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Abstract. Let S(p) be the class of meromorphic univalent functions f in the unit disk

D with a simple pole at p ∈ (0, 1), CO(p,α) be the subclass of S(p) such that Ĉ \ f(D)

is a convex domain of order α. In this paper, some characterizations of functions in

CO(p, α) are given and the Livingston conjecture of f ∈ CO(p, α) is considered.
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1. Introduction

Let S be the class of analytic univalent functions f in the unit disk D =
{z ∈ C : |z| < 1} with the normalization f(0) = f ′(0) − 1 = 0. For f ∈ S, it
has the following Taylor expansion

f(z) = z +

∞
∑

n=2

an(f)z
n, z ∈ D.

The famous Bieberbach conjecture, which was proposed by Bieberbach in 1916,
claimed that |an(f)| ≤ n for n ∈ N, strict inequality holds for all n unless f
is the Koebe function or one of its rotation. Since then, many mathematicians
have devoted to this conjecture (for example [4, 7, 11, 15]). As we know, the
conjecture was finally proved by de Branges in [5].

During the study of Bieberbach conjecture, many important subclasses of
S have been considered, such as convex functions, starlike functions, close-to-
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convex functions and so on. For more details about these subclasses, we refer
to the monographs of Duren [6] and Pommerenke [18]. Following [18], we call

f ∈ S convex function if the image f(D) is a convex domain in Ĉ = C ∪ {∞}.
We denote by K ⊂ S the class of convex functions. It is well known that f ∈ K
if and only if

Re

(

1 + z
f ′′(z)

f ′(z)

)

> 0, z ∈ D. (1)

Let α ∈ [0, 1). We call f ∈ S convex function of order α if

Re

(

1 + z
f ′′(z)

f ′(z)

)

> α, z ∈ D. (2)

We denote by K(α) the class of convex functions of order α. The class K(α)
was introduced by Robertson in [19], and was further studied by many scholars,
such as Jack [9], Pinchuk [17], Sugawa and Wang [20]. We call Ω convex domain
of order α if there exists f ∈ K(α) and suitable constants a and b such that
Ω = f̃(D), where f̃ = af + b. Let f be a analytic univalent function in D (f is
not necessary in S) and f(D) = Ω, since

Re

(

1 + z
f ′′(z)

f ′(z)

)

= Re

(

1 + z
f̃ ′′(z)

f̃ ′(z)

)

,

then Ω is a convex domain of order α if and only if Re
(

1 + zf ′′(z)
f ′(z)

)

> α, z ∈ D.

The class K ⊂ S was proposed to solve Bieberbach conjecture. Another
way to attack Bieberbach conjecture was thought to be the class Σ, mapping
the outside of the unit circle conformally onto a simply connected domain in Ĉ.
This class was considered to be the counterpart to the class S and therefore lead
to a new angle on the problem asserted for the class S. Although Bieberbach
conjecture was proved, many of the problems which arouse during the time were
still left open. Such as the class Σ, its coefficient estimate is incomplete. As it
was the case with the class S, subclasses of Σ with especial geometry were consid-
ered to get closer to functions of the class. Types like meromorphically starlike
functions, concave functions were considered. Originally concave functions were
defined to map the the outside of the unit circle conformally to the outside of a
convex domain, therefore giving the counterpart to the class of convex functions
in the class Σ, fixing the point at infinity. However, it turned out to be more
convenient to analyze meromorphic univalent functions defined in the unit disk
D, having a simple at some point in D. In the early time, considerations were
made by Goodman [8] in 1956, Miller [12, 13] in 1970 and 1980. They con-
sidered the geometry of a function being concave and deduced several analytic
characterizations. The concave function was further studied by Livingston [10]
in 1994, where he considered a simple pole at p ∈ (0, 1).

Throughout this paper, we restrict p ∈ (0, 1) and denote by S(p) the class
of meromorphic univalent functions f in D with a simple pole at z = p and the
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normalization f(0) = f ′(0)− 1 = 0. Following [1], [3] and [21], we call f ∈ S(p)

concave function if Ĉ\f(D) is a convex domain. We denote by CO(p) the class
of concave functions.

