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Abstract. The uniqueness problems of entire function that share a non-zero finite value
have been studied and many results on this topic have been obtained. In this paper
we prove a uniqueness theorem for an entire function, which shares polynomials with
its higher order derivatives. In particular, the result of the paper is an improvement
of the corresponding results of H. Zhong [8] and I. Lahiri and G.K. Ghosh [5].
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1. Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the open complex plane C

and a = a(z) be a polynomial. We denote by E(a; f) the set of zeros of f − a,
counted with multiplicities and by E(a; f) the set of distinct zeros of f − a.

If for two meromorphic functions f and g, E(a; f) = E(a; g) then we say that
f and g share a CM and if E(a; f) = E(a; g) then we say that f and g share a
IM.

For standard definitions and notations of the value distribution theory we
refer the reader to [3] and [6].

There are some results related to value sharing. In the begining, G. Jank, E.
Mues and L. Volkmann [4] considered the case when an entire function shared
a single value with its first two derivatives and proved the following theorem.

Theorem 1.1. [4] Let f be a non-constant entire function and a be a non-zero
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finite value. If E(a; f) = E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).

In 2002, J. Chang and M. Fang [1] extended Theorem 1.1 in the following
way.

Theorem 1.2. [1] Let f be a non-constant entire function and a, b be two non-

zero finite constants. If E(a; f) ⊂ E(a; f (1)) ⊂ E(b; f (2)), then either f =

λe
bz
a + ab−a2

b
or f = λe

bz
a + a, where λ(6= 0) is a constant.

Following example shows that in Theorem 1.1 the second derivative cannot
be replaced by any higher order derivatives.

Example 1.3. [8] Let k(≥ 3) be an integer and ω(6= 1) be a (k − 1)th root of
unity. We put f = eωz + ω − 1. Then f , f (1) and f (k) share the value ω CM,
but f 6≡ f (1).

On the basis of this example, H. Zhong [8] improved Theorem 1.1 by consid-
ering higher order derivatives in the following way.

Theorem 1.4. [8] Let f be a non-constant entire function and a be a non-zero

finite complex constant. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For further discussion we need the following notation.

Let f be a non-constant meromorphic function. For A ⊂ C, we define
NA(r, a; f) as follows

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r,

where nA(t, a; f) is the number of zeros of f − a, counted with multiplicities,
which lie in {z : |z| ≤ r} ∩ A. For A ⊂ C ∪ {∞}, the counting function (re-
duced counting function) of those a-points of f which belong to A is denote by
NA(r, a; f)(NA(r, a; f)). Let T (r, f) be the characteristic function of f . We de-
note by S(r, f) is any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ possibly
outside a set of finite linear measure. A meromorphic function a = a(z) defined
in C is called a small function of f if T (r, a) = S(r, f).

For two subsets A and B of C, we denote by A4B the symmetric difference
of A and B i.e., A4 B = (A−B) ∪ (B −A).

In 2011, I. Lahiri and G.K. Ghosh [5] improved Theorem 1.4 in the following
manner.

Theorem 1.5. [5] Let f be a non-constant entire function and a, b be two non-

zero finite constants. Suppose further that A = E(a; f) \ E(a; f (1)) and B =
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E(a; f (1)) \ E(a; f (n)) ∩ E(b; f (n+1)) for n(≥ 1).

If

(i) NA(r, a; f) +NB(r, a; f
(1)) = S(r, f),

(ii) each common zero of f − a and f (1) − a has the same multiplicity,

then either f = λe
bz
a + ab−a2

b
or f = λe

bz
a + a, where λ(6= 0) is a constant.

In Theorem 1.5, I. Lahiri and G.K. Ghosh considered an entire function which
shares constants with its derivatives. In this paper we improve Theorem 1.5 by
considering an entire function which shares polynomials. The main result of the
paper is the following theorem.

Theorem 1.6. Let f be a non-constant entire function and a(6≡ 0), b(6≡ 0) be

two polynomials of degree p(≥ 1) and q(≥ 1) respectively. Also suppose that n(≥
max{p, q}) be a positive integer. Further suppose that A = E(a; f)∆E(a; f (1))
and B = E(a; f (1))\{E(a; f (n)) ∩ E(b; f (n+1)) ∩ E(a; f (n+2))}.

