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Abstract. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. In this article,

in view of our earlier paper [12], let the conditions made on this paper be sufficiently

more general than [12]. We investigate the spectral properties of a non-selfadjoint

elliptic differential operator (Pu)(x) = −
∑n

i,j=1

(

ρ2α(x)aij(x)Q(x)u′

xi
(x)

)

′

xj
, acting

on Hilbert space H` = L2(Ω)`. Here c|s|2 ≤
∑n

i,j=1
aij(x)sisj (s = (s1, . . . , sn) ∈

C
n, x ∈ Ω), ρ(x) = dist{x, ∂Ω}, aij(x) = aji(x) ∈ C2(Ω), 0 ≤ α < 1. Fur-

thermore, suppose that Q(x) ∈ C2(Ω, End C
`) such that for each x ∈ Ω the matrix

function Q(x) has non-zero simple eigenvalues µj(x) ∈ C2(Ω) (1 ≤ j ≤ `) lie in the

C\Φ, where Φ = {z ∈ C : |arg z| ≤ ϕ}, ϕ ∈ (0, π).

Keywords: Resolvent; Asymptotic spectrum; Eigenvalues; Non-self-adjoint elliptic dif-

ferential operators.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω (i.e., ∂Ω ∈ C∞).
We introduce the weighted Sobolev space H = W 2

2,α(Ω) as the space of complex

∗The research is supported by Mathematics Department of Lorstan University, Khorram-
abad).
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value functions u(x) defined on Ω with the finite norm:

|u|+ =

(

n
∑

i=1

∫

Ω

ρ2α(x)|u′
xi
(x)|2dx +

∫

Ω

|u(x)|2dx

)1/2

.

We denote by
◦

H the closure of C∞
0 (Ω) in H with respect to the above norm. i.e.,

◦

H is the closure of C∞
0 (Ω) in W 2

2,α(Ω). The notion C∞
0 (Ω) stands for the space

of infinitely differentiable functions with compact support in Ω. In this paper,
we investigate the spectral properties, in particular we estimate the resolvent of
a non-selfadjoint elliptic differential operator of type

(Pu)(x) = −

n
∑

i,j=1

(

ρ2α(x)aij(x)Q(x)u′
xi
(x)
)′

xj
(1)

acting on Hilbert space H` = L2(Ω)
`
with Dirichlet-type boundary conditions.

Here ρ(x) = dist{x, ∂Ω}, 0 ≤ α < 1, aij(x) = aji(x) (i, j = 1, . . . , n), aij(x)
∈ C2(Ω) (i, j = 1, . . . , n), and the functions aij(x) satisfies the uniformly
elliptic condition, i.e., there exists c > 0 such that:

c|s|2 ≤

n
∑

i,j=1

aij(x)sisj (s = (s1, . . . , sn) ∈ C
n, x ∈ Ω).

Furthermore, suppose that Q(x) ∈ C2(Ω, End C
`) such that for each x ∈ Ω the

matrix functionQ(x) has non-zero simple eigenvalues µj(x) ∈ C2(Ω) (1 ≤ j ≤ `)
arranged in the complex plane in the following way:

µ1(x), . . . , µ`(x) ∈ C\Φ,

where Φ = {z ∈ C : |arg z| ≤ ϕ}, ϕ ∈ (0, π). (i.e., the eigenvalues µj(x) of
Q(x) lie on the complex plane and outside of the closed angle Φ).

For a closed extension of the operator A with respect to space H = W 2
2,α(Ω)

above, we need to extend its domain to the closed domain

D(P ) = {y ∈
◦

H ∩W 2
2, loc(Ω) :

n
∑

i,j=1

ρ2αaijQy′xi
)
′

xj
∈ H},

(see [8]) where the local space W 2
2, loc(Ω) is the functions u(x) (x ∈ Ω) in this

form W 2
2,loc(Ω) = {u(x) :

∑2
i=0

∫

J
|u(i)(x)|2dx < ∞, J ⊂ Ω, open}. Here,

and in the sequel the value of the function arg z ∈ (−π, π], and ‖T ‖ denotes the
norm of the bounded operator T : H −→ H .

