x_1, x_2) \leq_{(1,2)} (y_1, y_2)$. Then $x_1 \leq_1 y_1$ and $x_2 \leq_2 y_2$, and so $\xi_1(x_1) \leq_1 \xi_1(y_1)$ and $\xi_2(x_2) \leq_2 \xi_2(y_2)$. It follows that

$$\begin{split} \tilde{\xi}(x_1, x_2) \,\tilde{*} \,\tilde{\xi}(y_1, y_2) &= (\xi_1(x_1), \xi_2(x_2)) \,\tilde{*} \,(\xi_1(y_1), \xi_2(y_2)) \\ &= (\xi_1(x_1) * \xi_1(y_1), \,\xi_2(x_2) * \xi_2(y_2)) \\ &= (1_1, 1_2) = \tilde{1}, \end{split}$$

that is, $\tilde{\xi}(x_1, x_2) \leq_{(1,2)} \tilde{\xi}(y_1, y_2)$. Therefore $(\tilde{X}, \tilde{\xi})$ is a qGE-algebra.

Definition 3.28. Let g be a self-map on a GE-algebra (X, *, 1). A self-map ξ_g on $(\tilde{X}, \tilde{*}, \tilde{1})$ given by

$$(\forall (x,y) \in \tilde{X})(\xi_g(x,y) = (g(x),g(y)))$$
(30)

is called a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$.

Example 3.29. Consider a set $X = \{0, 1, 2\}$ with binary operations "*", which is given by Table 9.

*	0	1	2
0	1	1	1
1	0	1	2
2	0	1	1

Table 9: Cayley table for the binary operation "*"

Then (X, *, 1) is a GE-algebra. We can observe that

$$X := X \times X = \{w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9\}$$

where $w_1 = (0,0)$, $w_2 = (0,1)$, $w_3 = (0,2)$, $w_4 = (1,0)$, $w_5 = (1,1)$, $w_6 = (1,2)$, $w_7 = (2,0)$, $w_8 = (2,1)$, and $w_9 = (2,2)$. Define a binary operation " $\tilde{*}$ " on \tilde{X} by Table 10.

Table 10: Cayley table for the binary operation " $\tilde{*}$ "

~~	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
w_1	w_5								
w_2	w_4	w_5	w_6	w_4	w_5	w_6	w_4	w_5	w_6
w_3	w_4	w_5	w_5	w_4	w_5	w_5	w_4	w_5	w_5
w_4	w_2	w_2	w_2	w_5	w_5	w_5	w_8	w_8	w_8
w_5	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
w_6	w_1	w_2	w_2	w_4	w_5	w_5	w_7	w_8	w_8
w_7	w_2	w_2	w_2	w_5	w_5	w_5	w_5	w_5	w_5
w_8	w_1	w_2	w_3	w_4	w_5	w_6	w_4	w_5	w_6
w_9	w_1	w_2	w_2	w_4	w_5	w_5	w_4	w_5	w_5

Then $(\tilde{X}, \tilde{*}, \tilde{1})$, where $\tilde{1} = (1, 1) = w_5$, is a GE-algebra. Define a self-map g on (X, *, 1) by

$$g(x) = \begin{cases} 0 & \text{if } x \in \{0, 2\}, \\ 1 & \text{if } x = 1. \end{cases}$$

Let $\xi_g: \tilde{X} \to \tilde{X}$ be a mapping defined by (30). Then

$$\xi_g(x) = \begin{cases} w_1 & \text{if } x \in \{w_1, w_3, w_7, w_9\}, \\ w_2 & \text{if } x \in \{w_2, w_8\}, \\ w_4 & \text{if } x \in \{w_4, w_6\}, \\ w_5 & \text{if } x = w_5, \end{cases}$$

and it is a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$.

Theorem 3.30. Given a self-map g on a GE-algebra (X, *, 1), let ξ_g be a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$ where $\tilde{X} = X \times X$. Then (X, g) is a qGE-algebra if and only if (\tilde{X}, ξ_g) is a qGE-algebra.