Similar to the consideration of (1), Livingston obtained the following char-
acterization of f ∈ CO(p).

Lemma 1.1. [10, Theorem 1] Let f ∈ S(p). Then f ∈ CO(p) if and only if

Re

(

1 + p2 − 2pz +
(z − p)(1− pz)f ′′(z)

f ′(z)

)

< 0, z ∈ D. (3)

For f ∈ CO(p), it has the following Taylor expansion,

f(z) = z +

∞
∑

n=2

an(f)z
n, |z| < p. (4)

In [10], for f ∈ CO(p), Livingston conjectured that

Re (an(f)) ≥
1 + p2n

pn−1(1 + p2)
, n ≥ 2. (5)

Furthermore, Avkhadiev, Pommerenke and Wirths [1] conjectured that

∣

∣

∣

∣

an(f)−
1− p2n+2

pn−1(1− p4)

∣

∣

∣

∣

≤ p2(1− p2n−2)

pn−1(1− p4)
, n ≥ 2. (6)

Parallel to Bieberbach conjecture, (5) and (6) are named as Livingston con-
jecture. As we know, the conjecture was proved by Avkhadiev and Wirths as
follows.

Lemma 1.2. [2] For f ∈ CO(p), the Taylor coefficient an(f) in (4) is determined

by the inequality

∣

∣

∣

∣

an(f)−
1− p2n+2

pn−1(1− p4)

∣

∣

∣

∣

≤ p2(1− p2n−2)

pn−1(1 − p4)
, n ≥ 2.

When f ∈ CO(p), we know that Ĉ\f(D) is a convex domain. Naturally, based
on the relationship between K and K(α), we define f ∈ S(p) concave function of

order α if Ĉ\f(D) is a convex domain of order α and denote by CO(p, α) the class
of concave functions of order α. In this paper, we will study characterizations
and Livingston conjecture of f ∈ CO(p, α).

Our arrangements are as follows, we give the proof of Theorem 2.2 in Section
2 and two other characterizations in Section 3. Finally, the proof of Theorem
4.6 is given in Section 4.
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2. Characterization of Concave Functions of Order α

In this section, we will give the proof of Theorem 2.2.

Lemma 2.1. [14] Let D∗ = {z ∈ Ĉ : |z| > 1} and f : D∗ → Ĉ be a meromorphic

univalent function which maps D
∗ onto the outside of a bounded Jordan curve

Γ and f(∞) = ∞. The curve Γ is analytic if and only if f is univalent and

analytic in {z ∈ Ĉ : |z| > r} for some r < 1.

Theorem 2.2. Let f ∈ S(p). Then f ∈ CO(p, α) if and only if

Re

(

1 + p2 − 2pz +
(z − p)(1 − pz)f ′′(z)

f ′(z)

)

< −α(1− p2), z ∈ D. (7)

Proof. We divide the proof into the following two steps.

Step 1: Let f be a concave function of order α. We will prove that f satisfies
(7).

By assumption, we know that f(D) = Ω∗ = Ĉ\Ω and Ω is a convex domain
of order α, we denote by Γ = ∂Ω. Let u(z) = 1+zp

z+p , which maps D
∗ onto D.

Choosing suitable θ, we have g(z) = eiθ · f ◦ u(z) as a meromorphic univalent
function from D∗ onto Ω∗ with g(∞) = ∞, g′(∞) > 0.

Let h(z) be a analytic univalent function from D onto Ω, and Γk={h(z) :
|z| = 1 − 1

k} for k = 2, 3 · · · . Then Γk are analytic by Lemma 2.1. We denote
by Ωk the interior domain of Γk and Ω∗

k the outer domain of Γk. Let gk be
the meromorphic univalent function from D∗ onto Ω∗

k with gk(∞) = ∞ and
g′k(∞) > 0, hk be the analytic univalent function from D onto Ωk.

