Convexity Conditions for 2×2 Quaternionic Numerical Range

Wasin So
Department of Mathematics and Statistics, San Jose State University, San Jose, California 95192, USA
Email: wasin.so@sjsu.edu

Received 3 April 2021
Accepted 9 October 2021

Communicated by Xiuyun Guo

AMS Mathematics Subject Classification(2020): 15A33, 15A60

Abstract

Quaternionic numerical range is not always convex, and so it is natural to characterize those matrices with convex quaternionic numerical range. In this paper, we present a necessary and sufficient condition in terms of matrix entries for the quaternionic numerical range of a 2×2 matrix to be convex. As a consequence, all 2×2 matrices with convex quaternionic numerical range are essentially Hermitian, skew-Hermitian, or real matrices up to real translation and unitary similarity.

Keywords: Quaternions; Quaternionic numerical range; Convexity.

1. Introduction

Let \mathbf{H} be the skew algebra of quaternions generated by $\{1, i, j, k\}$ over the reals R:

$$
\mathbf{H}=\left\{q=q_{0}+q_{1} i+q_{2} j+q_{3} k: q_{0}, q_{1}, q_{2}, q_{3} \in \mathbf{R}\right\}
$$

where $i^{2}=j^{2}=k^{2}=i j k=-1$. Denote $q_{0}=r e(q)$ and $q_{1} i+q_{2} j+q_{3} k=i m(q)$. Define the conjugate of q as

$$
\bar{q}=q_{0}-q_{1} i-q_{2} j-q_{3} k,
$$

and the length of q as

$$
|q|=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}
$$

Note that $q \bar{q}=\bar{q} q=|q|^{2}$. Let \mathbf{H}^{n} be the collection of quaternionic vectors with n components. For basic properties of quaternionic vectors and matrices, see [9].

Definition 1.1. Let A be an $n \times n$ quaternionic matrix. The quaternionic numerical range ($Q N R$) of A is defined as

$$
W(A)=\left\{x^{*} A x: x^{*} x=1, x \in \boldsymbol{H}^{n}\right\} \subset \boldsymbol{H}
$$

where * denotes the conjugate transposition of vector or matrix.
Some basic properties of QNR are immediate:
(i) $W\left(U^{*} A U\right)=W(A)$ for any unitary matrix U, i.e., $U U^{*}=U^{*} U=I_{n}$,
(ii) $W\left(\alpha I_{n}+\beta A\right)=\alpha+\beta W(A)$ for any $\alpha, \beta \in \mathbf{R}$.

The first person to study QNR was Kippenhahn [4], in particular, he considered the convexity question of QNR. Unfortunately, Kippenhahn made a false claim that QNR is convex. The details of his mistake and the early development of QNR were discussed by W. So in [7].

In general, $W(A)$ is not convex. The easiest counter example is to take A to be the 1×1 matrix with the only entry i. Hence $W(A)=\{q: \operatorname{re}(q)=0,|q|=1\}$ is NOT convex because $i,-i \in W(A)$ but the mid-point $\frac{1}{2}(i+(-i))=0 \notin W(A)$. This example was first mentioned in literature by Au-Yeung in [2]. As a folklore, we have the characterization.

Theorem 1.2. Let $A=[a]$ be an 1×1 matrix. Then $W(A)$ is convex iff im $(a)=0$, i.e., $a \in \mathbf{R}$.

It will be nice if we can have a similar characterization in terms of matrix entries for a general $n \times n$ matrix. Such problem seems very challenging. As a first step, we are able to obtain a necessary and sufficient condition in terms of matrix entries for the convexity of the QNR of a 2×2 matrix.

