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1. Introduction

BCK-algebras (see [9, 10]) were introduced by Y. Imai and K. Iséki in 1966 as the
algebraic semantics for a non-classical logic possessing only implication. Since
then, the generalized concepts of BCK-algebras have been studied by various
scholars. Hilbert algebras were introduced by L. Henkin and T. Skolem in the
fifties for investigations in intuitionistic and other non-classical logics. A. Diego
established that Hilbert algebras form a locally finite variety (see [7]). Later
several researchers extended the theory on Hilbert algebras (see [5, 6, 8, 11, 13]).
The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a gen-
eralization of a dual BCK-algebra (see [14]). A. Rezaei et al. discussed relations
between Hilbert algebras and BE-algebras (see [16]). In the study of algebraic
structures, the generalization process is also an important topic. As a gen-
eralization of Hilbert algebras, R.K. Bandaru et al. introduced the notion of
GE-algebras, and investigated several properties (see [1]). A. Rezaei et al. in-
troduced the concept of prominent GE-filters in GE-algebras and discussed its
properties (see [17]). M.A. Ozturk et al. introduced the concept of Strong GE-
filters, GE-ideals of bordered GE-algebras and investigated its properties (see
[15]). S.Z. Song et al. introduced the concept of Imploring GE-filters of GE-
algebras and discussed its properties (see [18]). The isomorphism theorems play
an important role in a general logical algebra, which were studied by several re-
searches. Jun et al. derived isomorphism theorems by using Chinese Remainder
Theorem in BCl-algebras (see [12]). Recently, R.K. Bandaru et al. introduced
the notion of GE-morphism and established fundamental GE-morphism theo-
rem. They investigated some isomorphism theorems in GE-algebras (see [3]).

In this paper, we introduce the notions of weak GE-morphism, weak GE-
endomorphism and study its properties. We provide conditions for a given self-
map on a GE-algebra to be an idempotent and to be a weak GE-endomorphism.
We introduce the notion of qualified GE-algebra and investigate its properties.
We give condition for a qualified GE-algebra to be an idempotent weak GE-
endomorphism. We define the notion of qualified self-map and give a necessary
and condition for a given self-map on a GE-algebra, the product of two GE-
algebras under the qualified self-map to be a qualified GE-algebra. In qualified
GE-algebras, we use kernel to induce an equivalence relation, and then construct
the quotient set. We define a binary operation on the quotient set to construct
a quotient qualified GE-algebra.

2. Preliminaries

Definition 2.1. [1] By a GE-algebra we mean a nonempty set X with a constant

Gy

1 and a binary operation “«” satisfying the following azioms:
(GE1) u*xu=1,

(GE2) 1xu=u,

(GE3) ux* (v*w)=ux(v*(uxw))
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for all u,v,w e X.

Definition 2.2. [1, 2] A GE-algebra X is said to be
(i) transitive if it satisfies:

(Vr,y,z€ X)) (zxy < (zxx) % (2%7y)). (1)

(ii) antisymmetric if the binary relation “<” is antisymmetric.

Proposition 2.3. [1] Every GE-algebra X satisfies the following items.

VueX)(uxl=1). (2)
Vu,v € X) (u* (u*xv) =uxv). (3)
Vu,v e X) (u<vxu). (4)
Vu,v,w € X) (u* (vxw) <ovx(uxw)). (5)
MeeX)(1<u = u=1). (6)
(Vu,v € X) (u < (v*ku)*u). (7)
Vu,v € X) (u < (u*xv) *v). (8)
Vu,v,we X)(u<vxw & v<u*xw). 9)
If X is transitive, then
Vu,v,we X)(u<v = wru<wxv, viw < uxw). (10)
(Vu,v,w € X) (uxv < (vxw)* (uxw)). (11)
Vu,v,we X)(u<v,v<w = u<w). (12)

Definition 2.4. [1] A subset F' of a GE-algebra X is called a GE-filter of X if it
satisfies:

1€F, (13)
Vu,ve X)(ue F,uxveF = veF). (14)

Lemma 2.5. [1] In a GE-algebra X, every GE-filter F' of X satisfies:
Ve,ye X)(x<y,z€eF = yeF). (15)

In [17], the concept of GE-morphisms in GE-algebras is defined as follows:

Definition 2.6. [17] Let (X, *x,1x) and (Y, *y,1ly) be GE-algebras. A mapping
£: X =Y is called a GE-morphism if it satisfies:

(V1,22 € X)(€(21 *x 22) = (1) *v E(22)). (16)
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If a GE-morphism £ : X — Y is onto (resp., one-to-one), we say it is a GE-
epimorphism (resp., GE-monomorphism). If a GE-morphism £ : X — Y is both
onto and one-to-one, we say it is a GE-isomorphism.