To get a feeling for the history of the subject under study, refer to our earlier
papers [12, 13]. Indeed this paper was written in continuing on earlier our
papers, the paper is sufficiently more general than earlier our papers, which
here, we obtain the resolvent estimate of the operator P , that satisfying the
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special and general conditions, The paper consists of four sections. Section 1
is devoted to introduction. In Section 2, we have Theorem 2.1 on the resolvent
estimate of the differential operator A, acting on H in the certain case (i.e.,
in this case, we will study Theorem 2.1 under assumption (3)). In Section 3,
we have Theorem 3.1 on the resolvent estimate of the differential operator A,
acting on H in the general case (i.e., in this case, we will study Theorem 3.1
in contrast to Theorem 2.1. in other words, Theorem 3.1 does not include
assumption (3) of Theorem 2.1). It is necessary to take note some remarks
regarding Theorem 2.1 and Theorem 3.1: Theorem 3.1 follows from Theorem
2.1 by dropping assumption (3) from Theorem 2.1, and so another comment
regarding the assertion of these two theorems: We will see that Theorem 2.1
under the assumption (3) leads to its assertion that includes two estimates (4)
and (5). Meanwhile, Theorem 3.1 without including assumption (3) of Theorem
2.1, leads to its assertion that is similar to the assertion of Theorem 2.1, but
asserts only statement (4) of Theorem 2.1, which becomes (11) (in other words
now here, it is an open question arises for us, i.e., whether we can prove a
theorem the same Theorem 2.1 for general case ? i.e., without condition (3),
which its assertion includes two estimates (4) and (5)?). In Section 4, we have
a general Theorem 4.1, i.e. in this theorem we let the operator P in (1) acting

on the general space H` = L2(Ω)` and then by using the result of Theorem 2.1
we prove Theorem 4.1.

2. The Resolvent Estimate of Degenerate Elliptic Differential Operators
on H in Some Special Case

Theorem 2.1. Let A = P in (1), i.e., assume that the operator A acting on
Hilbert space H = L2(Ω) with Dirichlet-type boundary conditions, and the sector
Φ be defined as in Section 1. Let the complex function q(x) satisfy the following
conditions

q(x) ∈ C1(Ω), q(x) ∈ C\Φ, (∀x ∈ Ω), (2)

|arg{q(x1)q
−1(x2)}| ≤

π

8
, (∀ x1, x2 ∈ Ω). (3)

Then, for sufficiently large in modulus λ ∈ Φ, the inverse operator (A − λI)−1

exists and is continuous in H, and the following estimates are valid

‖(A− λI)−1‖ ≤ MΦ|λ|
−1 (λ ∈ Φ, |λ| > CΦ), (4)

‖ρα
∂

∂xi
(A− λI)−1‖ ≤ M ′

Φ|λ|
− 1

2 (λ ∈ Φ, |λ| > CΦ), (5)

for i = 1, . . . , n where MΦ, CΦ > 0 are sufficiently large numbers depending on
S. The symbol ‖.‖ stands for the norm of a bounded arbitrary operator T in H.

Proof. Here, to establish Theorem 2.1, we will first prove the assertion of Theo-
rem 2.1 together with estimate (4). So, as in Section 1 for a closed extension the
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operator A (for more explain, see [8, Chap. 6]), we need to extend its domain to
the closed set

D(A) =
{

v ∈
◦

H ∩W 2
2,loc(Ω) : hu′ ∈ H, (hqv′)

′
∈ H

}

.