Theorem 1.3. Let $A=\left[\begin{array}{cc}a & 2 b \\ 2 d & c\end{array}\right]$.
(i) If $b=d=0$ then $W(A)$ is convex iff $r e(a)=\operatorname{re}(c)$ or $\operatorname{im}(a)=\operatorname{im}(c)=0$.
(ii) If $b=0$ and $d \neq 0$ or $b \neq 0$ and $d=0$ then $W(A)$ is convex iff $\operatorname{im}(a)=$ $i m(c)=0$.
(iii) If $b d \neq 0$ and $b+\bar{d}=0$ then $W(A)$ is convex iff $r e(a)=\operatorname{re}(c)$ or $\operatorname{im}(a)=$ $\operatorname{im}(c)=0$.
(iv) If $b d \neq 0$ and $b+\bar{d} \neq 0$ then $W(A)$ is convex iff

$$
(h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+(b+\bar{d}) i m(c)(\bar{b}+d)=0
$$

or equivalently

$$
(\bar{b}+d) i m(a)(b+\bar{d})+4(h-r e(a)) i m(d b)+(h-r e(a))^{2} i m(c)=0
$$

for both real roots of the equation $(h-r e(a))(h-r e(c))=|b+\bar{d}|^{2}$.

In Section 2, we recall different convexity conditions of QNR from literature as a preparation for a proof of Theorem 1.3. Some are sufficient and some are both necessary and sufficient; some are implicit and some are explicit. Then we give a complete proof of Theorem 1.3 in Section 3 with many illustrative examples taken from literature. Finally we conclude that 2×2 matrices with convex QNR are essentially Hermitian, skew-Hermitian, or real matrices up to real translation and unitary similarity.

2. General Convexity Conditions

From now on, we assume $n \geq 2$. The problem of characterizing those matrices with convex QNR after discovering that QNR is not convex in general was proposed. $W(A)$ is convex if A is Hermitian, i.e., $A^{*}=A$, was proved. Later, Au-Yeung [1] proved that $W(A)$ is convex if A is skew-Hermitian, i.e., $A^{*}=-A$. Indeed, he gave a necessary and sufficient convexity condition for an $n \times n$ normal matrix, i.e., $A A^{*}=A^{*} A$, via its eigenvalues $h_{t}+s_{t} i$ where $h_{1} \leq h_{2} \leq \cdots \leq h_{n}$ and $s_{t} \geq 0$:

$$
W(A) \text { is convex if and only if }\left(h_{1}-h_{2}\right) s_{1}=0=\left(h_{n-1}-h_{n}\right) s_{n}
$$

This result was based on the following general (though implicit) convexity condition from the same paper.

Theorem 2.1. $W(A)$ is convex iff $W(A) \cap \mathbf{R}=\{r e(q): q \in W(A)\}$.

Later, So [6] was able to translate these implicit convexity condition into more explicit condition using the notion of quasi-diagonal elements of a matrix. Let A be an $n \times n$ matrix with $n \geq 2$, and $H=\frac{1}{2}\left(A+A^{*}\right), S=\frac{1}{2}\left(A-A^{*}\right)$. Since H is Hermitian, we denote its real eigenvalues $h_{1} \leq \cdots \leq h_{n}$ and corresponding orthonormal eigenvectors u_{1}, \ldots, u_{n}. Take $s_{t}=\left|u_{t}^{*} S u_{t}\right| \geq 0$ for $1 \leq t \leq n$. We call $h_{t}+i s_{t}$ the quasi-diagonal elements of A because A is unitarily similar to a matrix with $h_{t}+i s_{t}$ as its diagonal elements.

Theorem 2.2. Let A be an $n \times n$ matrix with quasi-diagonal elements $h_{t}+i s_{t}$ for $1 \leq t \leq n$. Then $W(A)$ is convex iff $\left(h_{1}-h_{2}\right) s_{1}=0=\left(h_{n-1}-h_{n}\right) s_{n}$.

Note that the quasi-diagonal elements of a normal matrix are its eigenvalues. Hence Theorem 2.2 can be viewed as an extension of Au-Yeung's result on normal matrix to general matrix. An interesting sufficient convexity condition was observed by Carvalho, Diogo and Mendes [3]: real matrix always has convex QNR. We give a different proof via Theorem 2.2.

Corollary 2.3. If A is a real matrix then $W(A)$ is convex.