It is clear that the identity mapping £ : X — X is a GE-isomorphism.

3. Weak GE-Morphisms

Let (X,*xx,1x) and (Y, *y,1ly) be GE-algebras. Given a mapping £ : X — Y,
consider the following condition:

(Vz1,22 € X)(€(71 *x 72) <y &(21) *y &(22)). (17)

If a mapping £ : X — Y satisfies the condition (17), then £(1x) <y ly. In
fact, {(1x) = &(zxx x) <y &(x) *y £(x) = 1y for all z € X. But, the inequality

ly <y &(1x) (18)
does not hold in general as seen in the following example.

Ezample 3.1. Consider two sets X = {0,1,2,3,4} and Y = {0,1,2,3,4} with
binary operations “xx” and “xy”, respectively, which are given by Table 1.

Y

Table 1: Cayley tables for the binary operations “xx” and “xy”

*x |0 1 2 3 4 xy» |0 1 2 3 4
0|1 1 1 3 3 01 1 1 3 4
110 1 2 3 4 110 1 2 3 4
210 1 1 4 4 210 1 1 3 3
3 /0 1 1 1 1 3 (1 1 1 1 1
410 1 1 1 1 4 (1 1 1 1 1

Then (X, *x,1x) and (Y, *y, 1ly) are GE-algebras. Let £ : X — Y be a mapping
defined by

foif ze{0,1,2,3},
g(”3)_{2 if 2=

Then ¢ satisfies (17). But £ does not satisfy (18) since

ly sy €(1x) =1y *y 0 =0 # 1y.

Definition 3.2. Let (X,*x,1x) and (Y,*y,ly) be GE-algebras. A mapping
£: X =Y is called a weak GE-morphism if it satisfies (17) and (18).
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If X =Y, the weak GE-morphism ¢ : X — X is called a weak GE-
endomorphism.

If a weak GE-morphism £ : X — Y is onto (resp., one-to-one), we say it
is a weak GE-epimorphism (resp., weak GE-monomorphism). If a weak GE-
morphism £ : X — Y is both onto and one-to-one, we say it is a weak GE-
isomorphism.

It is clear that every GE-morphism is a weak GE-morphism. But the converse
is not true in general as seen in the following example.

Ezample 3.3. Consider two sets X = {0,1,2,3,4} and Y = {0,1,2,3,4} with
binary operations “xx” and “xy”, respectively, which are given by Table 2.

Table 2: Cayley tables for the binary operations “xx” and “xy”
xx |0 1 2 3 4 xy |0 1 2 3 4
0|1 1 2 3 3 0|1 1 1 1 4
110 1 2 3 4 110 1 2 3 4
210 1 1 4 4 210 1 1 0 4
3 /0 1 1 1 1 311 1 2 1 1
4 {0 1 1 1 1 4 |1 1 1 1 1

Then (X, xx,1x) and (Y, *y, 1y) are GE-algebras. Let £ : X — Y be a mapping
defined by

0 if ze{0,2},

1 if =1,
@ =33 i so3

4 if z=4

Then ¢ is a weak GE-morphism. But ¢ is not a GE-morphism since

E0%x2) = £(2) =0 # 1 = 0%y 0= £(0) y £(2).

Proposition 3.4. Let (X, xx,1x) and (Y,*y,ly) be GE-algebras. Given a weak
GE-morphism & : X — Y, we have
(i) £(1x) = 1y.
(ii) (Vo,y € X) (z <xy = &(x) <y &(y)).
(iii) (Vo,y € X) (§(z #x y) <y &((z *x y) *x y) *v £(y))-
(iv) The set Ker(€) := {x € X | &(x) = 1y}, which is called the kernel of &, is
a GE-filter of X.
(v) The inverse image E~Y(Fy) of a GE-filter Fy of Y under £ is a GE-filter
of X.