Let the operator A, now satisfy (2), (3). Then there exists a complex number
Z ∈ C (noticed that we can take Z = eiγ , for a fix real γ ∈ (−π, π]), such that:
|Z = eiγ | = 1, and so

c′ ≤ Re{Zq(x)}, c′|λ| ≤ −Re{Zλ}, c′ > 0 (∀ x ∈ Ω, λ ∈ Φ). (6)

In view of the uniformly elliptic condition, we have

c|s|2 = c
n
∑

i=1

|si|
2 ≤

n
∑

i,j=1

aij(x)sisj , (c > 0, s = (s1, . . . , sn) ∈ C
n, x ∈ Ω)

Taking si = y′xi
, we have c

∑n
i=1 |y

′
xi
(x)|2 ≤

∑n
i,j=1 aij(x)y

′
xi
(x)y′xj

(x). From
this, and according to c′ ≤ Re{Zq(x)} in (5), we then multiply these two positive
relations with each other implies that

c1

n
∑

i=1

|y′xi
(x)|2 ≤ ReZq(x)

n
∑

i,j=1

aij(x)y
′
xi
(x)y′xj

(x), for y ∈ D(A)

Multiply both sides of the latter relation by the positive term ρ2α(x), and then
integrate from both sides, we will have

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx ≤ ReZ

n
∑

i,j=1

∫

Ω

ρ2α(x)aij(x)q(x)y
′
xi
(x)y′xj

(x)dx.

Now by applying the integration by parts, and using Dirichlet-type condition,
then the right sides of the latter relation without multiple ReZ becomes:

n
∑

i,j=1

∫

Ω

ρ2α(x)aij(x)q(x)y
′
xi
(x)y′xj

(x)dx

= −

n
∑

i,j=1

∫

Ω

(ρ2α(x)aij(x)q(x)y
′
xi
(x))′xj

y(x)dx

=



−

n
∑

i,j=1

(ρ2α(x)aij(x)q(x)y
′
xi
(x))′xj

, y(x)



 = (Ay, y).

(7)

Since (Ay)(x) = −
∑n

i,j=1

(

ρ2α(x)aij(x)q(x)u
′
xi
(x)
)′

xj
.

Here, the the symbol (,) denotes the inner product in H .

Notice that the above equality in (7) obtains by the well known theorem of
the m-sectorial operators which are closed by extending its domain to the closed
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domain in H. These operators are associated with the closed sectorial bilinear
forms that are densely defined in H (for more explanation, see the well known
Theorem 2.1, [8, Chap. 6]). This why we extend the domain of the operator A
to the closed domain in space H above. Therefore

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx ≤ ReZ(Ay , y)

from (5) we have: c′|λ| ≤ −Re{Zλ}, c′ > 0, ∀λ ∈ Φ. Multiply this inequality
by
∫

Ω |y(x)|2 dx = (y , y) = ‖y‖2 > 0. It follows that

c′|λ|

∫

Ω

|y(x)|2 dt ≤ −Re{Zλ}(y , y).

From this and the above inequality we will have

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx+ c′|λ|

∫

Ω

|y(x)|2dx

≤ Re{Z(Ay, y)− Zλ(y, y)}

= Re{Z((A− λI)y, y)}

≤ ‖Z‖‖y‖‖(A− λI)y‖

= ‖y‖‖(A− λI)y‖; (8)

i.e.,

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx + c′|λ|

∫

Ω

|y(x)|2 dx ≤ ‖y‖ ‖(A − λ I)y‖.

Since c1
∑n

i=1

∫

Ω
ρ2α(x)|y′xi

(x)|2dx is positive, we will have either c′|λ|‖y(x)‖2 =
|λ|
∫

Ω
|y(x)|2 dx ≤ ‖y‖‖(A − λ I)y‖ or

|λ|‖y(x)‖ ≤ MΦ‖(A − λ I)y‖. (9)

This inequality ensures that the operator (A − λ I) is one to one, which implies
that ker(A − λ I) = 0. Therefore the inverse operator (A − λI)−1 exists,
and its continuity follows from the proof of the estimate (4) of Theorem 2.1. To
prove (4), we set v = (A− λI)−1f, f ∈ H in (8) implies that

|λ|

∫

Ω

|(A− λI)−1f |2 dx ≤ MΦ‖(A− λI)−1f‖‖(A − λI)(A− λI)−1f‖.

Since (A − λ I)(A− λI)−1f = I(f) = f , we have

|λ|

∫

Ω

|(A − λI)−1f |2 dx ≤ MΦ‖(A − λI)−1f‖|f |.

