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Abstract. In this paper, we show that the results obtained in [7]: On a system of
general mixed variational inequalities are incorrect. Also we suggest and analyze new
approximation schemes 4.1 for solving the (SGMVID) which were introduced by M.A.
Noor in [7].
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1. Introduction

It is known that variational inequality theory and complementarity problem are
very powerful tools of the current mathematical technology. In recent years, clas-
sical variational inequalities and complementarity problems have been extended
and generalized to study a large variety of problems arising in mechanics, physics,
optimization and control, nonlinear programming, economics and transportation
equilibrium, and engineering sciences, etc. (see [9, 5, 4, 2, 1] and the reference
therein). In this paper we introduce and study new approximation schemes to
correct the main result of [7].

Throughout this paper, let H be a real Hilbert space whose inner product
and norm are denoted by (.,.) and ||.||, respectively, a surjective map g : H — H,
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and ¢ : H — RU {+o0} be a proper convex lower semicontinuous function.

For given nonlinear operators 77, T5: H — H, we consider the problem of
finding («*,y*) € H x H such that:

{ (pTy (y*,2*) + 2" — g (y*), g (v) —2*) > po (z*) — pp (g (v)),
Tz (2", y*) +y* —g(x"),9(v) —y") Zne (y*) —ne (g (v)),

for all v € H,p > 0,1 > 0, which is called the system of general mixed varia-
tional inequalities involving three different nonlinear operators (SGMVID). In

this paper new approximation schemes 4.1 are discussed for solving the problem
(SGMVID).

2. Preliminaries

We recall the following notations.
Definition 2.1. A mapping T : H — H is called \-Lipschitz continous if there
exist constant A > 0, such that:

Ve,y € H:||T (x) =T ()l < Az =yl

Definition 2.2. A mapping T : H — H s called rlazed (o, )-cocoercive if there
exist constants a > 0, > 0 such that:

Va,y € H: (T (2) =T (y), o —y) = —a|T (@) - T y)|* +Bllz - y”.

Proposition 2.3. [4, 9] For given an element w € H, z € H satisfies the inequality
(= 2,0 — )+ pp (v) — pip (u) = 0,V € H,

if and only if
u=1Jg(2),

where J§ = (I+ p@(p)fl, is the resolvent operator and Oy denotes the subdiffer-

ential of a proper convex lower semcontinuous function.

It is known that J£ is a nonexpansive mapping, i.e.
|78 (2) = JL ()] < llz =yl , Yo,y € H.

Using Proposition 2.3, we can easily show that, finding the solution z*,y* € H
of SGMVID is equivalent to finding 2*,y* € H such that

{ ot = (1= an) 2" +anJf g (y*) — pT1 (y*, 27)],
y' =1 =)y +anJ)g(x*) —nTz (z*,y%)],
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where a,, € [0,1], for all n > 0.
In the following section, we show that the proof of M.A. Noor in [7] is incor-
rect.

3. Error in [7]

M.A. Noor used the following iterative algorithm for solving the problem (SG-
MVID)

Algorithm 3.1. [7, Algorithm 3.1] For arbitrary chosen initial points xg,yo € K,
compute the sequences {x,} and {yn} using

{ Tpi1 = (1= ) Tn + andy [9 (Yn) — pPT1 (Yny T0)],
Yn+1 = Jy [9 (Tpy1) = 0T (Tpy, yn)] )

where oy, € [0,1] for all n > 0.

Theorem 3.2. [7, Theorem 4.1] Let (z*,y*) be the solution of SGMVID. If
Ty : Hx H— H is relaxed (y1,r1) —cocoercive and puy Lipschitzian in the first
variable, and Ty : H x H — H is relazed (72, r2) — cocoercive and po Lipschitzian
in the first variable. Let g be a relaxed (3, rs) —cocoercive and ps Lipschitzian.

If

2
2| A=) = 2k (2 )
P — 3 < 2 ) (1)
251 251
r> i+ vk —k) k<1, (2)
2
Ty — Yol \/(7“2 —23)” — pk (2 — k) 5
U 2 < 2 ) (3)
H2 H2

ry > Vo3 + pa/k (2 — k), k <1, (4)

where

k=\/1—2(7"3—73u§)+u§7

and o, € [0,1], ZZ,O:O ap = o0, then for arbitrarily chosen initial points
zo,Yo € H, x, and y, obtained from Algorithm 4.1 converge strongly to x*
and y* respectively.