Proof. Assume that (X, g) is a qGE-algebra. Then $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra by Lemma 3.26. For every $(x_1, x_2), (y_1, y_2) \in \tilde{X}$, we have

$$\begin{split} &\xi_g(\xi_g(x_1, x_2) \,\tilde{*}\, \xi_g(y_1, y_2)) \\ = &\xi_g((g(x_1), g(x_2)) \,\tilde{*}\, (g(y_1), g(y_2)))) \\ = &\xi_g((g(x_1) * g(y_1)), (g(x_2) * g(y_2)))) \\ = &(g(g(x_1) * g(y_1)), g(g(x_2) * g(y_2)))) \\ = &(g(x_1) * g(y_1), g(x_2) * g(y_2)) \\ = &(g(x_1), g(x_2)) \,\tilde{*}\, (g(y_1), g(y_2)) \\ = &\xi_g(x_1, x_2) \,\tilde{*}\, \xi_g(y_1, y_2) \end{split}$$

and

$$\begin{split} &\xi_g(((x_1, x_2) \stackrel{*}{*} (y_1, y_2)) \stackrel{*}{*} (y_1, y_2)) \stackrel{*}{*} \xi_g(y_1, y_2) \\ &= &\xi_g((x_1 * y_1, x_2 * y_2) \stackrel{*}{*} (y_1, y_2)) \stackrel{*}{*} \xi_g(y_1, y_2) \\ &= &\xi_g((x_1 * y_1) * y_1, (x_2 * y_2) * y_2) \stackrel{*}{*} \xi_g(y_1, y_2) \\ &= &(g((x_1 * y_1) * y_1), g((x_2 * y_2) * y_2)) \stackrel{*}{*} (g(y_1), g(y_2)) \\ &= &(g((x_1 * y_1) * y_1) * g(y_1), g((x_2 * y_2) * y_2) * g(y_2)) \\ &= &(g(x_1 * y_1), g(x_2 * y_2)) \\ &= &\xi_g(x_1 * y_1, x_2 * y_2) \\ &= &\xi_g((x_1, x_2) \stackrel{*}{*} (y_1, y_2)). \end{split}$$

$$\begin{aligned} \xi_g(x_1, x_2) \,\tilde{*} \,\xi_g(y_1, y_2) &= (g(x_1), g(x_2)) \,\tilde{*} \,(g(y_1), g(y_2)) \\ &= (g(x_1) * g(y_1), g(x_2) * g(y_2)) = (1, 1) = \tilde{1}. \end{aligned}$$

Hence (\tilde{X}, ξ_g) is a qGE-algebra.

Conversely, assume that (\tilde{X}, ξ_g) is a qGE-algebra. Then

$$\begin{aligned} (g(1),g(1)) &= \xi_g(1,1) = \xi_g((1,1)\,\tilde{*}\,(1,1)) \\ &= \xi_g(((1,1)\,\tilde{*}\,(1,1))\,\tilde{*}\,(1,1))\,\tilde{*}\,\xi_g(1,1) \\ &= \xi_g((1\,*\,1,1\,*\,1)\,\tilde{*}\,(1,1))\,\tilde{*}\,\xi_g(1,1) \\ &= \xi_g((1,1)\,\tilde{*}\,(1,1))\,\tilde{*}\,\xi_g(1,1) \\ &= \xi_g((1\,*\,1,1\,*\,1))\,\tilde{*}\,\xi_g(1,1) \\ &= \xi_g(1,1)\,\tilde{*}\,\xi_g(1,1) \\ &= \xi_g(1,1)\,\tilde{*}\,\xi_g(1,1) \\ &= (1,1), \end{aligned}$$

and so g(1) = 1. It follows from that

$$\begin{aligned} (1,g(x)*g(y)) &= (g(x)*g(x),g(x)*g(y)) \\ &= (g(x),g(x)) \tilde{*} (g(x),g(y)) \\ &= \xi_g(x,x) \tilde{*} \xi_g(x,y) \\ &= \xi_g(\xi_g(x,x) \tilde{*} \xi_g(x,y)) \\ &= \xi_g((g(x),g(x)) \tilde{*} (g(x),g(y))) \\ &= \xi_g((g(x)*g(x),g(x)*g(y))) \\ &= \xi_g(1,g(x)*g(y)) \\ &= (g(1),g(g(x)*g(y))) \\ &= (1,g(g(x)*g(y))) \end{aligned}$$

and

$$\begin{aligned} (1,g(x*y)) &= (g(1),g(x*y)) \\ &= \xi_g(1,x*y) \\ &= \xi_g(1*1,x*y) \\ &= \xi_g((1*1,x) \tilde{*}(1,y)) \\ &= \xi_g(((1,x) \tilde{*}(1,y)) \tilde{*}(1,y)) \tilde{*}\xi_g(1,y) \\ &= \xi_g((1*1,x*y) \tilde{*}(1,y)) \tilde{*}\xi_g(1,y) \\ &= \xi_g((1*1)*1,(x*y)*y) \tilde{*}\xi_g(1,y) \\ &= \xi_g(1,(x*y)*y) \tilde{*}\xi_g(1,y) \\ &= \xi_g(1,(x*y)*y) \tilde{*}\xi_g(1,y) \\ &= (g(1),g((x*y)*y)) \tilde{*}(g(1),g(y)) \\ &= (g(1)*g(1),g((x*y)*y)*g(y)) \\ &= (1,g((x*y)*y)*g(y)) \end{aligned}$$