By the definition, Ωk is a convex domain of order α. When z ∈ D, we have

Re

(

1 +
zh′′k(z)

h′k(z)

)

> α. (8)

Since hk(∂D) = gk(∂D
∗), hk and gk can be continuously extended to the bound-

ary |z| = 1. Following (8), we have

Re

(

1 +
zg′′k(z)

g′k(z)

)

> α, |z| = 1. (9)

Since gk is a meromorphic univalent function from D
∗ onto Ω∗

k with gk(∞) = ∞,
we have

lim
z→∞

Re

(

1 +
zg′′k(z)

g′k(z)

)

= 1. (10)

By (9), (10) and the maximum principle of harmonic function Re
(

1 +
zg′′

k (z)
g′

k
(z)

)

,

we have

Re

(

1 +
zg′′k(z)

g′k(z)

)

> α, |z| > 1. (11)
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Let w0 ∈ Ω2, ĝ(z) =
1

g(1/z)−w0
and ĝk(z) =

1
gk(1/z)−w0

. Then ĝ(z) and ĝk(z) are

defined in D with ĝ(0) = ĝk(0) = 0, ĝ′(0) > 0 and ĝk
′(0) > 0. Since Γk converge

to Γ in the sense of Carathéodory, applying the Carathéodory Convergence The-
orem [6, pp. 78] to ĝ(z) and ĝk(z), we know that ĝk converge locally uniformly
to ĝ in D. That means gk converge locally uniformly to g in D∗. Following (11),
we have

Re

(

1 +
zg′′(z)

g′(z)

)

> α, |z| > 1. (12)

When z ∈ D∗, since u(z) = 1+zp
z+p ∈ D, g(z) = eiθ · f ◦ u(z) and (12), we have

α < Re

(

1 +
zg′′(z)

g′(z)

)

= Re

(

1 +
z(p2 − 1)f ′′(u)

(z + p)2f ′(u)
− 2z

z + p

)

= Re

(

1− 2(1− up)

1− p2
− (1− up)(u− p)f ′′(u)

(1 − p2)f ′(u)

)

. (13)

It is easy to check that (13) is equivalent to, when u ∈ D,

Re

(

1 + p2 − 2pu+
(1 − up)(u− p)f ′′(u)

f ′(u)

)

< −α(1− p2). (14)

So (7) is proved.

Step 2: If f satisfies (7), we will prove that f is a concave function of order
α.

Let Ω∗ = f(D) and Ω = Ĉ\Ω∗. We will show that Ω is convex domain of
order α. Let u(z) = 1+zp

z+p , which maps D∗ onto D. We can choose suitable θ

such that g(D∗) = eiθ · f ◦ u(D∗) = Ω∗ and g(∞) = ∞, g′(∞) > 0. By the same
computation in (13), we have

Re

(

1 +
zg′′(z)

g′(z)

)

> α, z ∈ D
∗. (15)

Let h be a analytic univalent function in D with h(D) = Ω. Following the same
arguments as them in Step 1, when z ∈ D, we have,

Re

(

1 +
zh′′(z)

h′(z)

)

> α.

Hence, by the definition of convex domain of order α, we know that Ω is convex
domain of order α and f is concave function of order α.

3. Some Necessary Characterizations of Concave Functions of Order α
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For the class CO(p), some characterizations were obtained as follows.

Lemma 3.1. [16, Theorem 9.2] Let f ∈ S(p). Then f ∈ CO(p) if and only if

Re

(

1 + z
f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz

)

< 0, z ∈ D. (16)

Lemma 3.2. [14] For f ∈ CO(p), there exists an analytic function ϕ: D → D

with ϕ(p) = p such that

f ′(z) =
p2

(z − p)2(1− pz)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ. (17)

Conversely, for any analytic function ϕ : D → D with ϕ(p) = p, the function

f ∈ S(p) determined by (17) belongs to CO(p).

Parallel to Lemmas 3.1 and 3.2, in this section, we will give other character-
izations of f ∈ CO(p, α).