So
|λ|‖(A − λI)−1(f)‖2 ≤ MΦ‖(A − λI)−1(f)‖|f |.



616 R. Alizadeh and A. Sameripour

This implies that |λ|‖(A − λI)−1(f)‖ ≤ MΦ|f |. Since λ 6= 0, we have
‖(A − λI)−1(f)‖ ≤ MΦ|λ|

−1|f |; i.e., ‖(A − λI)−1‖ ≤ MΦ|λ|
−1. This estimate

completes the proof of the assertion of Theorem 2.1 together with the estimate
(4). Now, we start to prove the estimate (5) of Theorem 2.1 As in the above
argument, we drop the positive term c′|λ|

∫

Ω |y(x)|2 dx from

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx + c′|λ|

∫

Ω

|y(x)|2 dx ≤ ‖y‖ ‖(A − λ I)y‖.

It follows that

c1

n
∑

i=1

∫

Ω

ρ2α(x)|y′xi
(x)|2dx ≤ ‖y‖ ‖(A − λ I)y‖.

Equivalently

c1

∥

∥

∥

∥

ρα
∂

∂xi
(A− λI)−1f

∥

∥

∥

∥

2

≤ ‖y‖ ‖(A − λ I)y‖.

Setting y = (A−λI)−1f, f ∈ H in the latter relation, and proceeding by similar
calculation as in the proof (4) we then obtain:

c1

∥

∥

∥

∥

ρα
∂

∂xi
(A− λI)−1f

∥

∥

∥

∥

2

≤ ‖(A− λI)−1f‖ ‖(A − λ I)(A− λI)−1f‖.

Since (A − λ I)(A− λI)−1f = I(f) = f , we have

c1

∥

∥

∥

∥

ρα
∂

∂xi
(A− λI)−1f

∥

∥

∥

∥

2

≤ ‖(A− λI)−1‖f‖2,

consequently, by (4) this implies that

c1

∥

∥

∥

∥

ρα
∂

∂xi
(A− λI)−1f

∥

∥

∥

∥

2

≤ MΦ|λ|
−1‖f‖2

to this end we will have

‖ρα
∂

∂xi
(A− λI)−1‖ ≤ M ′

Φ|λ|
− 1

2 .

Thus, here the proof of the estimate (5) is finished; i.e., this completes the proof
of Theorem 2.1.

Now let the condition (3) does not hold. Then we will have the following
statement:
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3. The Resolvent Estimate of Some Classes of Degenerate Elliptic
Differential Operators on H

In this section, we will derive a new general theorem by dropping the assumption
(3) from Theorem 2.1 in Section 2.

Theorem 3.1. As in Section 1, let Φ be some closed sector with vertex at 0 in
the complex plane (for more explain see [8]), and let the complex function q(x)
satisfy

q(x) ∈ C1(Ω), q(x) ∈ C\Φ, (∀x ∈ Ω). (10)

Then, for sufficiently large in modulus λ ∈ Φ, the inverse operator (A−λI)−1

exists and is continuous in H, and the following estimates holds:

‖(A− λI)−1‖ ≤ MΦ|λ|
−1, (λ ∈ Φ, |λ| > CΦ) (11)

where MΦ, CΦ > 0 are sufficiently large numbers depending on Φ.

Proof. Suppose that (4) does not satisfy. To prove the assertion of The-
orem 3.1 together with (11), we construct the functions ϕ1(x), . . . , ϕm(x),
q1(x), . . . , qm(x) so that each one of the functions q1(x), . . . , qm(x) (x ∈ Ω),
as the function q(x) in Theorem 2.1 satisfies (3). Therefore, let

ϕ1(x), . . . , ϕm(x), q1(x), . . . , qm(x) ∈ C∞
0 (Ω),

satisfy

0 ≤ ϕr(x), r = 1, . . . ,m, ϕ2
1(x) + . . .+ ϕ2

m(x) ≡ 1 (x ∈ Ω)

d

dt
ϕr(x) ∈ C∞

0 (Ω), qr(x) = q(x), ∀x ∈ supp ϕr

qr(x) ∈ C\Φ, (∀x ∈ Ω), r = 1, . . . ,m.

| arg{qr(x1)q
−1
r (x2)}| ≤

π

8
, (∀ x1, x2 ∈ supp ϕr), r = 1, . . . ,m.