Next we will prove that his proof of this theorem is incorrect. Let us consider
the following text quoted from the proof of Theorem 4.1 in [7].

Proof of Theorem 3.2. To prove the result, we need first to evaluate ||x,+1 — z*||
for all n > 0. From (1), (3), and the nonexpansive property of the resolvent
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operator J,, we have

41 — 2]
= (1—an)z, + andy [9 (yn) — pT1 (ynvxn)] —(I—ay)z”
— andy [g(y") — pT (y", 27)] |

< (1—ap)llzn — 2™
+ an | 4o [9 (yn) = PT1 (Y, 2n)] — Jo [9 (v*) — pT1 (y", 27|
< (I =an) lzn — 2| + an lllg (yn) — pT1 (Yn, 20)] = [9 (¥") — pT1 (y™, 2")]||
= (1-an) IIwn—w |+ anllyn —y* = p[T1 (Yn, zn) — T1 (y", 27)]|
+ ap ”yn - - [9 (yn) (y*)]”

From the relaxed (y1,7r1) —cocoercive and p; Lipschitzian definition in the first
variable on T7, we have:

lym = y* = p[T1 Yns2n) — T1 (", 27)]|°
= llyn — ¥*1” = 20(T1 (yn> z) — T1 (4", 2%) 9 — y*)
+ p? Ty (Yns 2n) — T1 (", )|
< Ny =911 + 20 |1 T2 (s 20) = T1 (", 2) |1 = 2pm1 llyn — |
+02 Ty (yn 2) — Th (y*, ™) |12
[1+2pm3 — 20m1 + 2213] lym — 7|17 .

N

Question 3.3. How do the sequence x,, and z* disappear from the above inequal-
ity? Answer:

(i) The author misuse the concept of relaxed (v1,r1)-cocoercive and pq-Lips-
chitzian definition in the first variable on T3.
(ii) There are a clear mistakes in the above formulation so it is not true because:

(a) We cannot apply the relaxed (1, 71)-cocoercive definition for the first
variable on T4, (the second variable of Ty in (T (yn, zn) — T1(y*, x*),
Yyn — y*) is not equal).

(b) Also with || T1(yn,rn) — T1(y*,2*)||?, we cannot apply the Lipschitz
continuity definition for the first variable on T7.

(iii) The same error used when he evaluated ||zp+1 — 2* — n[Te(Tnt1, Yn) —
Ta(a*, y")]II.

Clarification 3.4. for n fixed, let f and h define as follows:

f: H—>H h: H—H
z— f(z) =Ti(z,z,), x — h(z) =Ty (z,z").

It is clear that f # h, h is another function that defers to f.
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So we cannot apply the relaxed (y1,r1) —cocoercive definition for the first
variable on T}, because:

(T1 (Ynszn) = T1 (Y5 2") s yn — ¥") = (f(Yn) — MY ) yn — ¥7)-

Also we cannot apply the Lipschitz continuity definition for the first variable on
T}, because:

IT1 (Y, ) — T1 (", )1 = 11 (yn) — Ay

For this reason we propose another algorithm to correct this error.

4. Main Result

Now we suggest and analyze the following iterative method for solving the SG-
MVID.

Algorithm 4.1. For arbitrary chosen initial points xg,y9 € K, compute the
sequences {x,} and {yn} using

P11 (Yn, )],
s (Tn,yn)],

Tnt1 = (1 —an)xn + anJ£ [g (Yn)
Ynt1 = (1 — an) yn + and (7 ()

where oy, € [0,1] for all n > 0.
Special Case. For Ty = T =T in Algorithm 4.1, we arrive at

Algorithm 4.2. For arbitrary chosen initial points xg,y9 € K, compute the
sequences {xn} and {yn} using

{ Tny1 = (1= an) 2n + anJ? g (yn) — pT (Yn, z0)]
Yn+1 = (1 —an) yn + OénJg [g (zn) =T (xnvyn)] )

where oy, € [0,1] for all n > 0.