If

(i) NA(r, a; f) +NB(r, a; f
(1)) = S(r, f),

(ii) E1)(a; f) ⊂ E(a; f (1)), E1)(a; f) are the simple zeros of f − a,

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then the following statements hold:

(i) for n = 1, f = λez, where λ(6= 0) is a constant,

(ii) for n > 1, either f = λez or a ≡ b and f = λez + a,

where λ(6= 0) is a constant.

Putting A = B = Φ, we get the following corollary.

Corollary 1.7. Let f be a non-constant entire function and a(6≡ 0), b(6≡ 0) be

two polynomials of degree p(≥ 1) and q(≥ 1) respectively. Also suppose that

n(≥ max{p, q}) be a positive integer. If E(a; f) = E(a; f (1)) ⊂ {E(a; f (n)) ∩
E(b; f (n+1)) ∩E(a; f (n+2))}, then the conclusion of Theorem 1.6 holds.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. [3, pp. 47] Let f be a non-constant meromorphic function and

a1, a2, a3 be three distinct meromorphic functions satisfying T (r, aν) = S(r, f)
for ν = 1, 2, 3. Then

T (r, f) ≤

3
∑

ν=1

N(r, aν ; f) + S(r, f).
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Lemma 2.2. [7] Let g be a transcendental meromorphic function and φ(6≡ 0) be

a meromorphic function satisfying T (r, φ) = S(r, g). Then

T (r, g) ≤ Cn{N(r, 0; g) +N(r, 0; g(n) − φ)} + S(r, g),

where Cn is a constant depending only on n(≥ 1).

Following lemma is an easy consequence of Lemma 2.2.

Lemma 2.3. Let f be a transcendental meromorphic function. Also let a and b be
two meromorphic functions satisfying b−a(n) 6≡ 0 and T (r, a)+T (r, b) = S(r, f).
Then

T (r, f) ≤ Cn{N(r, a; f) +N(r, b; f (n))} + S(r, f),

where Cn is a constant depending only on n(≥ 1).

Proof. Putting g = f − a and φ = b− a(n) in Lemma 2.2, we obtain Lemma 2.3.

Lemma 2.4. [3, pp. 57] Suppose that g be a non-constant meromorphic func-

tion and ψ =
∑l

ν=0 aνg
(ν), where aν

′s are meromorphic functions satisfying

T (r, aν) = S(r, g) for ν = 1, 2, . . . , l. If ψ is non-constant, then

T (r, g) ≤ N(r,∞; g) +N(r, 0; g) +N(r, 1;ψ) + S(r, g).

The above lemma motivates us to prove the following:

Lemma 2.5. Let f be a transcendental meromorphic function and a be a polyno-

mial. Then for any positive integer n,

T (r, f) ≤ N(r,∞; f) +N(r, a; f) +N(r, a; f (n)) + S(r, g).

Proof. Putting g = f − a and ψ = g(n)

a−a(n) in Lemma 2.4, we obtain Lemma 2.5.

Lemma 2.6. [3, pp. 69] Let f be a non-constant meromorphic function and

g(z) = fn(z) + Pn−1(f),

where Pn−1(f) is a differential polynomial generated by f and of degree at most

n− 1.

If N(r,∞; f) +N(r, 0; g) = S(r, f), then g(z) = hn(z), where h(z) = f(z) +
a(z)
n

and hn−1(z)a(z) is obtained by substituting h(z) for f(z), h(1)(z) for f (1)(z)
etc. in the terms of degree n− 1 in Pn−1(f).
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Let us note the special case, where Pn−1(f) = a0(z)f
n−1+ terms of degree

n− 2 at most. Then hn−1(z)a(z) = a0(z)h
n−1(z) and so a(z) = a0(z). Hence

g(z) =

(

f(z) +
a0(z)

n

)n

.

Lemma 2.7. [6, pp. 92] Suppose that f1, f2, . . . , fn(n ≥ 3) are meromorphic

functions which are not constants except for fn. Furthermore, let
∑n

j=1 fj ≡ 1.

If fn 6≡ 0 and
∑n

j=1N(r, 0; fj)+(n−1)
∑n

j=1N(r,∞; fj) < {λ+o(1)}T (r, fk),
where r ∈ I, k = 1, 2, . . . , n− 1 and λ < 1, then fn ≡ 1.