Proof. Let A be a real matrix and ${ }^{T}$ denote the transpose of a matrix. Then $\frac{A+A^{*}}{2}=\frac{A+A^{T}}{2}$ is real symmetric with real eigenvalues h_{1}, \cdots, h_{n} with corresponding real orthonormal eigenvectors u_{1}, \ldots, u_{n}. Hence $s_{t}=\left|u_{t}^{T} S u_{t}\right|=0$ for all t because $S=\frac{A-A^{T}}{2}$ is real skew-symmetric. Consequently, A has quasidiagonal elements $h_{1}+0 i, \ldots, h_{n}+0 i$, i.e., real. By Theorem 2.2, $W(A)$ is convex.

In section 3, we need the following specialization of Theorem 2.2 to the case $n=2$.

Theorem 2.4. Let A be a 2×2 matrix such that $H=\frac{1}{2}\left(A+A^{*}\right)$ has real eigenvalues $h_{1} \leq h_{2}$ with eigenvectors u_{1} and u_{2} respectively. Also let $S=$ $\frac{1}{2}\left(A-A^{*}\right)$.

Then $W(A)$ is convex iff either $h_{1}=h_{2}$ or $u_{t}^{*} S u_{t}=0$ for $t=1,2$.

3. 2×2 Convexity Results

In this section, we give the complete the proof of Theorem 1.3. We divide all 2×2 matrices into 3 types: (i) diagonal, (ii) (upper or lower) triangular, and (iii) generic; and then treat them separately in 3 theorems followed with some examples.

Theorem 3.1. If $A=\left[\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right]$ then

$$
W(A) \text { is convex iff re }(a)=r e(c) \text { or } \operatorname{im}(a)=i m(c)=0
$$

Proof. Then $H=\frac{1}{2}\left(A+A^{*}\right)=\left[\begin{array}{cc}r e(a) & 0 \\ 0 & r e(c)\end{array}\right]$ and $S=\frac{1}{2}\left(A-A^{*}\right)=$ $\left[\begin{array}{cc}i m(a) & 0 \\ 0 & i m(c)\end{array}\right]$. Hence the eigenvalues of H are $r e(a)$ and $r e(c)$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ respectively. Hence, by Theorem 2.4, $W(A)$ is convex iff $\operatorname{re}(a)=r e(c)$ or $\operatorname{im}(a)=i m(c)=0$.

Example 3.2. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Then, by Theorem 3.1, $W(A)$ is convex because $i m(1)=i m(2)=0$. Indeed, $W(A)=\{x \in \mathbf{R}: 1 \leq x \leq 2\}$.

Example 3.3. Let $A=\left[\begin{array}{ll}i & 0 \\ 0 & j\end{array}\right]$. Then, by Theorem 3.1, $W(A)$ is convex because $r e(i)=0=r e(j)$. Indeed, $W(A)=\{q: r e(q)=0,|q| \leq 1\}$.

Example 3.4. Let $A=\left[\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right]$. Then, by Theorem 3.1, $W(A)$ is NOT convex because $r e(i)=0 \neq 1=r e(1)$ and $i m(i)=i \neq 0$. Indeed, $W(A)=\{\alpha+(1-\alpha) q$: $r e(q)=0,|q|=1,0 \leq \alpha \leq 1\}$, and so $i,-i \in W(A)$ but $0 \notin W(A)$.

Theorem 3.5. If $A=\left[\begin{array}{cc}a & 2 b \\ 0 & c\end{array}\right]$ or $A=\left[\begin{array}{cc}a & 0 \\ 2 d & c\end{array}\right]$ with $b d \neq 0$ then

$$
W(A) \text { is convex iff } \operatorname{im}(a)=i m(c)=0 .
$$

Proof. Case 1: $A=\left[\begin{array}{ll}a & 2 b \\ 0 & c\end{array}\right]$ with $b \neq 0$.
Then $H=\frac{1}{2}\left(A+A^{*}\right)=\left[\begin{array}{cc}r e(a) & b \\ \bar{b} & r e(c)\end{array}\right]$ and $S=\frac{1}{2}\left(A-A^{*}\right)=\left[\begin{array}{cc}i m(a) & b \\ -\bar{b} & i m(c)\end{array}\right]$.
Let the real eigenvalue of H be h with an eigenvector $u=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then

$$
b y=(h-r e(a)) x \quad \text { and } \quad \bar{b} x=(h-r e(c)) y
$$

Since $b \neq 0$, we have $x y \neq 0$. Hence $|b|^{2}=(h-r e(a))(h-r e(c))$, and so H has two distinct eigenvalues because $b \neq 0$:

$$
h_{ \pm}=\frac{1}{2}\left(r e(a)+r e(c) \pm \sqrt{(r e(a)-r e(c))^{2}+4|b|^{2}}\right) .
$$

