Weak GE-Morphisms and Qualified GE-Algebras

Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 04620, Korea
Email: sunshine@dongguk.edu
Ravikumar Bandaru*
Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh-522237, India
Email: ravimaths83@gmail.com
Young Bae Jun
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
Email: skywine@gmail.com

Received 16 November 2021
Accepted 13 May 2022
Communicated by Y.Q. Chen
AMS Mathematics Subject Classification(2020): 03G25, 06F35

Abstract

The notions of weak GE-morphism, weak GE-endomorphism are introduced and investigated its properties. Conditions for a self-map on a GE-algebra to be an idempotent and to be a weak GE-endomorphism are provided. The notion of qualified GE-algebra is introduced and its properties are investigated. Condition for a qualified GE-algebra to be an idempotent weak GE-endomorphism is given. The notion of qualified self-map is defined and a necessary and condition for a given self-map on a GE-algebra, the product of two GE-algebras under the qualified self-map to be a qualified GE-algebra is given. For a given qualified GE-algebra, using its kernel, an equivalence relation is induced, and then the quotient set is constructed. A binary operation is given on the quotient set to create a quotient qualified GE-algebra.

Keywords: GE-algebra; GE-filter; Weak GE-morphism; (Idempotent) Weak GE-endomorphism.

[^0]
1. Introduction

BCK-algebras (see [9, 10]) were introduced by Y. Imai and K. Iséki in 1966 as the algebraic semantics for a non-classical logic possessing only implication. Since then, the generalized concepts of BCK-algebras have been studied by various scholars. Hilbert algebras were introduced by L. Henkin and T. Skolem in the fifties for investigations in intuitionistic and other non-classical logics. A. Diego established that Hilbert algebras form a locally finite variety (see [7]). Later several researchers extended the theory on Hilbert algebras (see [5, 6, 8, 11, 13]). The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a generalization of a dual BCK-algebra (see [14]). A. Rezaei et al. discussed relations between Hilbert algebras and BE-algebras (see [16]). In the study of algebraic structures, the generalization process is also an important topic. As a generalization of Hilbert algebras, R.K. Bandaru et al. introduced the notion of GE-algebras, and investigated several properties (see [1]). A. Rezaei et al. introduced the concept of prominent GE-filters in GE-algebras and discussed its properties (see [17]). M.A. Ozturk et al. introduced the concept of Strong GEfilters, GE-ideals of bordered GE-algebras and investigated its properties (see [15]). S.Z. Song et al. introduced the concept of Imploring GE-filters of GEalgebras and discussed its properties (see [18]). The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches. Jun et al. derived isomorphism theorems by using Chinese Remainder Theorem in BCI-algebras (see [12]). Recently, R.K. Bandaru et al. introduced the notion of GE-morphism and established fundamental GE-morphism theorem. They investigated some isomorphism theorems in GE-algebras (see [3]).

In this paper, we introduce the notions of weak GE-morphism, weak GEendomorphism and study its properties. We provide conditions for a given selfmap on a GE-algebra to be an idempotent and to be a weak GE-endomorphism. We introduce the notion of qualified GE-algebra and investigate its properties. We give condition for a qualified GE-algebra to be an idempotent weak GEendomorphism. We define the notion of qualified self-map and give a necessary and condition for a given self-map on a GE-algebra, the product of two GEalgebras under the qualified self-map to be a qualified GE-algebra. In qualified GE-algebras, we use kernel to induce an equivalence relation, and then construct the quotient set. We define a binary operation on the quotient set to construct a quotient qualified GE-algebra.

2. Preliminaries

Definition 2.1. [1] By a GE-algebra we mean a nonempty set X with a constant 1 and a binary operation "*" satisfying the following axioms:
(GE1) $u * u=1$,
(GE2) $1 * u=u$,
$(\mathrm{GE} 3) u *(v * w)=u *(v *(u * w))$
for all $u, v, w \in X$.

Definition 2.2. [1, 2] A GE-algebra X is said to be
(i) transitive if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)(x * y \leq(z * x) *(z * y)) \tag{1}
\end{equation*}
$$

(ii) antisymmetric if the binary relation " \leq " is antisymmetric.

Proposition 2.3. [1] Every GE-algebra X satisfies the following items.

$$
\begin{align*}
& (\forall u \in X)(u * 1=1) \tag{2}\\
& (\forall u, v \in X)(u *(u * v)=u * v) \tag{3}\\
& (\forall u, v \in X)(u \leq v * u) \tag{4}\\
& (\forall u, v, w \in X)(u *(v * w) \leq v *(u * w)) \tag{5}\\
& (\forall u \in X)(1 \leq u \Rightarrow u=1) \tag{6}\\
& (\forall u, v \in X)(u \leq(v * u) * u) \tag{7}\\
& (\forall u, v \in X)(u \leq(u * v) * v) \tag{8}\\
& (\forall u, v, w \in X)(u \leq v * w \Leftrightarrow v \leq u * w) . \tag{9}
\end{align*}
$$

If X is transitive, then

$$
\begin{align*}
& (\forall u, v, w \in X)(u \leq v \Rightarrow w * u \leq w * v, v * w \leq u * w) . \tag{10}\\
& (\forall u, v, w \in X)(u * v \leq(v * w) *(u * w)) \tag{11}\\
& (\forall u, v, w \in X)(u \leq v, v \leq w \Rightarrow u \leq w) \tag{12}
\end{align*}
$$

Definition 2.4. [1] A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

$$
\begin{align*}
& 1 \in F \tag{13}\\
& (\forall u, v \in X)(u \in F, u * v \in F \Rightarrow v \in F) \tag{14}
\end{align*}
$$

Lemma 2.5. [1] In a GE-algebra X, every $G E$-filter F of X satisfies:

$$
\begin{equation*}
(\forall x, y \in X)(x \leq y, x \in F \Rightarrow y \in F) \tag{15}
\end{equation*}
$$

In [17], the concept of GE-morphisms in GE-algebras is defined as follows:

Definition 2.6. [17] Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be $G E$-algebras. A mapping $\xi: X \rightarrow Y$ is called a GE-morphism if it satisfies:

$$
\begin{equation*}
\left(\forall x_{1}, x_{2} \in X\right)\left(\xi\left(x_{1} *_{X} x_{2}\right)=\xi\left(x_{1}\right) *_{Y} \xi\left(x_{2}\right)\right) \tag{16}
\end{equation*}
$$

If a GE-morphism $\xi: X \rightarrow Y$ is onto (resp., one-to-one), we say it is a $G E$ epimorphism (resp., GE-monomorphism). If a GE-morphism $\xi: X \rightarrow Y$ is both onto and one-to-one, we say it is a GE-isomorphism.

It is clear that the identity mapping $\xi: X \rightarrow X$ is a GE-isomorphism.