Lemma 2.8. [2] Let f be a non-constant meromorphic function and n be a positive

integer. If there exist meromorphic functions a0(6≡ 0), a1, a2, . . . , an such that

a0f
n + a1f

n−1 + · · ·+ an−1f + an ≡ 0,

then

m(r, f) ≤ nT (r, a0) +

n
∑

j=1

m(r, aj) + (n− 1) log 2.

Lemma 2.9. Let f be a meromorphic function. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0f q + b1f q−1 + · · ·+ bq
(a0b0 6≡ 0),

where a0, a1, a2, . . . , ap, b0, b1, b2, . . . , bq are meromorphic functions, then

T (r, R(f)) ≤ O(T (r, f) +

p
∑

i=1

T (r, ai) +

q
∑

j=1

T (r, bj)).

Proof. The Lemma follows from the properties of the characteristic function and
the First Fundamental Theorem.

3. Proof of the Main Theorem

First we verify that f is not a polynomial. If f is a polynomial then T (r, f) =
O(log r) and so NA(r, a; f) + NB(r, a; f

(1)) = S(r, f) implies that A = B = Φ.
Therefore by the hypothesis

E(a; f)∆E(a; f (1)) = {E(a; f)− E(a; f (1))} ∪ {E(a; f (1))− E(a; f)} = Φ.
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This implies

E(a; f) = E(a; f (1)) ⊂ {E(a; f (n)) ∩ E(b; f (n+1)) ∩ E(a; f (n+2))}. (1)

Let deg(f) = u. If u ≥ p + 1, then deg(f − a) = u, deg(f (1) − a) ≤ u − 1.
From (1) and each common zero of f − a and f (1) − a has the same multiplicity,
we arrive at a contradiction.

If u ≤ p − 1, then deg(f − a) = p and deg(f (1) − a) = p. By (1) and each
common zero of f − a and f (1) − a has the same multiplicity, we can write
f (1) − a ≡ c(f − a), where c(6= 0) is a constant.

If c 6= 1, then cf − f (1) ≡ (c − 1)a, which is impossible as deg((c − 1)a) =
p > u = deg(cf − f (1)).

If c = 1 then f = f (1), which is again a contradiction.

Finally if u = p, then from (1), c1f ≡ a ≡ c2f
(1), for some nonzero constants

c1, c2. This is again a contradiction.

Therefore f is a transcendental entire function and T (r, a) = S(r, f).

Since a−a(1) = (f (1)−a(1))− (f (1)−a), a common zero of f −a and f (1)−a
of multiplicity v(≥ 2) is a zero of a−a(1) with multiplicity v−1(≥ 1). Therefore

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f)

= S(r, f). (2)

To prove our result, we first consider the following function

F = f − a.

Then from

ω =
f (1) − a

f − a
, (3)

we obtain

F (1) = f (1) − a(1)

= f (1) − a+ (a− a(1))

= ωF + (a− a(1))

= α1F + β1, (4)

where α1 = ω and β1 = a− a(1) = r (say).

Differentiating both sides of (4) and then using (4), we have

F (2) = α1F
(1) + α

(1)
1 F + β

(1)
1

= α1(α1F + β1) + α
(1)
1 F + β

(1)
1

= (α1α1 + α
(1)
1 )F + α1β1 + β

(1)
1

= α2F + β2, (5)
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where α2 = α1α1 + α
(1)
1 and β2 = α1β1 + β

(1)
1 .

Similarly,

F (k) = αkF + βk, (6)

where αk+1 = α1αk + α
(1)
k and βk+1 = β1αk + β

(1)
k , for k = 1, 2, . . ..

Now we shall prove that

T (r, ω) = S(r, f). (7)

If ω is a constant, then we get T (r, ω) = S(r, f).

So we suppose that ω is non-constant. Clearly from the hypothesis, we obtain

N(r, 0;ω) +N(r,∞;ω) ≤ NA(r, a; f) +NA(r, a; f
(1))

= S(r, f). (8)

Now putting k = 1 in αk+1 = α1αk + α
(1)
k , we have

α2 = α1α1 + α
(1)
1

= ω2 + ω(1)

= ω2 + ωh1,

where h1 = ω(1)

ω
.