Theorem 3.3. Let f ∈ CO(p, α). Then

Re

(

1 +
zf ′′(z)

f ′(z)
− 1 + pz

1− pz
+
z + p

z − p

)

< −α(1− p)

(1 + p)
, z ∈ D. (18)

Proof. When p < r < 1, we let σ = (r − 1)p/(r − p2) ∈ D and Lr(z) =
r(z − σ)/(1− zσ̄). It is easy check that Lr(p) = p and Lr(D) = {z : |z| < r}.

For f ∈ CO(p, α), we let

P (z) = 2pz − 1− p2 − (z − p)(1− pz)f ′′(z)

f ′(z)
(19)

and

Qr(z) =
zP (Lr(z))− p+ pz2

(z − p)(1− pz)
. (20)

Then P (z) and Qr(z) are analytic in D.

When |z| = 1, it is easy to check that

Re

(

pz(z − 1
z )

(z − p)(1− pz)

)

= Re

(

p(z − z̄)

|1− pz|2
)

= 0, (21)

z

z − p
=

1

1− zp
. (22)
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Since Lr(z) ∈ D, (21), (22) and (7), when |z| = 1, we have

Re (Qr(z)) = Re

(

zP (Lr(z))

(z − p)(1− pz)
+

pz(z − 1
z )

(z − p)(1 − pz)

)

= Re

(

P (Lr(z))

|1− pz|2
)

>
α(1 − p2)

|1− pz|2 ≥ α(1 − p)

1 + p
. (23)

Since Qr(z) is analytic for |z| ≤ 1, Lr(z) → z as r → 1 and (23), letting r → 1,
we have

Re

(

zP (z)− p+ pz2

(z − p)(1− pz)

)

≥ α(1− p)

1 + p
, |z| = 1. (24)

By the maximum principle of harmonic function Re
(

zP (z)−p+pz2

(z−p)(1−pz)

)

, we have

Re

(

zP (z)− p+ pz2

(z − p)(1− pz)

)

>
α(1 − p)

1 + p
, z ∈ D. (25)

A straightforward computation gives

−1− zf ′′(z)

f ′(z)
+

1 + pz

1− pz
− z + p

z − p
= 2pz2−z−p2z−p+pz2

(z−p)(1−pz) − zf ′′(z)
f ′(z)

= zP (z)−p+pz2

(z−p)(1−pz) . (26)

By (25) and (26), we have

Re

(

−1− zf ′′(z)

f ′(z)
+

1 + pz

1− pz
− z + p

z − p

)

>
α(1− p)

1 + p
.

Then, we complete the proof.

Theorem 3.4. Let f ∈ CO(p, α). Then there exists an analytic function ϕ: D→D

such that

f ′(z) =
p2

(z − p)2(1− pz)2
exp

∫ z

0

−2
(

1− α(1−p)
(1+p)

)

ϕ(ζ)

1− ζϕ(ζ)
dζ. (27)

Proof. From [18, pp. 39], we know that for an analytic function ψ(z) in D with
Re (ψ(z)) > 0 and ψ(0) = 1, there exists an analytic function ϕ : D → D such

that ψ(z) = 1+zϕ(z)
1−zϕ(z) . By Theorem 3.3, we have an analytic function ϕ : D → D

such that

1

1− α(1−p)
(1+p)

(

−1− zf ′′(z)

f ′(z)
− z + p

z − p
+

1 + zp

1− zp
− α(1− p)

(1 + p)

)

=
1 + zϕ(z)

1− zϕ(z)
. (28)
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The equation (28) is equivalent to

1 +
zf ′′(z)

f ′(z)
+

2z − (z − p)

z − p
− 1− zp+ 2zp

1− zp
+
α(1 − p)

(1 + p)

= −
(

1− α(1 − p)

(1 + p)

)

1− zϕ(z) + 2zϕ(z)

1− zϕ(z)
. (29)

The left side of (29) is

zf ′′(z)

f ′(z)
+

2z

z − p
− 2pz

1− pz
− 1 +

α(1− p)

(1 + p)
,

and the right side of (29) is

−1 +
α(1 − p)

(1 + p)
−

2
(

1− α(1−p)
(1+p)

)

zϕ(z)

1− zϕ(z)
.