3. Weak GE-Morphisms

Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be GE-algebras. Given a mapping $\xi: X \rightarrow Y$, consider the following condition:

$$
\begin{equation*}
\left(\forall x_{1}, x_{2} \in X\right)\left(\xi\left(x_{1} *_{X} x_{2}\right) \leq_{Y} \xi\left(x_{1}\right) *_{Y} \xi\left(x_{2}\right)\right) \tag{17}
\end{equation*}
$$

If a mapping $\xi: X \rightarrow Y$ satisfies the condition (17), then $\xi\left(1_{X}\right) \leq_{Y} 1_{Y}$. In fact, $\xi\left(1_{X}\right)=\xi\left(x *_{X} x\right) \leq_{Y} \xi(x) *_{Y} \xi(x)=1_{Y}$ for all $x \in X$. But, the inequality

$$
\begin{equation*}
1_{Y} \leq_{Y} \xi\left(1_{X}\right) \tag{18}
\end{equation*}
$$

does not hold in general as seen in the following example.

Example 3.1. Consider two sets $X=\{0,1,2,3,4\}$ and $Y=\{0,1,2,3,4\}$ with binary operations " $*_{X}$ " and " $*_{Y}$ ", respectively, which are given by Table 1.

Table 1: Cayley tables for the binary operations " $*_{X}$ " and "*Y"

$*_{X}$	0	1	2	3	4
0	1	1	1	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

$*_{Y}$	0	1	2	3	4
0	1	1	1	3	4
1	0	1	2	3	4
2	0	1	1	3	3
3	1	1	1	1	1
4	1	1	1	1	1

Then $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ are GE-algebras. Let $\xi: X \rightarrow Y$ be a mapping defined by

$$
\xi(x)= \begin{cases}0 & \text { if } x \in\{0,1,2,3\} \\ 2 & \text { if } x=4\end{cases}
$$

Then ξ satisfies (17). But ξ does not satisfy (18) since

$$
1_{Y} *_{Y} \xi\left(1_{X}\right)=1_{Y} *_{Y} 0=0 \neq 1_{Y}
$$

Definition 3.2. Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be GE-algebras. A mapping $\xi: X \rightarrow Y$ is called a weak GE-morphism if it satisfies (17) and (18).

If $X=Y$, the weak GE-morphism $\xi: X \rightarrow X$ is called a weak $G E$ endomorphism.

If a weak GE-morphism $\xi: X \rightarrow Y$ is onto (resp., one-to-one), we say it is a weak GE-epimorphism (resp., weak GE-monomorphism). If a weak GEmorphism $\xi: X \rightarrow Y$ is both onto and one-to-one, we say it is a weak $G E$ isomorphism.

It is clear that every GE-morphism is a weak GE-morphism. But the converse is not true in general as seen in the following example.

Example 3.3. Consider two sets $X=\{0,1,2,3,4\}$ and $Y=\{0,1,2,3,4\}$ with binary operations " $*_{X}$ " and " $*_{Y}$ ", respectively, which are given by Table 2.

Table 2: Cayley tables for the binary operations "* X_{X} and "*Y"

$*_{X}$	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

$*_{Y}$	0	1	2	3	4
0	1	1	1	1	4
1	0	1	2	3	4
2	0	1	1	0	4
3	1	1	2	1	1
4	1	1	1	1	1

Then $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ are GE-algebras. Let $\xi: X \rightarrow Y$ be a mapping defined by

$$
\xi(x)= \begin{cases}0 & \text { if } x \in\{0,2\} \\ 1 & \text { if } x=1 \\ 3 & \text { if } x=3 \\ 4 & \text { if } x=4\end{cases}
$$

Then ξ is a weak GE-morphism. But ξ is not a GE-morphism since

$$
\xi\left(0 *_{X} 2\right)=\xi(2)=0 \neq 1=0 *_{Y} 0=\xi(0) *_{Y} \xi(2) .
$$

Proposition 3.4. Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be GE-algebras. Given a weak GE-morphism $\xi: X \rightarrow Y$, we have
(i) $\xi\left(1_{X}\right)=1_{Y}$.
(ii) $(\forall x, y \in X)\left(x \leq_{X} y \Rightarrow \xi(x) \leq_{Y} \xi(y)\right)$.
(iii) $(\forall x, y \in X)\left(\xi\left(x *_{X} y\right) \leq_{Y} \xi\left(\left(x *_{X} y\right) *_{X} y\right) *_{Y} \xi(y)\right)$.
(iv) The set $\operatorname{Ker}(\xi):=\left\{x \in X \mid \xi(x)=1_{Y}\right\}$, which is called the kernel of ξ, is a GE-filter of X.
(v) The inverse image $\xi^{-1}\left(F_{Y}\right)$ of a $G E$-filter F_{Y} of Y under ξ is a $G E$-filter of X.

Proof. (i) is obtained by the combination of (6) and (18).
(ii) Let $x, y \in X$ be such that $x \leq_{X} y$. Then $x *_{X} y=1_{X}$, and so

$$
1_{Y}=\xi\left(1_{X}\right)=\xi\left(x *_{X} y\right) \leq_{Y} \xi(x) *_{Y} \xi(y)
$$

Hence $1_{Y}=\xi(x) *_{Y} \xi(y)$ by (6), and so $\xi(x) \leq_{Y} \xi(y)$.
(iii) Let $x, y \in X$. By (GE3), (GE1) and (2), we get

$$
\begin{aligned}
& \left(x *_{X} y\right) *_{X}\left(\left(\left(x *_{X} y\right) *_{X} y\right) *_{X} y\right) \\
= & \left(x *_{X} y\right) *_{X}\left(\left(\left(x *_{X} y\right) *_{X} y\right) *_{X}\left(\left(x *_{X} y\right) *_{X} y\right)\right) \\
= & \left(x *_{X} y\right) *_{X} *_{X}=1_{X},
\end{aligned}
$$

and so $x *_{X} y \leq_{X}\left(\left(x *_{X} y\right) *_{X} y\right) *_{X} y$. It follows from (ii) and (17) that

$$
\xi\left(x *_{X} y\right) \leq_{Y} \xi\left(\left(\left(x *_{X} y\right) *_{X} y\right) *_{X} y\right) \leq_{Y} \xi\left(\left(x *_{X} y\right) *_{X} y\right) *_{Y} \xi(y)
$$

(iv) By (i), we get $1_{X} \in \operatorname{Ker}(\xi)$. Let $x, y \in X$ be such that $x \in \operatorname{Ker}(\xi)$ and $x *_{X} y \in \operatorname{Ker}(\xi)$. Then $\xi(x)=1_{Y}$ and $\xi\left(x *_{X} y\right)=1_{Y}$. Hence, which imply from (17) and (GE2) that

$$
1_{Y}=\xi\left(x *_{X} y\right) \leq_{Y} \xi(x) *_{Y} \xi(y)=1_{Y} *_{Y} \xi(y)=\xi(y)
$$

Hence $\xi(y)=1_{Y}$ by (6), that is, $y \in \operatorname{Ker}(\xi)$. Thus $\operatorname{Ker}(\xi)$ is a GE-filter of X.
(v) Let F_{Y} be a GE-filter of Y. The result (i) induces $1_{X} \in \xi^{-1}\left(F_{Y}\right)$. Let $x, y \in X$ be such that $x \in \xi^{-1}\left(F_{Y}\right)$ and $x *_{X} y \in \xi^{-1}\left(F_{Y}\right)$. Then $\xi(x) \in F_{Y}$ and $\xi\left(x *_{X} y\right) \in F_{Y}$. It follows from Lemma 2.5 and (17) that $\xi(x) *_{Y} \xi(y) \in F_{Y}$. Thus $\xi(y) \in F_{Y}$ and so $y \in \xi^{-1}\left(F_{Y}\right)$. Therefore $\xi^{-1}\left(F_{Y}\right)$ is a GE-filter of X.