Again putting k = 2 in αk+1 = α1αk + α
(1)
k , we get

α3 = α1α2 + α
(1)
2

= ω(ω2 + ωh1) + (ω2 + ωh1)
(1)

= ω3 + ω2h1 + 2ωω(1) + ωh
(1)
1 + ω(1)h1

= ω3 + ω2h1 + 2ω2h1 + ωh
(1)
1 + ωh21

= ω3 + 3h1ω
2 + h2ω,

where h2 = h
(1)
1 + h21.

Similarly,

ω4 = ω4 + 6h1ω
3 + (h2 + 6h21 + 3h

(1)
1 )ω2 + (h

(1)
2 + h1h2)ω.

Therefore in general, we get for k ≥ 2

αk = ωk +

k−1
∑

j=1

γjω
j , (9)

where

T (r, γj) = O(N(r, 0;ω) +N(r,∞;ω)) + S(r, ω)

= S(r, f),
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for j = 1, 2, . . . , k − 1.

Now putting k = 1 in βk+1 = β1αk + β
(1)
k , we get

β2 = β1α1 + β
(1)
1

= ωr + r(1).

Also putting k = 2 in βk+1 = β1αk + β
(1)
k , we have

β3 = β1α2 + β
(1)
2

= r(ω2 + ωh1) + (ωr + r(1))(1)

= rω2 + rh1ω + ωr(1) + ω(1)r + r(2)

= rω2 + (r(1) + 2rh1)ω + r(2).

Similarly,

β4 = rω3 + (5h1ω + r(1))ω2 + (3r(1)h1 + 4rh
(1)
1 + r2 + h2r)ω + r(3).

Therefore in general, we get for k ≥ 2

βk =
k−1
∑

j=1

δjω
j + r(k−1), (10)

where

T (r, δj) = O(N(r, 0;ω) +N(r,∞;ω)) + S(r, ω)

= S(r, f),

for j = 1, 2, . . . , k − 1.

Before going to prove (7), let us divide the proof into the following two cases.

Case 1. In this case we suppose that p = n = q = 1. Here we have to consider
following subcases.

Subcase 1.1. Let f (1) 6≡ f (2). Then we have two possibilities either bf (1) ≡
af (2) or bf (1) 6≡ af (2).

Subcase 1.1.1. First we suppose that bf (1) ≡ af (2). If E(a; f (1))∩E(b; f (2))∩
E(a; f (3)) = Φ, then N(r, a; f (1)) = NB(r, a; f

(1)) = S(r, f).

Now from hypothesis and (2), we have

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f |f (1) = a)

≤ N1)(r, a; f |f
(1) = a) +N(2(r, a; f |f

(1) = a) + S(r, f)

≤ N(r, a; f |f (1) = a) +N(2(r, a; f
(1)) + S(r, f)

≤ N(r, a; f (1)) + S(r, f)

= S(r, f),

where N1)(r, a; f |f
(1) = a) denotes the simple a-points of f which are also a-

points of f (1).
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Using Lemma 2.3, we have T (r, f) = S(r, f), which is a contradiction. Hence
E(a; f (1))∩E(b; f (2))∩E(b; f (3)) 6= Φ. Now differentiating both sides of bf (1) ≡
af (2), we obtain

bf (2) + b(1)f (1) ≡ af (3) + a(1)f (2).

This implies

af (3) ≡ (b− a(1))f (2) + b(1)f (1)

≡

(

b2

a
−
ba(1)

a
+ b(1)

)

f (1).

If z1 is a zero of f (1) − a which is also zero of f (2) − b and f (3) − a, then from
the above identity, we get z1 is a zero of a2 − b2 − ab(1) + a(1)b.

If a2 − b2 − ab(1) + a(1)b 6≡ 0, then using (2),

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(r, a; f (1)|f (2) = b, f (3) = a)

≤ O(log r) + S(r, f)

= S(r, f).

Again

N(r, a; f (1)) ≤ NB(r, a; f
(1)) +N(r, a; f (1)|f (2) = b, f (3) = a)

≤ O(log r) + S(r, f)

= S(r, f).

Applying Lemma 2.3, we get T (r, f) = S(r, f), which is a contradiction.