Which is the aproximate solvability of the following system:

{ (pT (y*,2*) +2* =g (y*), g (v) —2*) > pp (z*) — pp (g () ,Yv € H, p > 0,
(T (z*,y*) +y* — g (@), g (v) —y*) > ne (y*) —ne (g (x)) ,Yv € H,n > 0.

Now we present the convergence criteria of Algorithm 4.1 under some suitable
conditions and this is the main result of this paper.

Theorem 4.3. Let (z*,y*) be the solution of SGMVID. Suppose that Ty :
H x H — H is relaxed (vy1,71) —cocoercive and py-Lipschitzian in the first
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variable and let Ty be \i-Lipschitz continous in the second variable.

A. Benhadid and K. Saoudi

Let

Ty, : Hx H — H be relazed (y2,72) —cocoercive and ps Lipschitzian in the
first variable and let Ty be A\o-Lipschitz continous in the second variable. Let g
be relazed (3, 13) —cocoercive and us Lipschitz. If

1 3
k<5 >71u%+u1\/1—k2+k,

\/(7“1 — )’ — i3 E — k2 + k] X ©)

2

1L = 71K
p— < 7p< N
‘ It I 2\

1 3
k<§,T2>W2M§+M2\/Z—k2+kv

\/(7“2 - 72#%)2 — 13 E — k24 k] (6)

Ty — Yol 1
‘ - ugw2 = 15 Sy
where
k:\/1—2(7“3—73/l§)+l¢§7
and a, € [0,1], S0 o = oo, then for arbitrarily chosen initial points

xo,Y0 € K, x, and y, obtained from Algorithm 4.1 converge strongly to x*
and y* respectively.

Proof. To prove the result, we need first to evaluate ||z,4+1 — 2*| for all n > 0.

IN

VARVAN

IN

IN

Znt1 — 2"

[ (1= an) (@n —2") + an(JE (g (yn) — pT1 (Yn, zn)]

—Jo Mg (") — pTa (y*,z")))|

(1 —an) lzn — 2| + anllJE (9 (yn) — PT1 (Yn, Tn)]

=J81g (y*) — T (y*, 2")] ||

(1 —an) lzn — 2| + an g (Yn) — pT1 (Yns 20)] = [9 (y") — pT1 (v, 2")]|
(1 —an) lzn — 2| + anllyn —y* = p[T1 (Yn, ©0) — T1 (y*, 27)]||
+an |yn =y =9 (yn) — g (¥)]Il

n lyn —y* = p[T1 Yn, ©0n) = T1 (Y 20) + T1 (Y™ 20) — T1 (y", )]
+anllyn —y* =19 (Wn) — g W) + (1 = an) [z, — 27|

(1 —an) lzn — 2| + an lyn —y* = p[T1 (Yn, T0) — T1 (", z0)]|

+ pan [T (y* 2n) = T1 (" ") + an |yn — y* = [9 (yn) — g (y")]Il -
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From the relaxed (y1,71) —cocoercive for the first variable on T3, we have

* * 2
[yn = 4" = p[T1 (yn, wn) = Ta (y", )]l

= llyn — ¥ 1> = 20071 (Y, ) = T2 (", 20) s Y0 — ")

+ 0% T (Y @n) = Tt (20, )|

=207 T2 (Yns n) = T1 (%, 20) |1 + 71 ym — y°|I°]
+ g =4I + 07 1T (s @) = T1 (", ) ||