for all $x, y \in X$. Hence g(g(x)*g(y)) = g(x)*g(y) and g((x*y)*y)*g(y)) = g(x*y) for all $x, y \in X$. Let $x, y \in X$ be such that $x \leq y$. Then

$$(1,x)\,\tilde{*}\,(1,y)=(1*1,x*y)=(1,1)=\tilde{1}$$

and hence

$$(1, g(x) * g(y)) = (g(1) * g(1), g(x) * g(y))$$

= $(g(1), g(x)) \tilde{*} (g(1), g(y))$
= $\xi_g(1, x) \tilde{*} \xi_g(1, y)$
= $(1, 1)$

which implies that $g(x) \leq g(y)$. Therefore (X, g) is qGE-algebra.

For every qGE-algebra (X,ξ) , we define the image $\operatorname{Im}(\xi)$, kernel $\operatorname{Ker}(\xi)$ and

diagonal set $\Delta(\xi)$ of ξ as follows:

$$\operatorname{Im}(\xi) = \{\xi(x) \in X \mid x \in X\},\tag{31}$$

$$Ker(\xi) = \{ x \in X \mid \xi(x) = 1 \},$$
(32)

$$\Delta(\xi) = \{ x \in X \mid \xi(x) = x \}.$$
(33)

Proposition 3.31. If (X,ξ) is a qGE-algebra, then $\operatorname{Im}(\xi)$ is a sub-GE-algebra of X, $\operatorname{Ker}(\xi) \cap \Delta(\xi) = \{1\}$ and $\operatorname{Ker}(\xi)$ is a GE-filter of X.

Proof. Let $x, y \in \text{Im}(\xi)$. Then there exist $a, b \in X$ such that $x = \xi(a)$ and $y = \xi(b)$. Thus $x * y = \xi(a) * \xi(b) = \xi(\xi(a) * \xi(b)) \in \text{Im}(\xi)$, and hence $\text{Im}(\xi)$ is a sub-GE-algebra of X. Let $x \in \text{Ker}(\xi) \cap \Delta(\xi)$. Then $x = \xi(x) = 1$ and so $\text{Ker}(\xi) \cap \Delta(\xi) = \{1\}$. Since

$$1 = \xi(1) * \xi(1) = \xi(1 * 1) * \xi(1) = \xi((1 * 1) * 1) * \xi(1) = \xi(1 * 1) = \xi(1),$$

we have $1 \in \text{Ker}(\xi)$. Let $x, y \in X$ be such that $x \in \text{Ker}(\xi)$ and $x * y \in \text{Ker}(\xi)$. Then $\xi(x) = 1$ and $\xi(x * y) = 1$. Since $x \leq (x * y) * y$, we get

$$1 = \xi(x) \le \xi((x * y) * y)$$

by (25), and thus $\xi((x * y) * y) = 1$ by (6). It follows from (GE2) and (23) that

$$1 = \xi(x * y) = \xi((x * y) * y) * \xi(y) = 1 * \xi(y) = \xi(y).$$

Hence $y \in \text{Ker}(\xi)$ and therefore $\text{Ker}(\xi)$ is a GE-filter of X.

Given a qGE-algebra (X, ξ) , let $\delta_{\text{Ker}(\xi)}$ be a subset of $X \times X$ constructed to satisfy the following conditions:

$$(\forall x, y \in X)((x, y) \in \delta_{\operatorname{Ker}(\xi)} \iff x * y \in \operatorname{Ker}(\xi), \ y * x \in \operatorname{Ker}(\xi)).$$
(34)

It is routine to verify that $\delta_{\operatorname{Ker}(\xi)}$ is a congruence relation in X. Denote by $[x]_{\operatorname{Ker}(\xi)}$ the equivalence class of x in X under $\delta_{\operatorname{Ker}(\xi)}$, that is,

$$[x]_{\operatorname{Ker}(\xi)} := \{ y \in X \mid (x, y) \in \delta_{\operatorname{Ker}(\xi)} \},\$$

and the collection of all such equivalence classes is denoted by $X/\delta_{\text{Ker}(\xi)}$, i.e.,

$$X/\delta_{\operatorname{Ker}(\xi)} = \{ [x]_{\operatorname{Ker}(\xi)} \mid x \in X \}.$$