Hence

a2 − b2 − ab(1) + a(1)b ≡ 0.

This implies

(a

b

)2

+
(a

b

)(1)

≡ 1.

Therefore

a

b
≡
e2z − c1
e2z + c1

,

where c1 is a constant.

Since a and b are polynomials, so a
b
is a rational function, we get c1 = 0.

Therefore from the above equality, we have a ≡ b. Hence bf (1) ≡ af (2) implies
that f (1) ≡ f (2), a contradiction.
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Subcase 1.1.2. Next we suppose that bf (1) 6≡ af (2). Then by the hypothesis
of theorem, we have

N(r, a; f (1)) ≤ N

(

r,
b − a(2)

a− a(1)
;
f (2) − a(2)

f (1) − a(1)

)

+NB(r, a; f
(1))

≤ T

(

r,
f (2) − a(2)

f (1) − a(1)

)

+ S(r, f)

= m

(

r,
f (2) − a(2)

f (1) − a(1)

)

+N

(

r,
f (2) − a(2)

f (1) − a(1)

)

+ S(r, f)

≤ N(r, a(1); f (1)) + S(r, f). (11)

Again

m(r, a; f) = m

(

r,
f (1) − a(1)

f − a
·

1

f (1) − a(1)

)

≤ m

(

r,
f (1) − a(1)

f − a

)

+m

(

r,
1

f (1) − a(1)

)

= m(r, a(1); f (1)) + S(r, f)

= T (r, f (1))−N(r, a(1); f (1)) + S(r, f)

≤ T (r, f)−N(r, a(1); f (1)) + S(r, f).

This implies

N(r, a(1); f (1)) ≤ N(r, a; f) + S(r, f). (12)

Combining (11) and (12), we get

N(r, a; f (1)) ≤ N(r, a; f) + S(r, f).

Applying Lemma 2.5 and using above equality, we obtain

T (r, f) ≤ 2N(r, a; f) + S(r, f). (13)

Let

Φ =
(a− a(1))f (2) − b(f (1) − a(1))

f − a
. (14)

Then by the Lemma of logarithmic derivative, we get m(r,Φ) = S(r, f).

Now by the hypothesis of our result and using (2), we have

N(r,Φ) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) + S(r, f)

= S(r, f).

Therefore T (r,Φ) = S(r, f).
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Since in this case p = 1 i.e., a is a linear polynomial, so we must have a(2) = 0.
Now from (14), we obtain

ΦF = rF (2) − bF (1).

Substituting the values of F (1) and F (2) in the above equation, we get

ΦF = r((ω2 + ωh1)F + ωr + r(1))− b(ωF + r).

Which implies

[

rω2 + (rh1 − b)ω − Φ
]

F + r2ω − (b − a(1))r = 0. (15)

If rω2 + (rh1 − b)ω − Φ 6≡ 0, then from (15) we have

F = −
r2ω − (b− a(1))r

rω2 + (rh1 − b)ω − Φ
. (16)

Applying Lemma 2.9 to the above equation, we get

T (r, F ) = O(T (r, ω)) + S(r, f).

Hence

T (r, f) = T (r, F + a)

≤ T (r, F ) + T (r, a) + log 2

= T (r, F ) + S(r, f).

Again

T (r, F ) = T (r, f − a)

≤ T (r, f) + T (r, a) + log 2

= T (r, f) + S(r, f).

Therefore

T (r, f) = T (r, F ) + S(r, f)

= O(T (r, ω)) + S(r, f),

which implies that S(r, f) is replaced by S(r, ω).

From (16) we see that F is a rational function in ω, which can be made
irreducible. We set

F =
Aφ(ω)

Bφ+1(ω)
, (17)

where Aφ(ω) and Bφ+1(ω) are relatively prime polynomials in ω of respective
degrees φ and φ+1 (φ = 0, 1). The coefficients of both the polynomials are small
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functions of ω. Without loss of generality we assume that Bφ+1(ω) is a monic
polynomial. Also we note that the counting function of the common zeros of
Aφ(ω) and Bφ+1(ω) is S(r, ω), because Aφ(ω) and Bφ+1(ω) are relatively prime
and the coefficients are small functions of ω.

Again since N(r,∞;F ) = S(r, f) = S(r, ω), then from (17), we get

N(r, 0;Bφ+1(ω)) = S(r, ω).