—
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Proof. (i) is obtained by the combination of (6) and (18).
(ii) Let 2,y € X be such that x <x y. Then z *x y = 1x, and so

ly =&(1x) = &(z *x y) <y &(x) *y £(y).

Hence 1y = &(x) *y £(y) by (6), and so &(z) <y &(y).
(iii) Let z,y € X. By (GE3), (GE1) and (2), we get

(x*xx y) *x (T *x y) *x y) *x ¥)
=@*xy)*x ((z*x y) *x y) *x (z*x y) *x ¥))
:(it *x y) *x *]-X = 1_)(,

and so x*x y <x ((z *x y) *x y) *x y. It follows from (ii) and (17) that
§(rxxy) <y §(((z*x y) *x y) xx y) Sy E((zxx y) *x y) *v §(y)-

(iv) By (i), we get 1x € Ker(€). Let x,y € X be such that z € Ker(§) and
xxx y € Ker(§). Then {(z) = 1y and {(z*x y) = ly. Hence, which imply from
(17) and (GE2) that

ly =&(r*xx y) <y &(x) v {(y) = 1y »v {(y) = &(v)-

Hence £(y) = 1y by (6), that is, y € Ker(§). Thus Ker(¢) is a GE-filter of X.
(v) Let Fy be a GE-filter of Y. The result (i) induces 1x € £~ 1(Fy). Let
z,y € X be such that z € {~1(Fy) and z xx y € £ H(Fy). Then £(z) € Fy and
&(zxx y) € Fy. It follows from Lemma 2.5 and (17) that {(x) *y &(y) € Fy.
Thus £(y) € Fy and so y € £ 1(Fy). Therefore é~1(Fy) is a GE-filter of X. m

Corollary 3.5. Let £ : X — Y be a weak GE-morphism from a GE-algebra
(X,*x,1x) to a GE-algebra (Y, xy,1y). Then

(Va,y € X)(x € Ker(§), x <x y = y € Ker()). (19)

Theorem 3.6. Let (X, *xx,1x) and (Y,*y,ly) be GE-algebras. If £ : X — Y is
a weak GE-monomorphism, then Ker(§) = {1x}.

then £(x) = 1y = £(1x) by Proposition 3.4(i), and so z = 1x. Hence Ker(¢)
{1x}.

Proof. Assume that £ : X — Y is a weak GE-monomorphism. If x € Ker(§),
|

The converse of Theorem 3.6 is not true in general as seen in the following
example.

Ezample 3.7. Consider two sets X = {0,1,2,3,4} and Y = {0,1,2,3,4} with
binary operations “xx” and “xy”, respectively, which are given by Table 3.
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Table 3: Cayley tables for the binary operations “xx” and “xy”
xx |0 1 2 3 4 xy |0 1 2 3 4
0 (1 1 1 3 3 0|1 1 1 3 1
110 1 2 3 4 110 1 2 3 4
2 10 1 1 4 4 210 1 1 1 4
3 /0 1 1 1 1 3 /1 1 1 1 1
4 (1 1 2 1 1 4 10 1 2 3 1

Then (X, xx,1x) and (Y, *y, 1y) are GE-algebras. Let £ : X — Y be a mapping
defined by

[0 if 2e{0,2,3,4},
5(”3)_{1 if =1

Then £ is a weak GE-morphism and Ker(§) = {lx}. But £ is not a weak
GE-monomorphism since £(0) = 0 = £(2) but 0 # 2.

We want to strengthen the conditions so that the converse of Theorem 3.6
can be established.

Theorem 3.8. Let (X, xx,1x) and (Y, *y,1ly) be GE-algebras, and let £ : X —Y
be a weak GE-morphism. If X is antisymmetric and Ker(§) = {1x}, then & is
a weak GE-monomorphism.

Proof. Assume that Y is antisymmetric and Ker(§) = {1x}. Let z1,22 € X
be such that £(z1) = &(x2). Then £(z1 *x x2) = &(z1) *y &(x2) = 1y, and
thus z1 *x x2 € Ker(§) = {1x}, that is, 1 <x 2. The similar way induces
T9 <x x1. Thus x1; = z2 by the antisymmetry of X, and therefore ¢ is a weak
GE-monomorphism. [ ]

Definition 3.9. A weak GE-endomorphism & on a GE-algebra (X, =, 1) is said
to be idempotent if €2(z) := (€0 &)(x) = &(x) for all v € X.