Theorem 3.32. Let $\delta_{\operatorname{Ker}(\xi)}$ be a congruence relation in a qGE-algebra (X, ξ) where X is transitive and antisymmetric. Define a binary operation $*_{\delta_{\operatorname{Ker}(\xi)}}$ on $X/\delta_{\operatorname{Ker}(\xi)}$ and a self-map $\tilde{\xi}$ on $X/\delta_{\operatorname{Ker}(\xi)}$ as follows:

$$[x]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}} [y]_{\operatorname{Ker}(\xi)} = [x * y]_{\operatorname{Ker}(\xi)}$$

$$(35)$$

and

$$\tilde{\xi}([x]_{\operatorname{Ker}(\xi)}) = [\xi(x)]_{\operatorname{Ker}(\xi)}$$
(36)

respectively, for all $[x]_{\operatorname{Ker}(\xi)}, [y]_{\operatorname{Ker}(\xi)} \in X/\delta_{\operatorname{Ker}(\xi)}$. Then $(X/\delta_{\operatorname{Ker}(\xi)}, \tilde{\xi})$ is a qGE-algebra with the constant $[1]_{\operatorname{Ker}(\xi)}$.

Proof. Since $\operatorname{Ker}(\xi)$ is a GE-filter of X by Proposition 3.31, it is routine to verify that $(X/\delta_{\operatorname{Ker}(\xi)}, *_{\delta_{\operatorname{Ker}(\xi)}}, [1]_{\operatorname{Ker}(\xi)})$ is a GE-algebra. Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)} = [y]_{\operatorname{Ker}(\xi)}$ in $X/\delta_{\operatorname{Ker}(\xi)}$. Then $(x, y) \in \delta_{\operatorname{Ker}(\xi)}$ and hence $x * y \in \operatorname{Ker}(\xi)$ and $y * x \in \operatorname{Ker}\xi$, that is, $\xi(x * y) = 1$ and $\xi(y * x) = 1$. Since $x \leq (x * y) * y$ and X is transitive, we have $\xi(x) \leq \xi((x * y) * y)$ and so

$$1 = \xi(x * y) = \xi((x * y) * y) * \xi(y) \le \xi(x) * \xi(y)$$

Hence $\xi(x) * \xi(y) = 1$. Similarly, we get $\xi(y) * \xi(x) = 1$. Thus $\xi(x) = \xi(y)$ since X is antisymmetric. Therefore

$$\hat{\xi}([x]_{\mathrm{Ker}(\xi)}) = [\xi(x)]_{\mathrm{Ker}(\xi)} = [\xi(y)]_{\mathrm{Ker}(\xi)} = \hat{\xi}([y]_{\mathrm{Ker}(\xi)})$$

which shows that $\tilde{\xi}$ is well-defined. Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)}, [y]_{\operatorname{Ker}(\xi)} \in X/\delta_{\operatorname{Ker}(\xi)}$. Then

$$\tilde{\xi}(\tilde{\xi}([x]_{\operatorname{Ker}(\xi)}) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}([y]_{\operatorname{Ker}(\xi)})) = \tilde{\xi}\{[\xi(x)]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}} [\xi(y)]_{\operatorname{Ker}(\xi)}\}$$
$$= \tilde{\xi}([\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)}) = [\xi(\xi(x) * \xi(y))]_{\operatorname{Ker}(\xi)} = [\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)}$$
$$= [\xi(x)]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}} [\xi(y)]_{\operatorname{Ker}(\xi)} = \tilde{\xi}([x]_{\operatorname{Ker}(\xi)}) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}([y]_{\operatorname{Ker}(\xi)})$$

and

$$\begin{split} \tilde{\xi}([x]_{\mathrm{Ker}(\xi)} *_{\delta_{\mathrm{Ker}(\xi)}} [y]_{\mathrm{Ker}(\xi)}) &= \tilde{\xi}([x * y]_{\mathrm{Ker}(\xi)}) \\ &= [\xi(x * y)]_{\mathrm{Ker}(\xi)} = [\xi((x * y) * y) * \xi(y)]_{\mathrm{Ker}(\xi)} \\ &= [\xi((x * y) * y)]_{\mathrm{Ker}(\xi)} *_{\delta_{\mathrm{Ker}(\xi)}} [\xi(y)]_{\mathrm{Ker}(\xi)} \\ &= \tilde{\xi}([(x * y) * y]_{\mathrm{Ker}(\xi)}) *_{\delta_{\mathrm{Ker}(\xi)}} \tilde{\xi}([y]_{\mathrm{Ker}(\xi)}) \\ &= \tilde{\xi}(([x]_{\mathrm{Ker}(\xi)} *_{\delta_{\mathrm{Ker}(\xi)}} [y]_{\mathrm{Ker}(\xi)}) *_{\delta_{\mathrm{Ker}(\xi)}} [y]_{\mathrm{Ker}(\xi)}) *_{\delta_{\mathrm{Ker}(\xi)}} \tilde{\xi}([y]_{\mathrm{Ker}(\xi)}) . \end{split}$$

Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}} [y]_{\operatorname{Ker}(\xi)} = [1]_{\operatorname{Ker}(\xi)}$. Then $[x * y]_{\operatorname{Ker}(\xi)} = [1]_{\operatorname{Ker}(\xi)}$, and so $\xi(x * y) = 1$. Since ξ is a weak GE-endomorphism by Proposition 3.20, we have

$$[1]_{\operatorname{Ker}(\xi)} = [\xi(x * y)]_{\operatorname{Ker}(\xi)} \subseteq [\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)}$$
$$= [\xi(x)]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}} [\xi(y)]_{\operatorname{Ker}(\xi)}$$
$$= \tilde{\xi}([x]_{\operatorname{Ker}(\xi)}) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}([y]_{\operatorname{Ker}(\xi)})$$

and so $\tilde{\xi}([x]_{\operatorname{Ker}(\xi)}) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}([y]_{\operatorname{Ker}(\xi)}) = [1]_{\operatorname{Ker}(\xi)}$. Therefore $(X/\delta_{\operatorname{Ker}(\xi)}, \tilde{\xi})$ is a qGE-algebra with the constant $[1]_{\operatorname{Ker}(\xi)}$.

References

- R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, On GE-algebras, Bulletin of the Section of Logic 50 (1) (2021) 81–96. https://doi.org/10.18778/0138-0680.2020.20
- [2] R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, Belligerent GE-filter in GEalgebras, Journal of the Indonesian Mathematical Society 28 (1) (2022) 31–43.
- [3] R.K. Bandaru, M.K. Shaik, Y.B. Jun, GE-morphisms of GE-algebras, Southeast Asian Bull. Math. 45 (6) (2021) 931–944.
- [4] A. Borumand Saeid, A. Rezaei, R.K. Bandaru, Y.B. Jun, Voluntary GE-filters and further results of GE-filters in GE-algebras, *Journal of Algebraic Systems* 10 (1) (2022) 31–47.
- [5] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences 29 (1) (2002) 55–61. DOI: 10.1155/S0161171202011134.
- [6] I. Chajda, R. Halas, Y.B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Commentationes Mathematicae Universitatis Carolinae 43 (3) (2002) 407–417.
- [7] A. Diego, Sur les Algebres de Hilbert, Collection de Logique Mathematique, Serie A, XXI, Gauthier-Villars Publisher, Paris, 1966.
- [8] S.M. Hong and Y.B. Jun, On deductive systems of Hilbert algebras, Communications of the Korean Mathematical Society 11 (3) (1996) 595–600.
- [9] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proceedings of the Japan Academy, Ser. A 42 (1) (1966) 19–22.
- [10] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, Ser. A 42 (1) (1966) 26–29.
- [11] Y.B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics 22 (4) (1996) 477–484.
- [12] Y.B. Jun, S.M. Hong, X.L. Xin, E.H. Roh, Chinese remainder theorems in BCIalgebras, Soochow Jorunal of Mathematics 24 (3) 1998 219–230.
- [13] Y.B. Jun and K.H. Kim, H-filters of Hilbert algebras, Scientiae Mathematicae Japonicae Online e-2005 231–236.
- [14] H.S. Kim and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae Online e-2006 1299–1302.
- [15] M.A. Ozturk, J.G. Lee, R.K. Bandaru, Y.B. Jun, Strong GE-filters and GE-ideals of bordered GE-algebras, *Journal of Mathematics* 2021, Art. ID 5520023, 9 pages. https://doi.org/10.1155/2021/5520023.
- [16] A. Rezaei, A. Borumand Saeid, R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Applications and Applied Mathematics 8 (2) (2013) 573–584.
- [17] A. Rezaei, R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, *Afrika Matematika* **32** (2021) 1121–1136. https://doi.org/10.1007/s13370-021-00886-6
- [18] S.Z. Song, R.K. Bandaru, Y.B. Jun, Imploring GE-filters of GE-algebras, Journal of Mathematics 2021, Art. ID 6651531, 7 pages. https://doi.org/10.1155/2021/6651531.