In view of Theorem 2.1, and by (4), and (5), setting Ar = A in the definition
of the differential operator, we have

Aru(x) = −
n
∑

i,j=1

(

ρ2α(x)aij(x)qr(x)u
′
xi
(x)
)′

xj
acting on H

where

D(Ar) =







u ∈
◦

H ∩W 2
2, loc(Ω) :

n
∑

i,j=1

(ρ2αaijqru
′
xi
)
′

xj
∈ H







.
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Due to the assertion of Theorem 2.1, for 0 6= λ ∈ Φ the inverse operator (A −
λI)−1 exists and is continuous in space H = L2(Ω), and satisfies

‖(Ar − λI)−1‖ ≤ MΦ|λ|
−1

,

∥

∥

∥

∥

ρα
∂

∂xi
(Ar − λI)−1

∥

∥

∥

∥

≤ M ′
Φ|λ|

− 1

2 (12)

for λ ∈ Φ, |λ| > CΦ, where 0 6= λ ∈ Φ. Let us introduce

G(λ) =
m
∑

r=1

ϕr(Ar − λI)−1ϕr, (13)

Here ϕr is the multiplication operator in H by the function ϕr(x). Consequently,
it is easily verified that

(A− λI)G(λ) = I + ρ2α−1(x)
m
∑

r=1

βr(x)(Ar − λI)−1ϕr

+ρ2α(x)

n
∑

i=1

m
∑

r=1

γir (x)
∂

∂xi
(Ar − λI)−1ϕr (14)

where βr, γir ∈ L∞(Ω), suppβr and supp γir are contained in supp ϕr.

Let us take the right side of (14) equals to I + T (λ) Thus, we will have

(A− λI)G(λ) = I + T (λ). (15)

Now according to Section 2 if we put A = Ar for r = 1, . . . ,m in (3) we will
have

‖(Ar − λI)−1‖ ≤ M1S|λ|
−1

,

∥

∥

∥

∥

ρα
∂

∂xi
(Ar − λI)−1

∥

∥

∥

∥

≤ M ′
Φ‖λ‖

− 1

2 .

Owing to the definition of T (λ) in the (14), it easily follows that

‖T (λ)‖ ≤ MΦ|λ|
− 1

2 (λ ∈ Φ, |λ| > 1). (16)

Since |λ| is sufficiently large number easily implies that ‖T (λ)‖ < 1
2 < 1, from

this and using the well known theorem in the operator theory we conclude that
I + T (λ) and so (A − λI)G(λ) are invertible. Hence, ((A − λI)G(λ))−1 exists
and equals to

(G(λ))−1(A− λI)−1 = (I + T (λ))−1, (17)

By adding +I and −I to the right side of the (16) it follows that

(G(λ))−1(A− λI)−1 = (I + T (λ))−1 − I + I.

We now set
F (λ) = (I + T (λ))−1 − I.
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Then
(G(λ))−1(A− λI)−1 = I + F (λ).

In view of ‖T (λ)‖ < 1 and (16), we now estimate F (λ) by the following geometric
series:

‖F (λ)‖ ≤

+∞
∑

i=2

‖T k(λ)‖ ≤ ‖T (λ)‖2(1 + ‖T (λ)‖+ ‖T (λ)‖
2
+ . . .)

≤ ‖T (λ)‖2MΦ(1 + 1/2 + . . .) ≤ 2MΦ(M
′
Φ|λ|

−1/2)2

i.e., ‖F (λ)‖ ≤ 2M1Φ|λ|
−1. By ‖(Ar − λI)−1‖ ≤ M1Φ|λ|

−1
, for we will have

‖G(λ)‖ =

∥

∥

∥

∥

∥

m
∑

r=1

ϕr(Ar − λI)−1ϕr

∥

∥

∥

∥

∥

≤ M ′′
Φ‖(Ar − λI)−1‖ ≤ M ′′

ΦM1Φ|λ|
−1;

i.e., ‖G(λ)‖ ≤ M2Φ|λ|
−1. Now from (17) we have

(A− λI)−1 = G(λ)(I + T (λ))−1 = G(λ)(I + F (λ)).