So we obtain

zf ′′(z)

f ′(z)
+

2z

z − p
− 2pz

1− zp
= −

2
(

1− α(1−p)
(1+p)

)

zϕ(z)

1− zϕ(z)
. (30)

Dividing both sides of (30) by z and integrating both sides, we have

log f ′(z)(z − p)2(1− zp)2 − log p2 =

∫ z

0

−2
(

1− α(1−p)
(1+p)

)

ϕ(ζ)

1− ζϕ(ζ)
dζ. (31)

It is easy to check that (31) is equivalent to

f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2
(

1− α(1−p)
(1+p)

)

ϕ(ζ)

1− ζϕ(ζ)
dζ. (32)

Then we finish the proof.

Remark 3.5. When α = 0, Theorems 3.3 and 3.4 correspond to the necessary
conditions of Lemmas 3.1 and 3.2 respectively.

4. Coefficient Estimate of Concave Univalent Functions of Order α

In [2], Avkhadiev and Wirths gave the coefficient estimate of f ∈ CO(p). Fol-
lowing the idea of proof of the Theorem in [2] and some lemmas, we will give
the proof of Theorem 2.2.

Lemma 4.1. Let f ∈ CO(p, α). Then for |z| < 1, |ζ| < 1, we have

Re

(

2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ
+
z + p

z − p
− 1 + pz

1− pz

)

< −α(1− p)

1 + p
. (33)
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Proof. When |z| < 1, |ζ| < 1, we define F (z, ζ) as

F (z, ζ) =

{

1 + zf ′′(z)
f ′(z) + z+p

z−p − 1+pz
1−pz , z = ζ,

2zf ′(z)
f(z)−f(ζ) −

z+ζ
z−ζ + z+p

z−p − 1+pz
1−pz , z 6= ζ.

Then F (z, ζ) is analytic in D×D for each f ∈ S(p). The case z = ζ was proved
in Theorem 3.3, here we omit its details. Next, we consider the case z 6= ζ.

We denote by Γ = {f(z) : |z| = r < 1}, which is the boundary curve of convex
domain of order α. Following [9], we know that a convex function of order α

is starlike of order at least β(α) ≥ 2α−1+
√
9−4α+4α2

4 ≥ α. By the definition of
concave function of order α and result in [18, pp. 45], we have

Re

(

zf ′(z)

f(z)−f(ζ)

)

=
∂

∂t
arg(f(reit)−f(reiθ)) <−α, z = reit 6= reiθ = ζ. (34)

When |z| = |ζ|, z 6= ζ, we have

Re

(

z + ζ

z − ζ

)

= 0. (35)

Hence,

Re

(

2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ

)

< −2α, |z| = |ζ|, z 6= ζ.

When |z| = 1, we have

Re

(

z + p

z − p
− 1 + pz

1− pz

)

= Re

(

1 + pz̄

1− pz̄
− 1 + pz

1− pz

)

= Re

(

2p(z̄ − z)

|1− pz|2
)

= 0. (36)

Letting r → 1, by the maximum principle of harmonic function Re ( 2zf ′(z)
f(z)−f(ζ) −

z+ζ
z−ζ + z+p

z−p − 1+pz
1−pz ), we have

Re

(

2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ
+
z + p

z − p
− 1 + pz

1− pz

)

< −2α, z 6= ζ, |z|, |ζ| < 1.

It’s obvious that

Re

(

2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ
+
z + p

z − p
− 1 + pz

1− pz

)

< −2α < −α(1− p)

1 + p
. (37)

So we have (33).

Lemma 4.2. [6] Let h(z) be analytic function in D with h(z) = 1 +
∑∞

n=1 cnz
n

and Re (h(z)) > 0. Then

|cn| ≤ 2, n = 1, 2 · · · .