Corollary 3.5. Let $\xi: X \rightarrow Y$ be a weak GE-morphism from a GE-algebra $\left(X, *_{X}, 1_{X}\right)$ to a GE-algebra $\left(Y, *_{Y}, 1_{Y}\right)$. Then

$$
\begin{equation*}
(\forall x, y \in X)\left(x \in \operatorname{Ker}(\xi), x \leq_{x} y \Rightarrow y \in \operatorname{Ker}(\xi)\right) \tag{19}
\end{equation*}
$$

Theorem 3.6. Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be GE-algebras. If $\xi: X \rightarrow Y$ is a weak GE-monomorphism, then $\operatorname{Ker}(\xi)=\left\{1_{X}\right\}$.

Proof. Assume that $\xi: X \rightarrow Y$ is a weak GE-monomorphism. If $x \in \operatorname{Ker}(\xi)$, then $\xi(x)=1_{Y}=\xi\left(1_{X}\right)$ by Proposition 3.4(i), and so $x=1_{X}$. Hence $\operatorname{Ker}(\xi)=$ $\left\{1_{X}\right\}$.

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7. Consider two sets $X=\{0,1,2,3,4\}$ and $Y=\{0,1,2,3,4\}$ with binary operations " $*_{X}$ " and " $*_{Y}$ ", respectively, which are given by Table 3 .

Table 3: Cayley tables for the binary operations " $*_{X}$ " and " $*_{Y}$ "

$*_{X}$	0	1	2	3	4
0	1	1	1	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	1	1	2	1	1

$*_{Y}$	0	1	2	3	4
0	1	1	1	3	1
1	0	1	2	3	4
2	0	1	1	1	4
3	1	1	1	1	1
4	0	1	2	3	1

Then $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ are GE-algebras. Let $\xi: X \rightarrow Y$ be a mapping defined by

$$
\xi(x)= \begin{cases}0 & \text { if } x \in\{0,2,3,4\} \\ 1 & \text { if } x=1\end{cases}
$$

Then ξ is a weak GE-morphism and $\operatorname{Ker}(\xi)=\left\{1_{X}\right\}$. But ξ is not a weak GE-monomorphism since $\xi(0)=0=\xi(2)$ but $0 \neq 2$.

We want to strengthen the conditions so that the converse of Theorem 3.6 can be established.

Theorem 3.8. Let $\left(X, *_{X}, 1_{X}\right)$ and $\left(Y, *_{Y}, 1_{Y}\right)$ be GE-algebras, and let $\xi: X \rightarrow Y$ be a weak GE-morphism. If X is antisymmetric and $\operatorname{Ker}(\xi)=\left\{1_{X}\right\}$, then ξ is a weak GE-monomorphism.

Proof. Assume that Y is antisymmetric and $\operatorname{Ker}(\xi)=\left\{1_{X}\right\}$. Let $x_{1}, x_{2} \in X$ be such that $\xi\left(x_{1}\right)=\xi\left(x_{2}\right)$. Then $\xi\left(x_{1} *_{X} x_{2}\right)=\xi\left(x_{1}\right) *_{Y} \xi\left(x_{2}\right)=1_{Y}$, and thus $x_{1} *_{X} x_{2} \in \operatorname{Ker}(\xi)=\left\{1_{X}\right\}$, that is, $x_{1} \leq_{X} x_{2}$. The similar way induces $x_{2} \leq_{X} x_{1}$. Thus $x_{1}=x_{2}$ by the antisymmetry of X, and therefore ξ is a weak GE-monomorphism.

Definition 3.9. A weak GE-endomorphism ξ on a $\operatorname{GE-algebra}(X, *, 1)$ is said to be idempotent if $\xi^{2}(x):=(\xi \circ \xi)(x)=\xi(x)$ for all $x \in X$.

Example 3.10. Consider a set $X:=\{0,1,2,3,4\}$ with the binary operation " $*$ ", which is given by Table 4.
Then $(X, *, 1)$ is a GE-algebra. Let $\xi: X \rightarrow X$ be a mapping defined by

$$
\xi(x)= \begin{cases}4 & \text { if } x \in\{0,3,4\} \\ 1 & \text { if } x=1 \\ 2 & \text { if } x=2\end{cases}
$$

Then ξ is an idempotent weak GE-endomorphism.

Table 4: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	1	4	4
1	0	1	2	3	4
2	0	1	1	3	3
3	1	1	2	1	1
4	1	1	1	1	1

Proposition 3.11. Let ξ be a weak GE-endomorphism on a GE-algebra $(X, *, 1)$. If ξ is idempotent, then $\operatorname{Ker}(\xi) \cap \xi(X)=\{1\}$.

Proof. Assume that ξ is idempotent and let $x \in \operatorname{Ker}(\xi) \cap \xi(X)$. Then $\xi(x)=1$ and there exists $y \in X$ such that $x=\xi(y)$. Hence

$$
1=\xi(x)=\xi(\xi(y))=\xi(y)=x
$$

and therefore $\operatorname{Ker}(\xi) \cap \xi(X)=\{1\}$.

The following example shows that if ξ is not idempotent, then Proposition 3.11 is not valid.

Example 3.12. Consider a set $X:=\{0,1,2,3,4\}$ with the binary operation " $*$ ", which is given by Table 5 .

Table 5: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	1	1	2	1	1

Then $(X, *, 1)$ is a GE-algebra. Let $\xi: X \rightarrow X$ be a mapping defined by

$$
\xi(x)= \begin{cases}2 & \text { if } x=0 \\ 1 & \text { if } x \in\{1,2\} \\ 4 & \text { if } x=3 \\ 3 & \text { if } x=4\end{cases}
$$

Then ξ is a weak GE-endomorphism. We can observe that ξ is not idempotent because of $\xi(\xi(0)=\xi(2)=1 \neq 2=\xi(0)$. Also, $\operatorname{Ker}(\xi)=\{1,2\}$ and $\xi(X)=$ $\{1,2,3,4\}$. But $\operatorname{Ker}(\xi) \cap \xi(X)=\{1,2\} \neq\{1\}$.

Given a self-map ξ on a GE-algebra $(X, *, 1)$, consider the next assertions:

$$
\begin{align*}
& (\forall x, y \in X)(\xi(\xi(x) * \xi(y)) \leq \xi(x) * \xi(y)) \tag{20}\\
& (\forall x, y \in X)(\xi(x * y) \leq \xi((x * y) * y) * \xi(y)) \tag{21}
\end{align*}
$$

By Proposition 3.4 (iii), every weak GE-endomorphism ξ on a GE-algebra $(X, *, 1)$ satisfies the conditions (21).

Question 3.13. Does every weak GE-endomorphism ξ on a GE-algebra ($X, *$, 1) satisfy the condition (20)?