Ezample 3.10. Consider a set X := {0, 1,2, 3,4} with the binary operation “x”,
which is given by Table 4.

Then (X, *,1) is a GE-algebra. Let £ : X — X be a mapping defined by

4 if 2€{0,3,4},
fa)=41 if z=1,
2 if z=2.

Then £ is an idempotent weak GE-endomorphism.
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Wy

Table 4: Cayley table for the binary operation “x

*x10 1 2 3 4
0(1 1 1 4 4
110 1 2 3 4
210 1 1 3 3
3111 2 1 1
471 1 1 1 1

Proposition 3.11. Let & be a weak GE-endomorphism on a GE-algebra (X, , 1).
If € is idempotent, then Ker(§) N&(X) = {1}.

Proof. Assume that £ is idempotent and let « € Ker(§) N &(X). Then {(z) =1
and there exists y € X such that x = £(y). Hence

1=¢(x) = €(E(y) = Ey) = =,
and therefore Ker(§) N&(X) = {1}. N

The following example shows that if £ is not idempotent, then Proposition
3.11 is not valid.

Ezample 3.12. Consider a set X := {0, 1,2, 3,4} with the binary operation “x”,
which is given by Table 5.

Wy

Table 5: Cayley table for the binary operation “x

*x10 1 2 3 4
o1 1 2 3 3
110 1 2 3 4
210 1 1 4 4
3]0 1 1 1 1
4171 1 2 1 1

Then (X, *,1) is a GE-algebra. Let £ : X — X be a mapping defined by

2 if =0,

1 it zef1,2),
W=, .3
3 if z=4.

Then ¢ is a weak GE-endomorphism. We can observe that £ is not idempotent
because of £(£(0) = £(2) =1 # 2 = £(0). Also, Ker(§) = {1,2} and &(X) =
{1,2,3,4}. But Ker(€) N €(X) = {1,2} # {1}.
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Given a self-map £ on a GE-algebra (X, x, 1), consider the next assertions:

(Va,y € X)(§(§(x) *£(y)) < &(x) *&£(y))- (20)
(Va,y € X)(§(z +y) < &((w xy) xy) = £(y))- (21)

By Proposition 3.4 (iii), every weak GE-endomorphism ¢ on a GE-algebra
(X, *, 1) satisfies the conditions (21).

Question 3.13. Does every weak GE-endomorphism £ on a GE-algebra (X, ,
1) satisfy the condition (20)?

The answer to Question 3.13 is negative as seen in the following example.

Ezample 3.14. Consider a set X := {0, 1,2, 3,4} with the binary operation “x”,
which is given by Table 6.

Wy

Table 6: Cayley table for the binary operation “x

*x10 1 2 3 4
o(1 1 1 3 1
110 1 2 3 4
214 1 1 3 4
3]0 1 2 1 0
4171 1 2 3 1

Then (X, *,1) is a GE-algebra. Let £ : X — X be a mapping defined by

0 if =0,

1 if ze{1,2),
O =3y i po3

4 i z—4

Then ¢ is a weak GE-endomorphism. But £ does not satisfy (20) because of

(E(E2) *EB3) * (E2)*£(3) = 612 * (1¥2) = £(2) ¥ 2= 1x2=2# L,

Proposition 3.15. Every weak GE-endomorphism & on a GE-algebra (X, x, 1)
satisfies the condition (20) when it is idempotent.

Proof. Let £ : X — X be an idempotent weak GE-endomorphism. Then

E(E(x) *£(y)) < E(2) xE(y) = €(x) * E(y)
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for all z,y € X. ]

Given a self-map £ on a GE-algebra (X, x, 1), consider the next assertions:

(Va,y € X)(E(&(x) x&(y)) = &(x) *&(y)). (22)
(Va,y € X)(&(z xy) = E((z +y) xy) *&(y)). (23)

Question 3.16. Does every weak GE-endomorphism £ on a GE-algebra (X, x,
1) satisfy the conditions (22) and (23)?

The answer to Question 3.16 is negative as seen in the following example.

Example 3.17. Consider the weak GE-endomorphism ¢ in Example 3.14. It
does not satisfy (22) because of

(€(6(2) x£(3))) =€(1%2) =&(2) =1 #2=1%2=¢£(2) *£(3).