This inequality is sharp for each n.
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Lemma 4.3. Let f ∈ CO(p, α). Then for z ∈ D\{0}, we have

∣

∣

∣

∣

1

f(z)
− 1

z
+

1

p
+ p

∣

∣

∣

∣

≤ 1− α(1− p)

1 + p
. (38)

Proof. The main idea of the proof is similar to Miller [13], his result is the key
to get the Taylor coefficient estimate. We show the proof in detail.

For z, ζ (ζ 6= 0) ∈ D, let

−h(z) = 2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ
+
z + p

z − p
− 1 + pz

1− pz
+
α(1− p)

1 + p
.

By Lemma 4.1, we have Re (h(z)) > 0. A straightforward computation gives

h(0) = 1− α(1 − p)

1 + p
,

and

h′(z) = −2f ′(z) + 2zf ′′(z)

f(z)− f(ζ)
+

2zf ′(z)
2

(f(z)− f(ζ))2
− 2ζ

(ζ − z)2
+

2p

(z − p)2
+

2p

(1 − pz)2
.

A simple computation gives

h′(0) =
2

f(ζ)
− 2

ζ
+

2

p
+ 2p.

Hence, h(z) has the following Taylor expansion

h(z) = 1− α(1 − p)

1 + p
+

(

2

f(ζ)
− 2

ζ
+

2

p
+ 2p

)

z + · · · . (39)

By Lemma 4.2, we obtain

∣

∣

∣

∣

1

f(ζ)
− 1

ζ
+

1

p
+ p

∣

∣

∣

∣

≤ 1− α(1 − p)

1 + p
. (40)

Lemma 4.4. Let f ∈ CO(p, α). Then there exists an analytic function ω : D → D,

such that

f(z) =
z(1− zp(1−p2λ2)

1−p4λ2 )

(1− zp)(1− z
p )

−
λp(1−p2)
1−p4λ2 z

2ω(z)

(1 − zp)(1− z
p )
, z ∈ D, (41)

where γ = 1− α(1−p)
1+p and λ =

p(1−γ2)+
√

(γ2−p2)(1−γ2p2)−p2(1−γ2)2

1−γ2p2 .
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Proof. Let

W (z) =
1

f(z)
− 1

z
+

1

p
+ p. (42)

Then W (p) = p. By (40), we have W (D) ⊂ D
1−α(1−p)

1+p

, where D
1−α(1−p)

1+p

= {z ∈
C : |z| < 1− α(1−p)

1+p }. For convenience, we denote by γ = 1− α(1−p)
1+p .

Let $ = A(z) = z−p
1−zp . By some direct computations, we have that

A(Dγ) is a disk with the center − p(1−γ2)
1−γ2p2 and radius

√
(γ2−p2)(1−γ2p2)−p2(1−γ2)2

(1−γ2p2) .

So, A(Dγ) is contained in the disk with the center 0 and radius λ =
p(1−γ2)+

√
(γ2−p2)(1−γ2p2)−p2(1−γ2)2

1−γ2p2 .

Let ṽ(z) = 1
λA ◦W . Then

W (z) =
λṽ(z) + p

1 + λpṽ(z)
. (43)

Since ṽ(z) maps D into D and p to the origin, by Schwarz Lemma, we have

|ṽ(z)| ≤ |A(z)|, z ∈ D.

Let analytic function v(z) = ṽ(z)
A(z) . By (43), we have

W (z) =
λ z−p
1−zpv(z) + p

1 + λp z−p
1−zpv(z)

. (44)

Following (42) and (44), we have

f(z) =
z[1− zp+ λp(z − p)v(z)]

(1− zp)(1− z
p )(1− λp2v(z))

. (45)

We could writ v(z) as a suitable form

v(z) =
λp2 − ω(z)

1− λp2ω(z)
, (46)

then inserting (46) into (45), we obtain (41).

Up to now, we have obtained the formula representation of the function
f ∈ CO(p, α). In order to estimate the Taylor coefficient in (4), we need the
following result.