The answer to Question 3.13 is negative as seen in the following example.

Example 3.14. Consider a set $X:=\{0,1,2,3,4\}$ with the binary operation "*", which is given by Table 6.

Table 6: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	1	3	1
1	0	1	2	3	4
2	4	1	1	3	4
3	0	1	2	1	0
4	1	1	2	3	1

Then $(X, *, 1)$ is a GE-algebra. Let $\xi: X \rightarrow X$ be a mapping defined by

$$
\xi(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x \in\{1,2\} \\ 2 & \text { if } x=3 \\ 4 & \text { if } x=4\end{cases}
$$

Then ξ is a weak GE-endomorphism. But ξ does not satisfy (20) because of

$$
(\xi(\xi(2) * \xi(3))) *(\xi(2) * \xi(3))=\xi(1 * 2) *(1 * 2)=\xi(2) * 2=1 * 2=2 \neq 1
$$

Proposition 3.15. Every weak GE-endomorphism ξ on a GE-algebra $(X, *, 1)$ satisfies the condition (20) when it is idempotent.

Proof. Let $\xi: X \rightarrow X$ be an idempotent weak GE-endomorphism. Then

$$
\xi(\xi(x) * \xi(y)) \leq \xi^{2}(x) * \xi^{2}(y)=\xi(x) * \xi(y)
$$

for all $x, y \in X$.

Given a self-map ξ on a GE-algebra $(X, *, 1)$, consider the next assertions:

$$
\begin{align*}
& (\forall x, y \in X)(\xi(\xi(x) * \xi(y))=\xi(x) * \xi(y)) \tag{22}\\
& (\forall x, y \in X)(\xi(x * y)=\xi((x * y) * y) * \xi(y)) \tag{23}
\end{align*}
$$

Question 3.16. Does every weak GE-endomorphism ξ on a GE-algebra $(X, *$, $1)$ satisfy the conditions (22) and (23)?

The answer to Question 3.16 is negative as seen in the following example.
Example 3.17. Consider the weak GE-endomorphism ξ in Example 3.14. It does not satisfy (22) because of

$$
(\xi(\xi(2) * \xi(3)))=\xi(1 * 2)=\xi(2)=1 \neq 2=1 * 2=\xi(2) * \xi(3)
$$

Also, the weak GE-endomorphism ξ in Example 3.12 does not satisfy (23) because of

$$
\begin{aligned}
\xi(2 * 3) & =\xi(4)=3 \neq 4=\xi(3)=1 * \xi(3)=\xi(1) * \xi(3) \\
& =\xi(4 * 3) * \xi(3)=\xi((2 * 3) * 3) * \xi(3)
\end{aligned}
$$

Proposition 3.18. Let ξ be a self-map on a $\operatorname{GE-algebra}(X, *, 1)$. If ξ satisfies:

$$
\begin{equation*}
(\forall x, y \in X)(\xi((x * y) * y) * \xi(y) \leq \xi(x * y)) \tag{24}
\end{equation*}
$$

then $\xi(1)=1$. If ξ satisfies (22) and (24), then $\xi^{2}(x)=\xi(x)$ for all $x \in X$.
Proof. Assume that ξ satisfies the condition (24). Using (GE1) and (24), we get

$$
1=\xi(1) * \xi(1)=\xi((1 * 1) * 1) * \xi(1) \leq \xi(1 * 1)=\xi(1)
$$

and so $\xi(1)=1$ by (6). If ξ satisfies (22) and (24), then

$$
\xi^{2}(x)=\xi(\xi(x))=\xi(1 * \xi(x))=\xi(\xi(1) * \xi(x))=\xi(1) * \xi(x)=1 * \xi(x)=\xi(x)
$$

for all $x \in X$.

Corollary 3.19. Let ξ be a self-map on a GE-algebra $(X, *, 1)$. If ξ satisfies (23), then $\xi(1)=1$.

We provide conditions for a self-map on a GE-algebra to be a weak GEendomorphism.

Proposition 3.20. Let ξ be a self-map on a transitive GE-algebra $(X, *, 1)$. If ξ satisfies (23) and

$$
\begin{equation*}
(\forall x, y \in X)(x \leq y \Rightarrow \xi(x) \leq \xi(y)) \tag{25}
\end{equation*}
$$

then ξ is a weak GE-endomorphism.
Proof. Suppose X is transitive and ξ satisfies (23) and (25). Corollary 3.19 shows that $1 \leq \xi(1)$. By the combination of (8) and (25), we get $\xi(x) \leq \xi((x * y) * y)$ for all $x, y \in X$. It follows from (10) and (23) that

$$
\xi(x * y)=\xi((x * y) * y) * \xi(y) \leq \xi(x) * \xi(y)
$$

for all $x, y \in X$. Therefore ξ is a weak GE-endomorphism.

Question 3.21. If a self-map ξ on a GE-algebra $(X, *, 1)$ satisfies (20), (21) and (25), then is ξ a weak GE-endomorphism?

The next example verify that the answer to Question 3.21 is negative.

Example 3.22. Consider a set $X:=\{0,1,2,3,4,5\}$ with the binary operation "*", which is given by Table 7 .

Table 7: Cayley table for the binary operation "*"

$*$	0	1	2	3	4	5
0	1	1	2	4	4	4
1	0	1	2	3	4	5
2	1	1	1	5	5	5
3	1	1	1	1	1	1
4	0	1	1	0	1	1
5	0	1	1	0	1	1

Then $(X, *, 1)$ is a GE-algebra. Let $\xi: X \rightarrow X$ be a mapping defined by

$$
\xi(x)= \begin{cases}2 & \text { if } x=0 \\ 1 & \text { if } x=1 \\ 3 & \text { if } x=3 \\ 4 & \text { if } x \in\{2,4,5\}\end{cases}
$$

Then ξ satisfies satisfies (20), (21) and (25). But ξ is not a weak GE-endomorphism because of

$$
\xi(2 * 3) *(\xi(2) * \xi(3))=\xi(5) *(4 * 3)=4 * 0=0 \neq 1
$$

Definition 3.23. A couple (X, ξ) is called a qualified GE-algebra (briefly, qGEalgebra) if $(X, *, 1)$ is a GE-algebra and ξ is a self-map on X that satisfies conditions (22), (23) and (25).

Example 3.24. Consider a set $X:=\{0,1,2,3,4\}$ with the binary operation "*", which is given by Table 8 .

Table 8: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	1	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

Then $(X, *, 1)$ is a GE-algebra. Let $\xi: X \rightarrow X$ be a mapping defined by

$$
\xi(x)= \begin{cases}1 & \text { if } x \in\{0,1\} \\ 2 & \text { if } x=2 \\ 4 & \text { if } x \in\{3,4\}\end{cases}
$$

Then it is easy to verify that (X, ξ) is a qGE-algebra.

Theorem 3.25. Let (X, ξ) be a qGE-algebra. If X is transitive, then ξ is an idempotent weak GE-endomorphism.

Proof. This is induced by Propositions 3.18 and 3.20.