Also, the weak GE-endomorphism ¢ in Example 3.12 does not satisfy (23) be-
cause of

§(2%3) =&(4) =3#4=¢(3) =1x£03) = £(1) #£(3)
=&(4%3) x£(3) = £((2%3) *3) * £(3).

Proposition 3.18. Let ¢ be a self-map on a GE-algebra (X, %, 1). If & satisfies:
(Vo,y € X)(€((z xy) xy) *£(y) < &(x =), (24)
then €(1) = 1. If ¢ satisfies (22) and (24), then €2(x) = £(z) for all z € X.
Proof. Assume that ¢ satisfies the condition (24). Using (GE1) and (24), we get
1=¢(1)*§(1) =&((1+1)x 1) £(1) < £(1 1) = £(1),
and so £(1) = 1 by (6). If ¢ satisfies (22) and (24), then
& (x) = £(E(2)) = €L % &(x)) = E(E(1) *£(x)) = £(1) % &(x) = 1+ £(x) = £(2)

forallz € X. [ |

Corollary 3.19. Let £ be a self-map on a GE-algebra (X, *, 1). If £ satisfies
(23), then £(1) =

We provide conditions for a self-map on a GE-algebra to be a weak GE-
endomorphism.
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Proposition 3.20. Let £ be a self-map on a transitive GE-algebra (X, x, 1). If £
satisfies (23) and

(Vo,y € X)(z <y = &(x) <E(y)), (25)
then £ is a weak GE-endomorphism.

Proof. Suppose X is transitive and ¢ satisfies (23) and (25). Corollary 3.19 shows
that 1 < ¢(1). By the combination of (8) and (25), we get {(x) < {((x * y) * y)
for all z,y € X. It follows from (10) and (23) that

§lzxy) = E((xxy) xy) *E(y) < &(x) *£(y)

for all x,y € X. Therefore ¢ is a weak GE-endomorphism. ]

Question 3.21. If a self-map £ on a GE-algebra (X, *, 1) satisfies (20), (21) and
(25), then is £ a weak GE-endomorphism?

The next example verify that the answer to Question 3.21 is negative.

Ezample 3.22. Consider a set X := {0,1,2,3,4,5} with the binary operation
“x”  which is given by Table 7.

Wy

Table 7: Cayley table for the binary operation “x

U W N = O *
o~ = oo
e e ) R
o= N NN
OO UOlW kW
o= = O

= = = O O O

Then (X, *,1) is a GE-algebra. Let £ : X — X be a mapping defined by

2 if =0,

1 if z=1,
@ =33 i po3

4 if re{2,4,5)

Then ¢ satisfies satisfies (20), (21) and (25). But £ is not a weak GE-endomorphism
because of

E(2x3) % (£(2)%£(3)) =&(5) %« (4%3)=4%x0=0# 1.
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Definition 3.23. A couple (X&) is called a qualified GE-algebra (briefly, ¢GE-
algebra) if (X, *, 1) is a GE-algebra and & is a self-map on X that satisfies
conditions (22), (23) and (25).

Ezample 3.24. Consider a set X := {0, 1,2, 3,4} with the binary operation “x”,
which is given by Table 8.

Wy

Table 8: Cayley table for the binary operation “x

= T = S
=== DN DN DN
= o= R W W Ww

B W N R O %
OO = O
o= e W

Then (X, *,1) is a GE-algebra. Let £ : X — X be a mapping defined by
1 if ze{0,1},
&(x) =12 if x=2,
4 if e {34}
Then it is easy to verify that (X, ) is a qGE-algebra.

Theorem 3.25. Let (X,&) be a ¢GE-algebra. If X is transitive, then £ is an
idempotent weak GE-endomorphism.

Proof. This is induced by Propositions 3.18 and 3.20. ]

Lemma 3.26. [2] Let (X1, *1, 11) and (X2, *2, 1) be GE-algebras with with
binary relations <1 and <o, respectively, and consider X := X1 x X5. Define a

binary operation “% 7, the special element 1 and a binary relation <a,2) on X

as follows:
(T1,22) * (y1,y2) = (@1 %1 Y1, T2 *2 Y2), (26)
i = (115 12)7 (27)
(w1, 22) <a2) (W1,92) & 21 <1 Y1, T2 <2 Y2 (28)

for all (z1,2), (y1,y2) € X. Then (X, %, 1) is a GE-algebra.