Therefore

‖(A− λI)−1‖ = ‖G(λ)‖‖(I + F (λ))‖ ≤ M2Φ|λ|
−1‖(1 + 2M1Φ|λ|

−1);

i.e., here the assertion of Theorem 3.1 is proved. Therefore to complete the proof
Theorem 3.1 we must prove the estimate in (11). Finally, according to latter
inequality, we have

‖(A− λI)−1‖ ≤ M2Φ|λ|
−1 + 2M2ΦM1Φ|λ|

−1|λ|−1,

and since |λ|−1|λ|−1 = |λ|−2 ≤ |λ|−1, it follows that

‖(A− λI)−1‖ ≤ MΦ|λ|
−1, (|λ| ≥ C, λ ∈ Φ).

This complete the proof.

4. On the Resolvent Estimate of the Differential Operator in H`

As in Section 1, let the differential operator

(Pu)(x) = −

n
∑

i,j=1

(

ρ2α(x)aij(x)Q(x)u′
xi
(x)
)′

xj

acting on Hilbert space H` = L2(Ω)
`
with Dirichlet-type boundary conditions,

and suppose that Q(x) ∈ C2(Ω, End C
`) such that for each x ∈ Ω the matrix

function Q(x) has non-zero simple eigenvalues µj(x) ∈ C2(Ω) (1 ≤ j ≤ `)
arranged in the complex plane in the following way:

µ1(x), . . . , µ`(x) ∈ C\Φ, (18)
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where
Φ = {z ∈ C : |arg z| ≤ ϕ}, ϕ ∈ (0, π).

Furthermore suppose that for j = 1, . . . , ` we have

µj(x) ∈ C1(Ω), µj(x) ∈ C\Φ, (∀x ∈ Ω), (19)

|arg{µj(x1)µ
−1
j (x2)}| ≤

π

8
, (∀ x1, x2 ∈ Ω). (20)

Now according to Theorem 2.1, but here instead of the operator A which
acting on the space H = L2(Ω), let the operator P acting on the space H` =

L2(Ω)`, now by the assumption of Section 1, we will have the following theorem
in the general case:

Theorem 4.1. Let (19), (20) and the assumptions of Section 1 hold for the
operator P as in (1, 1), then for sufficiently large in modulus λ ∈ Φ, the inverse

operator (P − λI)−1 exists and is continuous in the space H` = L2(Ω)
`
and the

following estimate holds:

‖(P − λI)−1‖ ≤ MΦ|λ|
−1 (21)

where MΦ, CΦ > 0 is sufficiently large number depending on Φ and |λ| > CΦ.

Proof. Now by applying the eigenvalues µ1(x), . . . , µ`(x) of the matrix function
Q(x) we defined the operators P1, . . . , P` such that

(Pju)(x) = −
n
∑

i,j=1

(

ρ2α(x)aij(x)µj(x)u
′
xi
(x)
)′

xj
(j = 1, . . . , `),

where its extension domains are

D(Pj) =







y ∈
◦

H ∩W 2
2, loc(Ω) :

n
∑

i,j=1

ρ2αaijµj(x)y
′
xi
)
′

xj
∈ H







,

which as the operator A in Theorem 2.1, the operators Pj , j = 1, . . . , `, acting
on space H = L2(Ω) (Notice that here the operators Pj are the same of the
operator A in Section 2, i.e., to define the operators Pj , we just change the
function q(x) in the operator A by the eigenvalues functions µj(x), j = 1, . . . , `
of matrix Q(x)).