Lemma 3.26. [2] Let $\left(X_{1}, *_{1}, 1_{1}\right)$ and $\left(X_{2}, *_{2}, 1_{2}\right)$ be GE-algebras with with binary relations \leq_{1} and \leq_{2}, respectively, and consider $\tilde{X}:=X_{1} \times X_{2}$. Define a binary operation " $\tilde{*} "$, the special element $\tilde{1}$ and a binary relation $\leq_{(1,2)}$ on X as follows:

$$
\begin{align*}
& \left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)=\left(x_{1} *_{1} y_{1}, x_{2} *_{2} y_{2}\right), \tag{26}\\
& \tilde{1}=\left(1_{1}, 1_{2}\right) \tag{27}\\
& \left(x_{1}, x_{2}\right) \leq_{(1,2)}\left(y_{1}, y_{2}\right) \Leftrightarrow x_{1} \leq_{1} y_{1}, x_{2} \leq_{2} y_{2} \tag{28}
\end{align*}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \tilde{X}$. Then $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra.

Theorem 3.27. Let $\left(X_{1}, \xi_{1}\right)$ and $\left(X_{2}, \xi_{2}\right)$ be $q G E$-algebras. If we define a self-map $\tilde{\xi}$ on \tilde{X} as follows:

$$
\begin{equation*}
\tilde{\xi}: \tilde{X} \rightarrow \tilde{X},\left(x_{1}, x_{2}\right) \mapsto\left(\xi_{1}\left(x_{1}\right), \xi_{2}\left(x_{2}\right)\right) \tag{29}
\end{equation*}
$$

then $(\tilde{X}, \tilde{\xi})$ is a $q G E$-algebra.
Proof. By Lemma 3.26, $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \tilde{X}$. Then

$$
\begin{aligned}
& \tilde{\xi}\left(\tilde{\xi}\left(x_{1}, x_{2}\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right)\right) \\
= & \tilde{\xi}\left(\left(\xi_{1}\left(x_{1}\right), \xi_{2}\left(x_{2}\right)\right) \tilde{*}\left(\xi_{1}\left(y_{1}\right), \xi_{2}\left(y_{2}\right)\right)\right) \\
= & \tilde{\xi}\left(\left(\xi_{1}\left(x_{1}\right) * \xi_{1}\left(y_{1}\right)\right),\left(\xi_{2}\left(x_{2}\right) * \xi_{2}\left(y_{2}\right)\right)\right) \\
= & \left(\xi_{1}\left(\xi_{1}\left(x_{1}\right) * \xi_{1}\left(y_{1}\right)\right), \xi_{2}\left(\xi_{2}\left(x_{2}\right) * \xi_{2}\left(y_{2}\right)\right)\right) \\
= & \left(\xi_{1}\left(x_{1}\right) * \xi_{1}\left(y_{1}\right), \xi_{2}\left(x_{2}\right) * \xi_{2}\left(y_{2}\right)\right) \\
= & \left(\xi_{1}\left(x_{1}\right), \xi_{2}\left(x_{2}\right)\right) \tilde{*}\left(\xi_{1}\left(y_{1}\right), \xi_{2}\left(y_{2}\right)\right) \\
= & \tilde{\xi}\left(x_{1}, x_{2}\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\xi}\left(\left(\left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right) \\
= & \tilde{\xi}\left(\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right) \\
= & \tilde{\xi}\left(\left(x_{1} * y_{1}\right) * y_{1},\left(x_{2} * y_{2}\right) * y_{2}\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right) \\
= & \left(\xi_{1}\left(\left(x_{1} * y_{1}\right) * y_{1}\right), \xi_{2}\left(\left(x_{2} * y_{2}\right) * y_{2}\right)\right) \tilde{*}\left(\xi_{1}\left(y_{1}\right), \xi_{2}\left(y_{2}\right)\right) \\
= & \left(\xi_{1}\left(\left(x_{1} * y_{1}\right) * y_{1}\right) * \xi_{1}\left(y_{1}\right), \xi_{2}\left(\left(x_{2} * y_{2}\right) * y_{2}\right) * \xi_{2}\left(y_{2}\right)\right) \\
= & \left(\xi_{1}\left(x_{1} * y_{1}\right), \xi_{2}\left(x_{2} * y_{2}\right)\right) \\
= & \tilde{\xi}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
= & \tilde{\xi}\left(\left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

Assume that $\left(x_{1}, x_{2}\right) \leq_{(1,2)}\left(y_{1}, y_{2}\right)$. Then $x_{1} \leq_{1} y_{1}$ and $x_{2} \leq_{2} y_{2}$, and so $\xi_{1}\left(x_{1}\right) \leq_{1} \xi_{1}\left(y_{1}\right)$ and $\xi_{2}\left(x_{2}\right) \leq_{2} \xi_{2}\left(y_{2}\right)$. It follows that

$$
\begin{aligned}
\tilde{\xi}\left(x_{1}, x_{2}\right) \tilde{*} \tilde{\xi}\left(y_{1}, y_{2}\right) & =\left(\xi_{1}\left(x_{1}\right), \xi_{2}\left(x_{2}\right)\right) \tilde{*}\left(\xi_{1}\left(y_{1}\right), \xi_{2}\left(y_{2}\right)\right) \\
& =\left(\xi_{1}\left(x_{1}\right) * \xi_{1}\left(y_{1}\right), \xi_{2}\left(x_{2}\right) * \xi_{2}\left(y_{2}\right)\right) \\
& =\left(1_{1}, 1_{2}\right)=\tilde{1},
\end{aligned}
$$

that is, $\tilde{\xi}\left(x_{1}, x_{2}\right) \leq_{(1,2)} \tilde{\xi}\left(y_{1}, y_{2}\right)$. Therefore $(\tilde{X}, \tilde{\xi})$ is a qGE-algebra.
Definition 3.28. Let g be a self-map on a $\operatorname{GE-algebra}(X, *, 1)$. A self-map ξ_{g} on $(\tilde{X}, \tilde{*}, \tilde{1})$ given by

$$
\begin{equation*}
(\forall(x, y) \in \tilde{X})\left(\xi_{g}(x, y)=(g(x), g(y))\right) \tag{30}
\end{equation*}
$$

is called a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$.

Example 3.29. Consider a set $X=\{0,1,2\}$ with binary operations "*", which is given by Table 9 .

Table 9: Cayley table for the binary operation "*"

$*$	0	1	2
0	1	1	1
1	0	1	2
2	0	1	1

Then $(X, *, 1)$ is a GE-algebra. We can observe that

$$
\tilde{X}:=X \times X=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}, w_{9}\right\}
$$

where $w_{1}=(0,0), w_{2}=(0,1), w_{3}=(0,2), w_{4}=(1,0), w_{5}=(1,1), w_{6}=(1,2)$, $w_{7}=(2,0), w_{8}=(2,1)$, and $w_{9}=(2,2)$. Define a binary operation " $\tilde{*} "$ on \tilde{X} by Table 10.