Now

$$
\begin{aligned}
u^{*} S u & =\bar{x} \operatorname{im}(a) x-\bar{y} \bar{b} x+\bar{x} b y+\bar{y} \operatorname{im}(c) y \\
& =\bar{x} \operatorname{im}(a) x-\frac{\bar{x} b \bar{b} x}{h-r e(c)}+\frac{\bar{x} b \bar{b} x}{h-r e(c)}+\frac{\bar{x} b i m(c) \bar{b} x}{(h-r e(c))^{2}} \\
& =\bar{x}\left(\frac{(h-r e(c))^{2} i m(a)+\operatorname{bim}(c) \bar{b}}{(h-r e(c))^{2}}\right) x
\end{aligned}
$$

and so if u is the eigenvector of H corresponds to h then $u^{*} S u=0$ iff $(h-r e(c))^{2} i m(a)+\operatorname{bim}(c) \bar{b}=0$. Finally, by Theorem 2.4, $W(A)$ is convex iff $u^{*} S u=0$ for both eigenvectors of H corresponding to $h_{ \pm}$iff $\left(h_{-}-r e(c)\right)^{2} i m(a)+$ $b \operatorname{im}(c) \bar{b}=0=\left(h_{+}-r e(c)\right)^{2} i m(a)+b \operatorname{im}(c) \bar{b}$ iff $\operatorname{im}(a)=i m(c)=0$ because $h_{-} \neq h_{+}$.

Case 2: $A=\left[\begin{array}{cc}a & 0 \\ 2 d & c\end{array}\right]$ with $d \neq 0$.
Let $U=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then U is unitary and $B=U^{*} A U=\left[\begin{array}{cc}c & 2 d \\ 0 & a\end{array}\right]$. Hence $W(A)=W(B)$ is convex iff $i m(c)=i m(a)=0$ by Case 1 .

Example 3.6. Let $A=\left[\begin{array}{cc}1 & i+j+k \\ 0 & 2\end{array}\right]$. Then, by Theorem 3.5, $W(A)$ is convex because $\operatorname{im}(1)=\operatorname{im}(2)=0$.

Example 3.7. [5] Let $A=\left[\begin{array}{cc}-1+i & 3-4 k \\ 0 & 1+i\end{array}\right],\left[\begin{array}{cc}3+4 i & 16 j \\ 0 & 20+i\end{array}\right]$, or $\left[\begin{array}{cc}3+4 i & 1-j \\ 0 & -2+5 i\end{array}\right]$. Then, by Theorem 3.5, $W(A)$ is not convex because $\operatorname{im}(a) \neq 0$ for all three matrices.

Theorem 3.8. Let $A=\left[\begin{array}{cc}a & 2 b \\ 2 d & c\end{array}\right]$ with $b d \neq 0$.
(i) If $q=b+\bar{d}=0$ then

$$
W(A) \text { is convex iff re }(a)=r e(c) \text { or } i m(a)=i m(c)=0 .
$$

(ii) If $q=b+\bar{d} \neq 0$ then
$W(A)$ is convex
iff $(h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q}=0$
for both $h=\frac{1}{2}\left[(r e(a)+r e(c)) \pm \sqrt{(r e(a)-r e(c))^{2}+4|q|^{2}}\right]$
iff $\bar{q} i m(a) q+4(h-r e(a)) i m(d b)+(h-r e(a))^{2} i m(c)=0$
for both $h=\frac{1}{2}\left[(r e(a)+r e(c)) \pm \sqrt{(r e(a)-r e(c))^{2}+4|q|^{2}}\right]$.