Theorem 3.27. Let (X1,&1) and (X2, &2) be ¢GE-algebras. If we define a self-map
& on X as follows:

£ X = X, (21,22) = (&(1), &a(2)), (29)
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then (X,€) is a qGE-algebra.

Proof. By Lemma 3.26, (X, %, 1) is a GE-algebra. Let (x1,x2), (y1,12) € X.
Then

E(w1, @2) %E(y1,92))
(1), &2(w2)) * (€1(y1), €2(12)))

(¢

&(

E((&a (1) * &1(n)), (Ea(2) * &2(y2)))
(&1 (&1 (@1) * (Y1), E2(&a(w2) * &2(y2)))
3
3
&(

(&1
(&1

(§1(w1) * &1 (Y1), Ea(22) * E2(y2))
(€1(w1), &2(2)) * (§1(y1), E2(v2))

371;332) (y1,y2)

and

(21, m2) % (y1,92)) % (Y1,92) #€(y1,y2)
(w1 % y1, 22 % y2) ® (y1,52)) %€ (Y1, v2)
(z1 % y1) * Y1, (T2 * Ya) * y2) *§

(yla y2)

(
&(
&(
(& ((z1*y1) xy1), &((z2 * y2) * y2)) * (§1(y1), &2(y2))
(& ((z1 xy1) *y1) * &1 (Y1), L2((w2 * y2) * y2) * &2(y2))
3
é(
(

(€1(w1 * Y1), §2(x2 * Y2))

T1 *Y1,T2 * y2)

(1, w2) % (11, 12)).

Assume that (z1,72) <(12) (¥1,%2). Then x1 <y y; and z2 <5 yo, and so
61(.231) <1 fl (yl) and 62(.232) <5 fg(yg). It follows that

§(z1,22) *&(y1,92) = (§1(21), &2(22)) * (§1(y1), §2(y2))
= (& (1) * &1(y1), Ea(x2) * E2(y2))
= (11,19) = 1,

that is, g(xl, r2) <(1,2) f(yl,yg). Therefore (X',{) is a qGE-algebra. |
Definition 3.28. Let g be a self-map on a GE-algebra (X, *, 1). A self-map &,
on (X, %, 1) given by

(V(z,y) € X) (& (@, y) = (9(2), 9(v))) (30)

is called a qualified self-map on (X, %, 1).

Ezample 3.29. Consider a set X = {0,1,2} with binary operations “+”, which
is given by Table 9.
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Table 9: Cayley table for the binary operation “x
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Then (X, *,1) is a GE-algebra. We can observe that
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Wy

X ::X X X = {w17w27w3aw4aw57w67w77w8aw9}

where w; = (0,0), w2 = (0,1), w3 = (0,2), wy = (1,0), w5 = (1,1), we = (1,2),
wr = (2,0), wg = (2,1), and wg = (2,2). Define a binary operation “%” on X

by Table 10.

“ b2

Table 10: Cayley table for the binary operation “x

¥ | wy we w3z ws ws wg Wy Wg Wy
w; | W5 W5 W5 W5 W5 W5 W5 W5 W5
w2 | W4 W5 We Wq4 W5 W W4 W5 We
w3 | W4 Ws W5 W4 W5 W5 W4 W5 W5
Wy | W2 W2 W2 W5 W5 W5 W W WS
Wws | W1 w2 W3 W4 W5 We Wy W Wy
We | W1 W2 w2 Wg4 W5 W5 Wy W WS
wr | w2 w2 W2 W5 W5 W5 Ws W5 Ws
wg | wp w2 w3 Wg4 W5 W W4 W5 We
Wy | W1 W2 W2 Wg W5 W5 Wy W5 Ws

Then (X, %, 1), where 1 = (1,1) = ws, is a GE-algebra.

(X, x, 1) by

1 if x=1

o(z) = {0 if ze{0,2},

Let & : X — X be a mapping defined by (30). Then

Define a self-map g on

w1 if z e {w,ws,wr,wy},
wa lf T € {wQ 'UJS}
€(z) = | Y
wy if x € {ws,ws},
Ws if r = Ws,

and it is a qualified self-map on (X, %, 1).
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Theorem 3.30. Given a self-map g on a GE-algebra (X, *, 1), let &, be a qualified
self-map on (X, *, 1) where X = X x X. Then (X, g) is a qGE-algebra if and
only if (X, &) is a ¢GE-algebra.