Table 10: Cayley table for the binary operation " $\tilde{*}$ "

$\tilde{*}$	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}
w_{1}	w_{5}								
w_{2}	w_{4}	w_{5}	w_{6}	w_{4}	w_{5}	w_{6}	w_{4}	w_{5}	w_{6}
w_{3}	w_{4}	w_{5}	w_{5}	w_{4}	w_{5}	w_{5}	w_{4}	w_{5}	w_{5}
w_{4}	w_{2}	w_{2}	w_{2}	w_{5}	w_{5}	w_{5}	w_{8}	w_{8}	w_{8}
w_{5}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}
w_{6}	w_{1}	w_{2}	w_{2}	w_{4}	w_{5}	w_{5}	w_{7}	w_{8}	w_{8}
w_{7}	w_{2}	w_{2}	w_{2}	w_{5}	w_{5}	w_{5}	w_{5}	w_{5}	w_{5}
w_{8}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{4}	w_{5}	w_{6}
w_{9}	w_{1}	w_{2}	w_{2}	w_{4}	w_{5}	w_{5}	w_{4}	w_{5}	w_{5}

Then $(\tilde{X}, \tilde{*}, \tilde{1})$, where $\tilde{1}=(1,1)=w_{5}$, is a GE-algebra. Define a self-map g on $(X, *, 1)$ by

$$
g(x)= \begin{cases}0 & \text { if } x \in\{0,2\} \\ 1 & \text { if } x=1\end{cases}
$$

Let $\xi_{g}: \tilde{X} \rightarrow \tilde{X}$ be a mapping defined by (30). Then

$$
\xi_{g}(x)= \begin{cases}w_{1} & \text { if } x \in\left\{w_{1}, w_{3}, w_{7}, w_{9}\right\} \\ w_{2} & \text { if } x \in\left\{w_{2}, w_{8}\right\} \\ w_{4} & \text { if } x \in\left\{w_{4}, w_{6}\right\} \\ w_{5} & \text { if } x=w_{5}\end{cases}
$$

and it is a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$.

Theorem 3.30. Given a self-map g on a $\operatorname{GE-algebra}(X, *, 1)$, let ξ_{g} be a qualified self-map on $(\tilde{X}, \tilde{*}, \tilde{1})$ where $\tilde{X}=X \times X$. Then (X, g) is a $q G E$-algebra if and only if $\left(\tilde{X}, \xi_{g}\right)$ is a $q G E$-algebra.

Proof. Assume that (X, g) is a qGE-algebra. Then $(\tilde{X}, \tilde{*}, \tilde{1})$ is a GE-algebra by Lemma 3.26. For every $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \tilde{X}$, we have

$$
\begin{aligned}
& \xi_{g}\left(\xi_{g}\left(x_{1}, x_{2}\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right)\right) \\
= & \xi_{g}\left(\left(g\left(x_{1}\right), g\left(x_{2}\right)\right) \tilde{*}\left(g\left(y_{1}\right), g\left(y_{2}\right)\right)\right) \\
= & \xi_{g}\left(\left(g\left(x_{1}\right) * g\left(y_{1}\right)\right),\left(g\left(x_{2}\right) * g\left(y_{2}\right)\right)\right) \\
= & \left(g\left(g\left(x_{1}\right) * g\left(y_{1}\right)\right), g\left(g\left(x_{2}\right) * g\left(y_{2}\right)\right)\right) \\
= & \left(g\left(x_{1}\right) * g\left(y_{1}\right), g\left(x_{2}\right) * g\left(y_{2}\right)\right) \\
= & \left(g\left(x_{1}\right), g\left(x_{2}\right)\right) \tilde{*}\left(g\left(y_{1}\right), g\left(y_{2}\right)\right) \\
= & \xi_{g}\left(x_{1}, x_{2}\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \xi_{g}\left(\left(\left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right) \\
= & \xi_{g}\left(\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right) \\
= & \xi_{g}\left(\left(x_{1} * y_{1}\right) * y_{1},\left(x_{2} * y_{2}\right) * y_{2}\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right) \\
= & \left(g\left(\left(x_{1} * y_{1}\right) * y_{1}\right), g\left(\left(x_{2} * y_{2}\right) * y_{2}\right)\right) \tilde{*}\left(g\left(y_{1}\right), g\left(y_{2}\right)\right) \\
= & \left(g\left(\left(x_{1} * y_{1}\right) * y_{1}\right) * g\left(y_{1}\right), g\left(\left(x_{2} * y_{2}\right) * y_{2}\right) * g\left(y_{2}\right)\right) \\
= & \left(g\left(x_{1} * y_{1}\right), g\left(x_{2} * y_{2}\right)\right) \\
= & \xi_{g}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
= & \xi_{g}\left(\left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

Suppose that $\left(x_{1}, x_{2}\right) \tilde{*}\left(y_{1}, y_{2}\right)=(1,1)$. Then $\left(x_{1} * y_{1}, x_{2} * y_{2}\right)=(1,1)$ and hence $x_{1} * y_{1}=1$ and $x_{2} * y_{2}=1$. Thus $g\left(x_{1}\right) * g\left(y_{1}\right)=1$ and $g\left(x_{2}\right) * g\left(y_{2}\right)=1$, which imply that

$$
\begin{aligned}
\xi_{g}\left(x_{1}, x_{2}\right) \tilde{*} \xi_{g}\left(y_{1}, y_{2}\right) & =\left(g\left(x_{1}\right), g\left(x_{2}\right)\right) \tilde{*}\left(g\left(y_{1}\right), g\left(y_{2}\right)\right) \\
& =\left(g\left(x_{1}\right) * g\left(y_{1}\right), g\left(x_{2}\right) * g\left(y_{2}\right)\right)=(1,1)=\tilde{1}
\end{aligned}
$$

Hence $\left(\tilde{X}, \xi_{g}\right)$ is a qGE-algebra.
Conversely, assume that $\left(\tilde{X}, \xi_{g}\right)$ is a qGE-algebra. Then

$$
\begin{aligned}
(g(1), g(1)) & =\xi_{g}(1,1)=\xi_{g}((1,1) \tilde{*}(1,1)) \\
& =\xi_{g}(((1,1) \tilde{*}(1,1)) \tilde{*}(1,1)) \tilde{*} \xi_{g}(1,1) \\
& =\xi_{g}((1 * 1,1 * 1) \tilde{*}(1,1)) \tilde{*} \xi_{g}(1,1) \\
& =\xi_{g}((1,1) \tilde{*}(1,1)) \tilde{*} \xi_{g}(1,1) \\
& =\xi_{g}((1 * 1,1 * 1)) \tilde{*} \xi_{g}(1,1) \\
& =\xi_{g}(1,1) \tilde{*} \xi_{g}(1,1) \\
& =(1,1)
\end{aligned}
$$

and so $g(1)=1$. It follows from that

$$
\begin{aligned}
(1, g(x) * g(y)) & =(g(x) * g(x), g(x) * g(y)) \\
& =(g(x), g(x)) \tilde{*}(g(x), g(y)) \\
& =\xi_{g}(x, x) \tilde{*} \xi_{g}(x, y) \\
& =\xi_{g}\left(\xi_{g}(x, x) \tilde{*} \xi_{g}(x, y)\right) \\
& =\xi_{g}((g(x), g(x)) \tilde{*}(g(x), g(y))) \\
& =\xi_{g}(g(x) * g(x), g(x) * g(y)) \\
& =\xi_{g}(1, g(x) * g(y)) \\
& =(g(1), g(g(x) * g(y))) \\
& =(1, g(g(x) * g(y)))
\end{aligned}
$$