Proof. (i) Note that $H=\frac{1}{2}\left(A+A^{*}\right)=\left[\begin{array}{cc}r e(a) & q \\ \bar{q} & r e(c)\end{array}\right]=\left[\begin{array}{cc}r e(a) & 0 \\ 0 & r e(c)\end{array}\right]$ and $S=\frac{1}{2}\left(A-A^{*}\right)=\left[\begin{array}{cc}\operatorname{im}(a) & q \\ -\bar{q} & \operatorname{im}(c)\end{array}\right]=\left[\begin{array}{cc}i m(a) & 0 \\ 0 & \operatorname{im}(c)\end{array}\right]$. Hence the eigenvalues of H are $r e(a)$ and $r e(c)$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ respectively. Hence, by Theorem 2.4, $W(A)$ is convex iff $r e(a)=r e(c)$ or $\operatorname{im}(a)=i m(c)=0$.
(ii) Note that $H=\frac{1}{2}\left(A+A^{*}\right)=\left[\begin{array}{cc}r e(a) & q \\ \bar{q} & r e(c)\end{array}\right]$ and $S=\frac{1}{2}\left(A-A^{*}\right)=$ $\left[\begin{array}{cc}i m(a) & p \\ -\bar{p} & \operatorname{im}(c)\end{array}\right]$ where $p=b-\bar{d}$. Let the real eigenvalue of H be h with an eigenvector $u=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then

$$
q y=(h-r e(a)) x \quad \text { and } \quad \bar{q} x=(h-r e(c)) y
$$

Since $q \neq 0$, we have $x y \neq 0$. Hence $|q|^{2}=(h-r e(a))(h-r e(c))$, and so H has two distinct eigenvalues because $q \neq 0$:

$$
h_{ \pm}=\frac{1}{2}\left(r e(a)+r e(c) \pm \sqrt{(r e(a)-r e(c))^{2}+4|q|^{2}}\right) .
$$

Now

$$
\begin{aligned}
u^{*} K u & =\bar{x} i m(a) x-\bar{y} \bar{p} x+\bar{x} p y+\bar{y} i m(c) y \\
& =\bar{x} \operatorname{im}(a) x-\frac{\bar{x} q \bar{p} x}{h-r e(c)}+\frac{\bar{x} p \bar{q} x}{h-r e(c)}+\frac{\bar{x} q i m(c) \bar{q} x}{(h-r e(c))^{2}} \\
& =\bar{x}\left(\frac{(h-r e(c))^{2} i m(a)+2(h-r e(c)) i m(p \bar{q})+q i m(c) \bar{q}}{(h-r e(c))^{2}}\right) x \\
& =\bar{x}\left(\frac{(h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q}}{(h-r e(c))^{2}}\right) x
\end{aligned}
$$

and so if u is the eigenvector of H corresponds to h then $u^{*} S u=0$ iff $(h-$ $r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q}=0$. Hence, by Theorem 2.4, $W(A)$ is convex iff $u^{*} S u=0$ for both eigenvectors of H corresponding to $h_{ \pm}$ iff $(h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q}=0$ for both h_{+}and h_{-}. Finally, we observe that

$$
(h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q}=0
$$

iff

$$
\bar{q} i m(a) q+4(h-r e(a)) i m(d b)+(h-r e(a))^{2} i m(c)=0
$$

because $|q|^{2}=(h-r e(a))(h-r e(c))$ and $i m(b d)(b+\bar{d})=(b+\bar{d}) i m(d b)$.

Example 3.9. [8] Let $A=\left[\begin{array}{cc}k_{1} i & \gamma j \\ \gamma j & 1+k_{2} i\end{array}\right]$ where k_{1}, k_{2}, γ are positive real numbers. Then $W(A)$ is not convex.

Proof. Note that $b=\frac{\gamma i}{2} \neq 0$ and $d=\frac{\gamma i}{2} \neq 0$, thus $q=b+\bar{d}=0$. Moreover, $r e\left(k_{1} i\right)=0 \neq 1=r e\left(1+k_{2} i\right)$, and $i m\left(k_{1} i\right)=k_{1} i \neq 0$. Hence, by Theorem 3.8 (i), $W(A)$ is not convex.