Lemma 4.5. [2] Let ϕ(z) =
∑∞

k=0 ckz
k be an analytic function in D with ϕ(D) ⊂

D. Then for any m ≥ 0, we have
∣

∣

∣

∣

∣

m
∑

k=0

ck
1− p2(m−k)+2

pm−k

∣

∣

∣

∣

∣

≤ 1− p2m+2

pm
. (47)
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From Lemma 4.4, we can get the coefficient estimate of f ∈ CO(p, α) by
estimating the coefficient of ω(z). By these lemmas, we give the proof of Theorem
4.6.

By Theorem 2.2 and some lemmas, we consider the Livingston conjecture of
f ∈ CO(p, α) and obtain the following theorem.

Theorem 4.6. Let f ∈ CO(p, α) with the expansion (4). Then

∣

∣

∣

∣

an − 1− λ2p2n+2

pn−1(1− λ2p4)

∣

∣

∣

∣

≤ λp2(1− p2n−2)

pn−1(1− λ2p4)
, n ≥ 2, (48)

where γ = 1− α(1−p)
1+p , λ =

p(1−γ2)+
√

(γ2−p2)(1−γ2p2)−p2(1−γ2)2

1−γ2p2 .

Proof. By Lemma 4.4, for f ∈ CO(p, α), we have

f(z) =
z(1− zp(1−p2λ2)

1−p4λ2 )

(1− zp)(1− z
p )

−
λp(1−p2)
1−p4λ2 z

2ω(z)

(1− zp)(1− z
p )
.

We write f(z) as the form

f(z) = h(z) + g(z), (49)

where h(z) =
z(1− zp(1−p2λ2)

1−p4λ2 )

(1−zp)(1− z
p
) , and g(z) = −

λp(1−p2)

1−p4λ2 z2ω(z)

(1−zp)(1− z
p
) .

Straightforward computations give

h(z) =
z(1− zp(1−p2λ2)

1−p4λ2 )

(1− zp)(1− z
p )

= z

(

1

1− λ2p4
1

1− z
p

− λ2p4

1− λ2p4
1

1− zp

)

=

∞
∑

n=0

(

1

pn(1− λ2p4)
− λ2p4pn

1− λ2p4

)

zn+1

=

∞
∑

n=1

1− λ2p2n+2

pn−1(1− λ2p4)
zn, |z| < p, (50)

and

g(z) = −
λp(1−p2)
1−p4λ2 z

2ω(z)

(1− zp)(1− z
p )

= −ω(z)
(

λp

1− λ2p4
1

1− z
p

− λp3

1− λ2p4
1

1− zp

)

z2
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= −ω(z)
∞
∑

n=0

(

λp

pn(1− λ2p4)
− λp3pn

1− λ2p4

)

zn+2

= −ω(z)
∞
∑

n=0

λp(1 − p2n+2)

pn(1− λ2p4)
zn+2, |z| < p. (51)

Hence, it remains to show the nth Taylor coefficient of ω(z). Let

ω(z) =

∞
∑

k=0

ckz
k. (52)

Then (51) becomes

g(z) =

∞
∑

n=2

bn(ω)z
n, |z| < p. (53)

By (51), (52) and (53), we have

bn(ω) = −
n−2
∑

k=0

ck
λp2

pn−k−1

1− p2(n−k)−2

1− λ2p4
. (54)

For convenience, we set m = n− 2. Then (54) is written as

bm(ω) = −
m
∑

k=0

ck
1− p2(m−k)+2

pm−k+1

λp2

1− λ2p4
.

By Lemma 4.5, for ω as (52) and any m ≥ 0, we have

|bm(ω)| =
∣

∣

∣

∣

∣

m
∑

k=0

ck
1− p2(m−k)+2

pm−k

λp2

p(1− λ2p4)

∣

∣

∣

∣

∣

≤ 1− p2m+2

pm
λp2

p(1− λ2p4)
. (55)

It’s easy to check that (55) is equivalent to

|bn(ω)| ≤
λp2(1 − p2n−2)

pn−1(1− λ2p4)
. (56)

Combining (49), (50), (51) and (56), we obtain (48).

Remark 4.7. When α = 0, Theorems 2.2 and 4.6 correspond to Lemmas 1.1 and
1.2 respectively.
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