and

$$
\begin{aligned}
(1, g(x * y)) & =(g(1), g(x * y)) \\
& =\xi_{g}(1, x * y) \\
& =\xi_{g}(1 * 1, x * y) \\
& =\xi_{g}((1, x) \tilde{*}(1, y)) \\
& =\xi_{g}(((1, x) \tilde{*}(1, y)) \tilde{*}(1, y)) \tilde{*} \xi_{g}(1, y) \\
& =\xi_{g}((1 * 1, x * y) \tilde{*}(1, y)) \tilde{*} \xi_{g}(1, y) \\
& =\xi_{g}((1 * 1) * 1,(x * y) * y) \tilde{*} \xi_{g}(1, y) \\
& =\xi_{g}(1,(x * y) * y) \tilde{*} \xi_{g}(1, y) \\
& =(g(1), g((x * y) * y)) \tilde{*}(g(1), g(y)) \\
& =(g(1) * g(1), g((x * y) * y) * g(y)) \\
& =(1, g((x * y) * y) * g(y))
\end{aligned}
$$

for all $x, y \in X$. Hence $g(g(x) * g(y))=g(x) * g(y)$ and $g((x * y) * y) * g(y))=g(x * y)$ for all $x, y \in X$. Let $x, y \in X$ be such that $x \leq y$. Then

$$
(1, x) \tilde{*}(1, y)=(1 * 1, x * y)=(1,1)=\tilde{1}
$$

and hence

$$
\begin{aligned}
(1, g(x) * g(y)) & =(g(1) * g(1), g(x) * g(y)) \\
& =(g(1), g(x)) \tilde{*}(g(1), g(y)) \\
& =\xi_{g}(1, x) \tilde{*} \xi_{g}(1, y) \\
& =(1,1)
\end{aligned}
$$

which implies that $g(x) \leq g(y)$. Therefore (X, g) is qGE-algebra.

For every qGE-algebra (X, ξ), we define the image $\operatorname{Im}(\xi)$, kernel $\operatorname{Ker}(\xi)$ and
diagonal set $\Delta(\xi)$ of ξ as follows:

$$
\begin{align*}
& \operatorname{Im}(\xi)=\{\xi(x) \in X \mid x \in X\} \tag{31}\\
& \operatorname{Ker}(\xi)=\{x \in X \mid \xi(x)=1\} \tag{32}\\
& \Delta(\xi)=\{x \in X \mid \xi(x)=x\} \tag{33}
\end{align*}
$$

Proposition 3.31. If (X, ξ) is a $q G E$-algebra, then $\operatorname{Im}(\xi)$ is a sub-GE-algebra of $X, \operatorname{Ker}(\xi) \cap \Delta(\xi)=\{1\}$ and $\operatorname{Ker}(\xi)$ is a $G E$-filter of X.

Proof. Let $x, y \in \operatorname{Im}(\xi)$. Then there exist $a, b \in X$ such that $x=\xi(a)$ and $y=\xi(b)$. Thus $x * y=\xi(a) * \xi(b)=\xi(\xi(a) * \xi(b)) \in \operatorname{Im}(\xi)$, and hence $\operatorname{Im}(\xi)$ is a sub-GE-algebra of X. Let $x \in \operatorname{Ker}(\xi) \cap \Delta(\xi)$. Then $x=\xi(x)=1$ and so $\operatorname{Ker}(\xi) \cap \Delta(\xi)=\{1\}$. Since

$$
1=\xi(1) * \xi(1)=\xi(1 * 1) * \xi(1)=\xi((1 * 1) * 1) * \xi(1)=\xi(1 * 1)=\xi(1)
$$

we have $1 \in \operatorname{Ker}(\xi)$. Let $x, y \in X$ be such that $x \in \operatorname{Ker}(\xi)$ and $x * y \in \operatorname{Ker}(\xi)$. Then $\xi(x)=1$ and $\xi(x * y)=1$. Since $x \leq(x * y) * y$, we get

$$
1=\xi(x) \leq \xi((x * y) * y)
$$

by (25), and thus $\xi((x * y) * y)=1$ by (6). It follows from (GE2) and (23) that

$$
1=\xi(x * y)=\xi((x * y) * y) * \xi(y)=1 * \xi(y)=\xi(y)
$$

Hence $y \in \operatorname{Ker}(\xi)$ and therefore $\operatorname{Ker}(\xi)$ is a GE-filter of X.

Given a qGE-algebra (X, ξ), let $\delta_{\operatorname{Ker}(\xi)}$ be a subset of $X \times X$ constructed to satisfy the following conditions:

$$
\begin{equation*}
(\forall x, y \in X)\left((x, y) \in \delta_{\operatorname{Ker}(\xi)} \Leftrightarrow x * y \in \operatorname{Ker}(\xi), y * x \in \operatorname{Ker}(\xi)\right) \tag{34}
\end{equation*}
$$

It is routine to verify that $\delta_{\operatorname{Ker}(\xi)}$ is a congruence relation in X. Denote by $[x]_{\operatorname{Ker}(\xi)}$ the equivalence class of x in X under $\delta_{\operatorname{Ker}(\xi)}$, that is,

$$
[x]_{\operatorname{Ker}(\xi)}:=\left\{y \in X \mid(x, y) \in \delta_{\operatorname{Ker}(\xi)}\right\},
$$

and the collection of all such equivalence classes is denoted by $X / \delta_{\operatorname{Ker}(\xi)}$, i.e.,

$$
X / \delta_{\operatorname{Ker}(\xi)}=\left\{[x]_{\operatorname{Ker}(\xi)} \mid x \in X\right\}
$$

Theorem 3.32. Let $\delta_{\operatorname{Ker}(\xi)}$ be a congruence relation in a qGE-algebra (X, ξ) where X is transitive and antisymmetric. Define a binary operation $*_{\delta_{\operatorname{Ker}(\xi)}}$ on $X / \delta_{\operatorname{Ker}(\xi)}$ and a self-map $\tilde{\xi}$ on $X / \delta_{\operatorname{Ker}(\xi)}$ as follows:

$$
\begin{equation*}
[x]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[y]_{\operatorname{Ker}(\xi)}=[x * y]_{\operatorname{Ker}(\xi)} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right)=[\xi(x)]_{\operatorname{Ker}(\xi)} \tag{36}
\end{equation*}
$$

respectively, for all $[x]_{\operatorname{Ker}(\xi)},[y]_{\operatorname{Ker}(\xi)} \in X / \delta_{\operatorname{Ker}(\xi)}$. Then $\left(X / \delta_{\operatorname{Ker}(\xi)}, \tilde{\xi}\right)$ is a $q G E-$ algebra with the constant $[1]_{\operatorname{Ker}(\xi)}$.