From (8), we can easily see that

N(r,∞;ω) = S(r, f) = S(r, ω).

Applying Lemma 2.6, we obtain

Bφ+1(ω) =

(

ω +
Q

φ+ 1

)φ+1

, (18)

where Q is the coefficient in ωφ in Bφ+1(ω).

If Q 6≡ 0, then using Lemma 2.1 we have

T (r, ω) ≤ N(r, 0;ω) +N(r,∞;ω) +N

(

r,−
Q

φ+ 1
;ω

)

+ S(r, ω)

= N(r, 0;Bφ+1(ω)) + S(r, ω)

= S(r, ω),

which is a contradiction. Hence Q ≡ 0 and from (17) and (18), we have

F =
Aφ(ω)

ωφ+1
. (19)

Differentiating both sides of (19), we get

F (1) = h1
ωA

(1)
φ (ω)− (φ + 1)Aφ(ω)

ωφ+1
, (20)

where h1 = ω(1)

ω
.

We note that

T (r, h1) = O(N (r, 0;ω) +N(r,∞;ω)) +m(r, h1)

= S(r, f) + S(r, ω)

= S(r, ω). (21)

From (20), (21) and the properties of characteristic function, we obtain

T (r, F (1)) ≤ (φ+ 1)T (r, ω) + S(r, ω). (22)
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Again from (4) and (19), we get

F (1) = ωF + r

= ω

(

Aφ(ω)

ωφ+1

)

+ r

=
Aφ(ω)

ωφ
+ r,

where r = a− a(1) 6= 0.

Therefore

T (r, F (1)) ≤ φT (r, ω) + S(r, ω). (23)

Combining (22) and (23), we have

T (r, ω) = S(r, ω),

which is again a contradiction.

Now if rω2 + (rh1 − b)ω − Φ ≡ 0, then using Lemma 2.8 we conclude (7).

Again from (15) we have

r2
(

b− a(1)

a− a(1)
− ω

)

= 0.

Since r2 6≡ 0, we get

ω =
b− a(1)

a− a(1)
. (24)

From (3) and (24), we get

f (1) − a

f − a
=
b− a(1)

a− a(1)

or

f (1)(a− a(1))− f(b− a(1))− a(a− b) = 0. (25)

Differentiating (25) twice, we get

f (3)(a− a(1)) + f (2)(3a(1) − b)− f (1)2b(1))− 2a(1)(a(1) − b(1)) = 0. (26)

Now for a zero of f − a which is common zero of f (1) − a, f (2) − b and f (3) − a,
we have

(a2 − b2) + (3a(1)b− 2ab(1) − aa(1))− 2a(1)(a(1) − b(1)) = 0. (27)

If a 6≡ b, then the left hand side of (27) is not identically equal to zero.
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Then we have

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(r, a; f |f (1) = a, f (2) = b, f (3) = a)

= O(log r) + S(r, f)

= S(r, f).

From (13) and above equality, we get

T (r, f) = S(r, f),

which is a contradiction.

If a ≡ b then from (25), f (1) = f and so f (1) = f (2), which is again a
contradiction.

Subcase 1.2 Next we suppose that f (1) ≡ f (2). Then on integration, we get

f = λez + η, (28)

where λ(6= 0), η are constants.

Then obviously from (28) we have

f = f (1) + η. (29)

If f − a and f (1) − a have no common zero then N(r, a; f) = S(r, f) and from
(13), T (r, f) = S(r, f), a contradiction.

So f − a and f (1) − a have some common zeros and from (29), η = 0.

Therefore f = λez, λ(6= 0) is a constant.

Case 2. In this case, we suppose that n > 1. We now consider the following
subcases.

Subcase 2.1. Let f (n) 6≡ f (n+1). Then we have two possibilities either
af (n+1) ≡ bf (n) or af (n+1) 6≡ bf (n).

Subcase 2.1.1. Let af (n+1) ≡ bf (n). Then following the similar arguments of
Subcase 1.1.1, we can easily prove that a ≡ b and then af (n+1) ≡ bf (n) implies
that f (n+1) ≡ f (n), which contradicts our assumption f (n+1) 6≡ f (n).