2071 171 (Y 2n) — Ty (y" ) 1* = 2071 lym — 71

+ g = I + 27 1T (s ) = To (v )|

IN

IN

From the p;-Lipschitzian definition for the first variable on T3, we have:
* * 2

lyn =y = p [Ty (Yn, ) — T2 (¥, z0)]|

w112

< [L+20mpf = 20m1 + p13] lyn — v* |17

In a similar way, using the (vs, r3) —cocoercivity and us-Lipschitz continuity of
the operator g; we have:

lyn =y =19 (yn) =g WO < kllyn — vl
From the A\;-Lipschitzian definition for the second variable on T3, we have:
1Ty (v 2p) = Ta (y*, )| < At [lon — 27|
As a result, we have:
[ — 2" < (1 = an) [|on — 2" + anby [yn — ¥ || + anpAs lzn — 27|, (7)
where,
1
Oy = k+ [1+2pmp] — 20m1 + p*p7] 7 .
Similarly we have:
[tm+1 =y < (1= an) lyn — y*[| + anbs lzn — 2" + annde lyn —y*[l,  (8)
where,
1
02 = k + [1+ 21yop — 20r2 + 17 3] * .
It is clear from the conditions (5) and (6) that,

01+77)\2 <1 and 924—,0/\1 < 1.
Then from (7) and (8),

lZne1 — 2| + [[yn+1 — y*|l
< (I =apn) |lzn — 2% + anbi lyn — " || + anps [z — 27|
+ (L= an) llyn = y* [l + onbs [lzn — 2" + cnndz lyn — 7|l
< (I —an)[llzn — 2" + llyn — y*lll + oan [lzn — 2| + lyn — y7I],
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where,
o =max (01 +nla, 0z + pA1) < 1.
Set
zn = || — 2| + llyn — y7|-
So,

Znt1 < (1= (1 —0)an) zn,

which implies that:

k=n
Znt1 < H (1-(1—0)ag)20-
k=0
Since 0 < o < 1 and Y - g = oo, it implies in light of [8] that
limy,— 400 szg((l — (1 —0)ag)) =0, therefore x,, — z* and y,, — y*. ]

Corollary 4.4. We can replace the conditions (5) and (6) by (9) and (10) where,
O<p<1

k<pr>ypd +py/ =k + 2pk +1 - p?,

\/(7"1 —pd)’ — i3 [k + 2pk + 1 — p?]
2 , (9)

‘ _7“1—71!4%
2
u
1—p1
AL

p<

k < p,re > yopd + poy/—k* + 2pk + 1 — p?,
\/(rz — 72p3) — 43 [—k2 + 2pk + 1 — p?]
< 2
Ha

_ 7‘2-72#%
2
7
l—p2
Ay

) (10)

n <

Remark 4.5. 1f T1, T, : H — H are univariate operators, then Algorithm 4.1 can
be replaced by the following Algorithm.

Algorithm 4.6. For arbitrary chosen initial points xo € K, compute the sequences
{zn} and {y,} using

{ Tnp1 = (1= an) Tn + anJE g (yn) — pT1 (yn)],
Yn = JJ [9 (zn) — 012 (z4)],

where oy, € [0,1] for all n > 0.

Which is the approximate solvability of the system (11):

{ (pTy (y*) + 2% — g (y*), g (v) = x*) > pp (¢*) = pp (g (x)), (1)
T (z*) +y* —g (@), 9 (v) —y*) 2 np (y*) —ne (g (2)),
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forallve H,p > 0,7 > 0.

For the system (11), we use Algorithm 4.6 and present the following theorem
which uses less conditions than the previous theorem.

Theorem 4.7. Let (z*,y*) be the solution of (11). Suppose that Ty, To,g: H — H
are both relazed-cocoercive with constants (y1,71), (V2,72), (v3,73) and Lipschitz
continuous with constants py, pa, ps respectively. If

k<1,71 >yip}+ uwv—k2+ 2k,

2
IR _ \/(7”1 —mpi)” = g3 [k 4 24] (12)
It I ’
k< 177‘2 > 72”% + p2v —k? +2k7
2
T2 — a3 - \/(7“2 —Y23)" — p3 [~k + 2K (13)
13 15 ’

where

k=\/1—2(r3—73u§)+u§,

and o, € [0,1], 3207 ) a = 00, then for arbitrarily chosen initial points xg € K,
Ty and y, obtained from Algorithm 4.6 converge strongly to x* and y* respec-
tively.