Proof. Assume that (X, g) is a qGE-algebra. Then (X, %, 1) is a GE-algebra
by Lemma 3.26. For every (x1,x2), (y1,y2) € X, we have
€g(&g(@1, 22) ¥ &4 (Y1, 2))
=£4((9(21), 9(22)) * (9(11),
=£4((9(x1) * g(y1)), (9(x2

( Y2)))

( ) )
=(g(g(x1) * g(y1)), g(g(x2)

( g(x2) *

(

(

(
9(y2)))
9(y2)))
)

g
*
*

T1 €2

=(g(z1) * 9(y1), 9(y2)
=(g(z1), 9(z2)) * (9(¥1), 9(y2))
=&g(w1,72) ¥&g(y1,92)

and

Eo(((z1, @2) * (y1,92)) * (Y1, 2)) * &g (Y1, y2)
=Eo (w1 * Y1, @2 % y2) * (y1,¥2)) * &g (Y1, y2)
=Eo((1 #y1) *y1, (w2 * y2) * y2) * {4 (Y1, Y2)
=(g((z1 *y1) *x 1), 9((22 % y2) * y2)) * (9(y1), 9(y2))
=(g((1 *y1) xy1) * 9(1), 9((w2 * y2) * y2) * 9(y2))
=(9(z1 % y1), 9(w2 * y2))
=&y (1 * Y1, T2 * Y2)
=g ((z1,2) * (Y1,92))-
Suppose that (z1,z2) % (y1,y2) = (1,1). Then (z1 *y1,x2%y2) = (1,1) and hence
z1xy1 = 1 and zg xyo = 1. Thus g(x1) *g(y1) = 1 and g(z2) * g(y2) = 1, which
imply that
Eg(x1,22) % &g (Y1, y2) = (9(21), 9(22)) * (9(y1), 9(y2))
= (g(x1) * 9(y1), 9(x2) * g(y2)) = (1,1) = 1.
Hence (X, ¢&,) is a qGE-algebra.
Conversely, assume that (X, &,) is a qGE-algebra. Then

(9(1),9(1)) = & (1, 1) = &((1,1) * (1, 1))

=& (L) * (1L, 1)) % (1, 1)) % &,(1,1)
=& (L 1,1 1) % (1,1)) % (1, 1)
= &((1, 1) % (1,1)) ¥&4(1, 1)

=& (L1, 1x 1)) % &(1,1)
=&(1,1)%&,(1,1)

= (1,1,
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and so ¢g(1) = 1. It follows from that

(1, 9(x) * g(y))

o

—~

Q Q

AN N N~ o~~~
s

Q

Il |
MM N I
Q © Q

—~~

and

forall z,y € X. Hence g(g(x)*g(y)) = g(x)g(y) and g((zxy)+y)*g(y)) = g(x*y)
for all z,y € X. Let z,y € X be such that z <y. Then

(Lz)¥(1,y) = (1xl,zxy)=(1,1)=1

and hence
(1, 9(z) * g(y)) = (9(1) * g(1), 9(x) * g(y))
= (9(1),9(x)) > (9(1), 9(»))
=&y(1,2) *&4(1,y)
=(1,1)
which implies that g(z) < g(y). Therefore (X, g) is qGE-algebra. |

For every qGE-algebra (X, £), we define the image Im(€), kernel Ker(¢) and
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diagonal set A(&) of £ as follows:

Im(¢) = {¢(z) € X |z € X}, (31)
Ker(§) = {x € X | {(x) =1}, (32)
Al) ={z e X [&(z) =z} (33)

Proposition 3.31. If (X, &) is a ¢GE-algebra, then Im(€) is a sub-GE-algebra of
X, Ker(§) NA(&) = {1} and Ker(§) is a GE-filter of X.