Subcase 2.1.2. Let af (n+1) 6≡ bf (n). Then following the similar arguments of
Subcase 1.1.2 and applying Lemma 2.5, we can prove that

T (r, f) ≤ 2N(r, a; f) + S(r, f). (30)

Now we suppose that

Ψ =
(a− a(n))f (n+1) − b(f (n) − a(n))

f − a
. (31)

Then by (2) and the hypothesis of Theorem 1.6, we have

N(r,Ψ) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) + S(r, f)

= S(r, f).
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Clearly, m(r,Ψ) = S(r, f). Hence T (r,Ψ) = S(r, f).
Now (31) can be rewritten as

ΨF − (a− a(n))F (n+1) + bF (n) ≡ 0,

where F = f − a.

Now proceeding as in Subcase 1.1.2, we have T (r, ω) = S(r, f), where ω is
given in (3).

Therefore T (r, αk) + T (r, βk) = S(r, f) for k = 1, 2, . . ., where αk and βk are
defined respectively in (9) and (10).

Let z3 be a zero of F = f − a such that z3 /∈ A ∪ B. For k = n + 1, we get
from (6)

F (n+1) = αn+1F + βn+1

or

f (n+1) = αn+1(f − a) + βn+1. (32)

Since z3 /∈ A∪B, then z3 must be a zero of f − a, f (1) − a, f (n) − a, f (n+1) − b,
f (n+2) − a.

Therefore f(z3) = a(z3) and f
(n+1)(z3) = b(z3).

From (32), we have

b(z3) = βn+1(z3).

If βn+1(z) 6≡ b(z), then we obtain

N(r, a; f) ≤ NA(r, 0; f − a) +N(r, 0; b− βn) + S(r, f)

= S(r, f).

From (30) we get T (r, f) = S(r, f), a contradiction.

Hence

βn+1(z) ≡ b(z).

Differentiating both sides of (32), we have

f (n+2) = αn+1(f
(1) − a(1)) + α

(1)
n+1(f − a) + β

(1)
n+1.

At the point z3, we get

a(z3) = αn+1(z3)(a(z3)− a(1)(z3)) + β
(1)
n+1(z3).

Again if

αn+1(z)(a(z)− a(1)(z)) + β
(1)
n+1(z) 6≡ a(z),



702 M.M. Rahaman

then we have

N(r, a; f) ≤ NA(r, 0; f − a) +N(r, 0; a− αn+1(a− a(1))− β
(1)
n+1) + S(r, f)

= S(r, f).

Again from (30), we get T (r, f) = S(r, f), which is a contradiction.

Hence

αn+1(z)(a(z)− a(1)(z)) + β
(1)
n+1(z) ≡ a(z)

or

αn+1(z)(a(z)− a(1)(z)) + b(1)(z) = a(z).

This implies

αn+1 =
a− b(1)

a− a(1)
.

Putting the values of αn+1 and βn+1 in (32), we have

f (n+1) =
a− b(1)

a− a(1)
(f − a) + b. (33)

Rewriting (33), we get

1

f − a
=

1

b

(

f (n+1)

f − a
−
a− b(1)

a− a(1)

)

.

Hence

m(r, a; f) ≤ O(log r) + S(r, f)

= S(r, f).

Therefore

T (r, f) = N(r, a; f) + S(r, f). (34)

Now if possible let a 6≡ b, then from (33), we can see that the number of common
zeros of f − a and f (n) − a at most finite.

Hence by hypothesis, we have

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f |f (n) = a)

= O(log r) + S(r, f)

= S(r, f). (35)

Combining (34) and (35), we get T (r, f) = S(r, f), which is a contradiction.
Therefore a ≡ b. Now from (33), we get

f (n+1) ≡ f. (36)



Entire Function with its Derivatives 703

Solving (36), we obtain

f = m1e
µ1z +m2e

µ2z + · · ·+mse
µsz,

where µ1, µ2, . . . , µs are distinct roots of zn+1 − 1 = 0 and m1,m2, . . . ,ms are
constants or polynomials.

Differentiating both sides of the above equation, we have

f (1) = (m1µ1 +m
(1)
1 )eµ1z + (m2µ2 +m

(1)
2 )eµ2z + · · ·+ (msµs +m(1)

s )eµsz

From (3), we get

ωf − f (1) = a(ω − 1).