The conditions which we consider on the eigenvalues µj(x) of the matrix
function Q(x) in Section 1 guarantee that one can convert the matrix Q(x) to
the diagonal form

Q(x) = U(x)Λ(x)U−1(x), for U(x), U−1(x) ∈ C2([0, 1], End C
`)

where
Λ(x) = diag{µ1(x), . . . , µ`(x)}.
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Consider space H` = H ⊕ · · · ⊕H (`-times). Put

Γ(λ) = UB(λ)U−1,

where the operator

B(λ) = diag{(P1 − λI)−1, . . . , (P` − λI)−1}.

acting on the direct sum

H` = H ⊕ · · · ⊕H (`-times)

where λ ∈ Φ\R+, |λ| ≥ C0 and (Uu)(x) = U(x)u(x), (u ∈ H`).

Consequently, as the relation (14) in Section 3, we will have

(A− λI)Γ(λ) = I + ρ2α−1(x)q0(x)β(λ)U
−1 + ρ2α(x)

n
∑

i=1

qi(x)
∂

∂xi
β(λ)U−1;(22)

for qi ∈ C(Ω̄;EndCl), i = 0, 1, . . . , n. Now as in section 3, let us take the right
side of (22) equals to I + T ′(λ) Thus, we will have

(P − λI)Γ(λ) = I + T ′(λ). (23)

Now according to Section 2 if we put Pj = A for j = 1, . . . , ` in (4) and (5)
we will have

‖(Pj − λI)−1‖ ≤ M1Φ|λ|
−1

,

∥

∥

∥

∥

ρα
∂

∂xi
(Pj − λI)−1

∥

∥

∥

∥

≤ M ′
Φ‖λ‖

− 1

2 .

Owing to the latter relations and the definition of T ′(λ) in (22) easily it follows
that

‖T ′(λ)‖ ≤ MΦ|λ|
− 1

2 (λ ∈ Φ, |λ| > 1). (24)

Since |λ| is sufficiently large number easily implies that ‖T ′(λ)‖ < 1
2 < 1, from

this and using the well known theorem in the operator theory we conclude that
I + T ′(λ) and so (P − λI)Γ(λ) are invertible. Hence, ((A − λI)Γ(λ))−1 exists
and equals to

(Γ(λ))−1(P − λI)−1 = (I + T ′(λ))−1, (25)

By adding +I and −I to the right side of the (24) it follows that

(Γ(λ))−1(P − λI)−1 = (I + T ′(λ))−1 − I + I.

We now set
F ′(λ) = (I + T ′(λ))−1 − I.

Then
(Γ(λ))−1(A− λI)−1 = I + F ′(λ).
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In view of ‖T ′(λ)‖ < 1 and (24), we now estimate F ′(λ) by the following geo-
metric series:

‖F ′(λ)‖ ≤

+∞
∑

i=2

‖T ′k(λ)‖ ≤ ‖T ′(λ)‖2(1 + ‖T ′(λ)‖ + ‖T ′(λ)‖
2
+ . . .)

≤ ‖T ′(λ)‖2MΦ(1 + 1/2 + . . .) ≤ 2MΦ(M
′
Φ|λ|

−1/2)2

i.e., ‖F ′(λ)‖ ≤ 2M1Φ|λ|
−1. By ‖(Pj −λI)−1‖ ≤ M1Φ|λ|

−1
, j = 1, . . . , ` in view

of definition B(λ) and Γ(λ) we will have

‖(Γ(λ)‖ ≤ M2Φ|λ|
−1.

Now from (25) we have

‖(P − λI)−1‖ = ‖(Γ(λ)‖(I + T ′(λ))−1 = ‖(Γ(λ)‖(I + F ′(λ))‖.

Therefore

‖(P − λI)−1‖ = ‖(Γ(λ)‖‖(I + F ′(λ))‖ ≤ M2Φ|λ|
−1‖(1 + 2M1Φ|λ|

−1).

To the end according to latter inequality we have

‖(P − λI)−1‖ ≤ M2Φ|λ|
−1 + 2M2ΦM1Φ|λ|

−1|λ|−1,

and since |λ|−1|λ|−1 = |λ|−2 ≤ |λ|−1, it follows that

‖(P − λI)−1‖ ≤ MΦ|λ|
−1, (|λ| ≥ C, λ ∈ Φ).

This completes the proof.
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