Proof. Let x,y € Im(£). Then there exist a,b € X such that © = £(a) and
y = £(b). Thus 2y = £(a) £(b) = E(E(a) * (1)) € Tm(€), and hence Tm(€)
is a sub-GE-algebra of X. Let z € Ker(¢) N A(§). Then x = £(z) = 1 and so
Ker(§) N A(§) = {1}. Since

1=£(1)#&(1) = &1+ 1) x£(1) = £((1+ 1) x 1) x £(1) = £(1+ 1) = £(1),

we have 1 € Ker(§). Let 2,y € X be such that z € Ker(§) and = x y € Ker(£).
Then £(z) =1 and £(x xy) = 1. Since x < (z * y) * y, we get

1=¢(x) <&((wxy)*y)
by (25), and thus £((z *xy) *y) = 1 by (6). It follows from (GE2) and (23) that
L=¢(zxy) =&((zxy) xy) *&(y) = Lx£(y) = £(v)-
Hence y € Ker(§) and therefore Ker(§) is a GE-filter of X. ]

Given a qGE-algebra (X, §), let dxer(e) be a subset of X x X constructed to
satisfy the following conditions:

(Vo,y € X)((2,y) € Oxer(e) & @ *y € Ker(§), y+x € Ker()).  (34)

It is routine to verify that dker(e) is a congruence relation in X. Denote by
[T]Ker(e) the equivalence class of x in X under dger(e), that is,

[x]Ker(f) = {y cX | (IE, y) € 5Ker(§)}a

and the collection of all such equivalence classes is denoted by X/dker(e), i-e.,

X/éKer(ﬁ) = {[x]Ker(E) | T e X}

Theorem 3.32. Let dker(e) be a congruence relation in a qGE-algebra (X,§)
where X is transitive and antisymmetric. Define a binary operation xgy ., on

X/0ker(e) and a self-map ¢ on X/0ker(e) as follows:

[x]Ker(g) *5Ker(s) [y]Ker(f) = [{E * y]Ker(g) (35)
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and

g([x]Ker(f)) = [f(x)]Ker(f) (36)

respectively, for all [T]ker(e)s [Y]Kker(e) € X/Oker(e)- Then (X/dker(e),§) is a qGE-
algebra with the constant [1]ker(¢)-

Proof. Since Ker(§) is a GE-filter of X by Proposition 3.31, it is routine to verify
that (X/0ker(e) *6xere)s [LKer(e)) s @ GE-algebra. Let 2,y € X be such that
[T]Kker(e) = [W]Ker(e) I X/Oker(e). Then (x,y) € dxer(¢) and hence z x y € Ker(&)
and yxz € Ker¢, that is, {(z*xy) = 1 and {(y*xx) = 1. Since z < (z*y) *y and
X is transitive, we have &(z) < £((x * y) * y) and so

L=¢8(xxy) =E((z*xy)*y) «&(y) < &(z) *E(y)

Hence £(x) * £(y) = 1. Similarly, we get £(y) * £(x) = 1. Thus £(z) = £(y) since
X is antisymmetric. Therefore

E([]ker(e)) = [£()]ker(e) = [E(W)]Ker(e) = E([Y)Ker(e))

which shows that & is well-defined. Let 2,y € X be such that [T]Ker(¢) [U]Ker(e) €
X/(SKer(.f)~ Then

5(5([x]Ker(§)) OKer(£) 5([ ]Ker(g))) = 5{[£(x)]Ker(£) *Skor(¢) [5( )]Ker(f)}
=¢([¢(2) * EW)]ker(e) = [EE@) * €®)ker(e) = [€() * E(W)]ker(e)
(@) Ker(e) *oeriey EWKerte) = E([T]ker(e)) *oere) E([W]ere))

and

5( T Ker(€) *oxarie) WKer(e)) = £ * Ylker(e))
T * Y)lker(e) = [§((z * y) * ) * E(Y)]ker(e)
T % Y) * Y)]Ker(€) *oxcerce) §(W)]Ker(e)

Y) * YlKer(6)) *sercer & ([W]Ker(e))

Let 2,y € X be such that [¥]ker(e) *6yne) [YIKer(e) = [Uker(e)- Then [zxy]ker(e) =
[1]Kker(e), and so &(z*y) = 1. Since § is a weak GE-endomorphism by Proposition
3.20, we have

[Uker(e) = [€(z * Y)lker(e) € [£(@) * E(Y)]ker(e)
[g(x)]Ker(ﬁ) *SKer(e) [f(y)]Ker
[

é([x]Ker ) *Sker(e) é( y]Ker )

and so 5([:5]Ker(5)) ko) 5([y]Ker(§)) = [1JKker(¢)- Therefore (X/dKer(g),g) is a
qGE-algebra with the constant [1]ker(¢)- [
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