Now from above three equations, we obtain

s
∑

j=1

(ωmj −mjµj −m
(1)
j )eµjz = a(ω − 1).

If ω 6≡ 1, then from above equation, we have

s
∑

j=1

(ωmj −mjµj −m
(1)
j )

a(ω − 1)
eµjz ≡ 1. (37)

Also we see that T (r, f) = O(T (r, eµjz)) for j = 1, 2, . . . , s.

First we suppose that the left hand side of (37) contains more than two terms.
Then using Lemma 2.7 we have

(ωmj −mjµj −m
(1)
j )

a(ω − 1)
eµjz ≡ 1,

for one value of j ∈ {1, 2, . . . , s}.

From the above equality, we can easily see that

T (r, eµjz) = S(r, f) = S(r, eµjz),

which is a contradiction.

Next we suppose that the left hand side of (37) contains exactly two terms.

Then

(ωmt −mtµt −m
(1)
t )

a(ω − 1)
eµtz +

(ωml −mlµl −m
(1)
l )

a(ω − 1)
)eµlz ≡ 1,

where 1 ≤ t, l ≤ s.

Applying Lemma 2.1, we get

T (r, eµtz) ≤ N(r, 0; eµtz) +N(r,∞; eµtz) +N(r,
a(ω − 1)

(ωmt −mtµt −m
(1)
t )

; eµtz)

+S(r, eµtz)

= N(r, 0; eµlz) + S(r, eµtz)

= S(r, eµtz),
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a contradiction.

Finally we suppose that the left hand side of (37) contains only one term.
That is,

(ωmt −mtµt −m
(1)
t )

a(ω − 1)
eµtz ≡ 1.

Which implies

T (r, eµtz) = S(r, f) = S(r, eµtz),

which is again a contradiction.

Hence ω ≡ 1. Therefore f (1) ≡ f . This implies f (n+1) ≡ f (n), which is again
a contradiction.

Subcase 2.2. Let f (n+1) ≡ f (n). Since f is transcendental, we get f (n) 6≡ 0.
Then on integration, we have

f (n) = λez ,

where λ(6= 0) is a constant. On further integration, we get

f = λez + P (z) = f (n) + P (z),

where P (z) is a polynomial of degree K(< n). This subcase can be divided into
two subcases.

Subcase 2.2.1. First we suppose that P ≡ a. Then f = λez + a. Also
f (n+1) = λez = f (n+2). Let z4 be a zero of f (n+1) − b, which is also a zero of
f (n+2) − a. Then z4 is a zero of a− b. If a− b 6≡ 0, then by Lemma 2.1, we have

T (r, f (n+1)) ≤ N(r, 0; f (n+1)) +N(r,∞; f (n+1)) +N(r, 0; f (n+1) − b) + S(r, f)

= N(r, 0; a− b) + S(r, f)

= S(r, f). (38)

Again

T (r, f) = T (r, λez + a)

= T (r, f (n+1) + a)

≤ T (r, f (n+1)) + T (r, a) + log 2

= T (r, f (n+1)) + S(r, f). (39)

Combining (38) and (39), we get

T (r, f) = S(r, f),

which is a contradiction. Hence a ≡ b.
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Subcase 2.2.2. Next we suppose that P 6≡ a and P is non-constant. Now by
Lemma 2.1, we have

T (r, λez) ≤ N(r, 0;λez) +N(r,∞;λez) +N(r, a− P ;λez) + S(r, λez)

= N(r, a; f) + S(r, λez).

Now let z5 is a zero of f−a such that z5 /∈ A∪B, then from f(z) = f (n)(z)+P (z),
we get P (z5) = 0. Hence

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(r, 0;P )

= S(r, f).

Combining above two identity, we get

T (r, λez) = S(r, λez),

which is a contradiction. Therefore P (z) is a constant, say, C. Hence

f = λez + C = f (n) + C.

Since f dose not assume the values C and ∞, using Lemma 2.1, we have
N(r, a; f) 6= S(r, f). Also since NA(r, a; f) + NB(r, a; f

(1)) = S(r, f), we get
E(a; f) ∩ E(b, f (n+1)) 6= Φ. Hence C = 0. Therefore f = λez. This proves the
theorem.
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