Proof. To prove the result, we need first to evaluate ||z 41 — 2*| for all n > 0.

|Zn1 — 2"
=[Q—-an)zn+ anJ£ (9 (yn) — pT1 (yn)] — (1 — o) 2™
+andf g (y*) — pT1 (y9)] ||
< (1= an) 20 — 2" + an | T2 19 (yn) — T (yn)] — JE (9 (y*) — pT1 (y7)]||
< (1 —an) |z — 2| + an lllg (yn) — pT1 (yn)] = [9 (v*) — pT1 (y7)]|
< (1 —ap) lzn — 2" + an lyn —y* — p[T1 (yn) — T2 (y")]|
+ 1yn =y =9 (yn) — g (¥)]Il-

From the relaxed (y1,71) —cocoercive on Ty, we have:

lyn —y* = p[T1 (yn) — Ta ()]

lyn = ¥ 11 = 20(T2 (yn) = T2 () sy — ¥") + P2 T2 (yn) — T2 ()|
~2p [ I3 (ga) = T2 () + 74 g — 971

+ llyn = 57117 + 0% 171 (yn) — T2 ()11

20m T4 (yn) — To (W) II* = 2071 llgm — v7 |

+ llyn — 5717 + p* 171 (yn) — T2 ()11 -

IN

IA
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From the p;-Lipschitzian definition on 73, we have

* * 2 *112
1y —y* = p[T1 (yn) = Tu (WOIIT < 14 20mp3 = 2pr1 + p°pid] llyn — v*11° -

In a similar way, using the (73, r3) —cocoercivity and us-Lipschitz continuity of
the operator g; we have

lyn =y =19 (wn) — g ) < Fkllyn —y*| -

As a result, we have
[#ne1 — 2| < (1 = an) lzn — 2™ + b1 [lyn =y, (14)
where,
1
Oy = k+ [1+2pmpi — 2pr1 + p*13]”
Now we evaluate ||y, — y*||, for all n > 0.
lyn = [l = (| T2 g (zn) = nTo (zn)] = I [g (&) = nT1 (z7)]]|
g (= ) 77T2 (@n)] = g (z) = T (z7)]|
|2 — 2" = [T (2n) = T2 (@°)][| + o — 2" = [g (xn) — g («)]I] -
From the relaxed (72, 72) —cocoercive on Ty, we have
20 — 2 =0 [T5 (25) — To ()]
= [lzn — " | = 20(T5 (wn) = T (&%), 20 — %) + 0* | T2 (20) = T (")
=2 |92 T2 (wa) = T (") + 72 o — o]
+ ||z — 2 |* 40P 1T (2n) — Tz ()]
22 ||T2 (wn) = Tz () |* = 2072 ||z — 2*®
* 112 * 2
+ g — 21 +0* | T (20) — T2 ()"

<
<

IN

IN

By using the (v4,74) —cocoercivity and p4-Lipschitz continuity of the operator
g, we have:
[n — 2" = [g(zn) — g (@)]]| < kllzn — 2™
As a result, we have:
[yn —y* || < Oz [|lzn — 27|, (15)

where,
1
02 =k + [1+ 2iyop5 — 20ra + 03] * .
It is clear from the condition (12) and (13) that
f1 <1 and 6y < 1.

It follow that from (14) and (15),

[€ns1 =" < (1= an) [2n — 27| + anbrbs ||z — 27|,
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which implies that:

k=n

s =2 < T (1= (1 = 0162) ) [larg — 2"}
k=0

Since 0 < 6165 < 1, and E;O:O ar = o0, it implies in light of [8] that
limg,— 1 oo Hﬁig((l — (1 = 60162) ax)) = 0, therefore z,, — z* and y,, — y*. ]

For g = I, in Algorithm 4.6 we get the following algorithm.

Algorithm 4.8. For arbitrary chosen initial points xo € K, compute the sequences
{zn} and {yn} using

{ Tns1 = (1= o) 2n + anJ? [yn — pT1 (yn)],
Yn = JJ (20 — T3 (z0)]

where oy, € [0,1] for all n > 0.

Which is the approximate solvability of the following system:

{<pT1 (") +a* —y* v — %) > pp (z*) — pp () ,Yv € H,p > 0,
(T (%) +y* — v —y*) > np (y*) —ne (z) ,Yv € H,n > 0,

which has been studied by J.K. Kim and D.S. Kim [6] as a special case of their
work (see the first case).
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