Proof. Since $\operatorname{Ker}(\xi)$ is a GE-filter of X by Proposition 3.31, it is routine to verify that $\left(X / \delta_{\operatorname{Ker}(\xi)}, *_{\delta_{\operatorname{Ker}(\xi)}},[1]_{\operatorname{Ker}(\xi)}\right)$ is a GE-algebra. Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)}=[y]_{\operatorname{Ker}(\xi)}$ in $X / \delta_{\operatorname{Ker}(\xi)}$. Then $(x, y) \in \delta_{\operatorname{Ker}(\xi)}$ and hence $x * y \in \operatorname{Ker}(\xi)$ and $y * x \in \operatorname{Ker} \xi$, that is, $\xi(x * y)=1$ and $\xi(y * x)=1$. Since $x \leq(x * y) * y$ and X is transitive, we have $\xi(x) \leq \xi((x * y) * y)$ and so

$$
1=\xi(x * y)=\xi((x * y) * y) * \xi(y) \leq \xi(x) * \xi(y)
$$

Hence $\xi(x) * \xi(y)=1$. Similarly, we get $\xi(y) * \xi(x)=1$. Thus $\xi(x)=\xi(y)$ since X is antisymmetric. Therefore

$$
\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right)=[\xi(x)]_{\operatorname{Ker}(\xi)}=[\xi(y)]_{\operatorname{Ker}(\xi)}=\tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right)
$$

which shows that $\tilde{\xi}$ is well-defined. Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)},[y]_{\operatorname{Ker}(\xi)} \in$ $X / \delta_{\operatorname{Ker}(\xi)}$. Then

$$
\begin{aligned}
& \tilde{\xi}\left(\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right)\right)=\tilde{\xi}\left\{[\xi(x)]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}}[\xi(y)]_{\operatorname{Ker}(\xi)}\right\} \\
= & \tilde{\xi}\left([\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)}\right)=[\xi(\xi(x) * \xi(y))]_{\operatorname{Ker}(\xi)}=[\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)} \\
= & {[\xi(x)]_{\operatorname{Ker}(\xi)} *_{\delta_{\operatorname{Ker}(\xi)}}[\xi(y)]_{\operatorname{Ker}(\xi)}=\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[y]_{\operatorname{Ker}(\xi)}\right)=\tilde{\xi}\left([x * y]_{\operatorname{Ker}(\xi)}\right) \\
= & {[\xi(x * y)]_{\operatorname{Ker}(\xi)}=[\xi((x * y) * y) * \xi(y)]_{\operatorname{Ker}(\xi)} } \\
= & {[\xi((x * y) * y)]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[\xi(y)]_{\operatorname{Ker}(\xi)} } \\
= & \tilde{\xi}\left([(x * y) * y]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right) \\
= & \tilde{\xi}\left(\left([x]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[y]_{\operatorname{Ker}(\xi)}\right) * \delta_{\operatorname{Ker}(\xi)}[y]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right) .
\end{aligned}
$$

Let $x, y \in X$ be such that $[x]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[y]_{\operatorname{Ker}(\xi)}=[1]_{\operatorname{Ker}(\xi)}$. Then $[x * y]_{\operatorname{Ker}(\xi)}=$ $[1]_{\operatorname{Ker}(\xi)}$, and so $\xi(x * y)=1$. Since ξ is a weak GE-endomorphism by Proposition 3.20, we have

$$
\begin{aligned}
{[1]_{\operatorname{Ker}(\xi)} } & =[\xi(x * y)]_{\operatorname{Ker}(\xi)} \subseteq[\xi(x) * \xi(y)]_{\operatorname{Ker}(\xi)} \\
& =[\xi(x)]_{\operatorname{Ker}(\xi)} * \delta_{\operatorname{Ker}(\xi)}[\xi(y)]_{\operatorname{Ker}(\xi)} \\
& =\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right)
\end{aligned}
$$

and so $\tilde{\xi}\left([x]_{\operatorname{Ker}(\xi)}\right) *_{\delta_{\operatorname{Ker}(\xi)}} \tilde{\xi}\left([y]_{\operatorname{Ker}(\xi)}\right)=[1]_{\operatorname{Ker}(\xi)}$. Therefore $\left(X / \delta_{\operatorname{Ker}(\xi)}, \tilde{\xi}\right)$ is a qGE-algebra with the constant $[1]_{\operatorname{Ker}(\xi)}$.

References

[1] R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, On GE-algebras, Bulletin of the Section of Logic 50 (1) (2021) 81-96. https://doi.org/10.18778/0138-0680.2020.20
[2] R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, Belligerent GE-filter in GEalgebras, Journal of the Indonesian Mathematical Society 28 (1) (2022) 31-43.
[3] R.K. Bandaru, M.K. Shaik, Y.B. Jun, GE-morphisms of GE-algebras, Southeast Asian Bull. Math. 45 (6) (2021) 931-944.
[4] A. Borumand Saeid, A. Rezaei, R.K. Bandaru, Y.B. Jun, Voluntary GE-filters and further results of GE-filters in GE-algebras, Journal of Algebraic Systems 10 (1) (2022) 31-47.
[5] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences 29 (1) (2002) 55-61. DOI: 10.1155/S0161171202011134.
[6] I. Chajda, R. Halas, Y.B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Commentationes Mathematicae Universitatis Carolinae 43 (3) (2002) 407-417.
[7] A. Diego, Sur les Algebres de Hilbert, Collection de Logique Mathematique, Serie A, XXI, Gauthier-Villars Publisher, Paris, 1966.
[8] S.M. Hong and Y.B. Jun, On deductive systems of Hilbert algebras, Communications of the Korean Mathematical Society 11 (3) (1996) 595-600.
[9] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proceedings of the Japan Academy, Ser. A 42 (1) (1966) 19-22.
[10] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, Ser. A 42 (1) (1966) 26-29.
[11] Y.B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics 22 (4) (1996) 477-484.
[12] Y.B. Jun, S.M. Hong, X.L. Xin, E.H. Roh, Chinese remainder theorems in BCIalgebras, Soochow Jorunal of Mathematics 24 (3) 1998 219-230.
[13] Y.B. Jun and K.H. Kim, H-filters of Hilbert algebras, Scientiae Mathematicae Japonicae Online e-2005 231-236.
[14] H.S. Kim and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae Online e-2006 1299-1302.
[15] M.A. Ozturk, J.G. Lee, R.K. Bandaru, Y.B. Jun, Strong GE-filters and GE-ideals of bordered GE-algebras, Journal of Mathematics 2021, Art. ID 5520023, 9 pages. https://doi.org/10.1155/2021/5520023.
[16] A. Rezaei, A. Borumand Saeid, R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Applications and Applied Mathematics 8 (2) (2013) 573-584.
[17] A. Rezaei, R.K. Bandaru, A. Borumand Saeid, Y.B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afrika Matematika 32 (2021) 1121-1136. https://doi.org/10.1007/s13370-021-00886-6
[18] S.Z. Song, R.K. Bandaru, Y.B. Jun, Imploring GE-filters of GE-algebras, Journal of Mathematics 2021, Art. ID 6651531, 7 pages. https://doi.org/10.1155/2021/6651531.

[^0]: * Correspondence author.