Example 3.10. Let $A=\left[\begin{array}{cc}12-8 i & 12+6 i \\ 6 i & 3+8 i\end{array}\right]$. Then $W(A)$ is convex.
Proof. Note that $a=12-8 i, b=6+3 i, d=3 i$ and $c=3+8 i$. Then $q=b+\bar{d}=6+3 i-3 i=6 \neq 0$, and so $|q|=6$. Moreover, $\operatorname{re}(a)=12$ and $r e(c)=3$, hence

$$
\begin{aligned}
h & =\frac{1}{2}\left[(r e(a)+r e(c)) \pm \sqrt{(r e(a)-r e(c))^{2}+4|q|^{2}}\right] \\
& =\frac{1}{2}\left[(12+3) \pm \sqrt{(12-3)^{2}+4 \cdot 6^{2}}\right] \\
& =15 \text { or } 0 .
\end{aligned}
$$

Note that $i m(a)=-8 i, i m(b d)=18 i, i m(c)=8 i$. Consequently,

$$
\begin{aligned}
& (h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q} \\
= & (15-3)^{2}(-8 i)+4(15-3)(18 i)+6(8 i) 6 \\
= & -1152 i+864 i+288 i \\
= & 0
\end{aligned}
$$

and

$$
\begin{aligned}
& (h-r e(c))^{2} i m(a)+4(h-r e(c)) i m(b d)+q i m(c) \bar{q} \\
= & (0-3)^{2}(-8 i)+4(0-3)(18 i)+6(8 i) 6 \\
= & -72 i-216 i+288 i \\
= & 0
\end{aligned}
$$

Hence, by Theorem 3.8 (ii), $W(A)$ is convex.

When $n \geq 2$, from Section 2, we know that $W(A)$ is convex if A is Hermitian, skew-Hermitian or real. It turns out that these are essentially all 2×2 matrices with convex QNR.

Theorem 3.11. Let A be a 2×2 matrix with convex $Q N R$. Then A is Hermitian, skew-Hermitian with a real translation, or unitarily similar to a real matrix.

Proof. Let U be a unitary matrix such that

$$
U^{*} A U=\left[\begin{array}{cc}
a & 2 b \\
0 & c
\end{array}\right]
$$

Then $W\left(\left[\begin{array}{ll}a & 2 b \\ 0 & c\end{array}\right]\right)=W\left(U^{*} A U\right)=W(A)$ is convex.
Case 1: $b=0$.
By Theorem 3.1, $\operatorname{re}(a)=r e(c)$ or $\operatorname{im}(a)=i m(c)=0$. Hence $U^{*} A U$ is skewHermitian with a real translation or Hermitian, and so A is skew-Hermitian with a real translation or Hermitian.

Case 2: $b \neq 0$.
By Theorem 3.5, $\operatorname{im}(a)=\operatorname{im}(c)=0$. Take $q=\frac{b}{|b|}$ and $D=\left[\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right]$. Then D is unitary and $D^{*} U^{*} A U D=\left[\begin{array}{cc}r e(a) & 2|b| \\ 0 & r e(c)\end{array}\right]$ is real. Hence A is unitarily similar to a real matrix.

The following example shows that 3×3 matrices with convex QNR have more varieties than those mentioned in Theorem 3.11.

Example 3.12. Let $A=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 2 i & 0 \\ 0 & 0 & 1\end{array}\right]$. Then A is NOT Hermitian, NOT skew-
Hermitian with a real translation, and NOT unitarily similar to a real matrix. However, by Theorem 2.2, $W(A)$ is convex because A has quasi-diagonal elements $h_{t}+i s_{t}$ with $h_{1}=h_{2}=0, h_{3}=1$; and $s_{1}=s_{2}=1, s_{3}=0$.

References

[1] Y.H. Au-Yeung, On the convexity of numerical range in quaternionic Hilbert spaces, Linear and Multilinear Algebra 16 (1984) 93-100.
[2] Y.H. Au-Yeung, On the eigenvalues and numerical range of a quaternionic matrix, In: Five Decades as a Mathematician and Educator: On the 80th Birthday of Professor Yung-Chow Wong, World Scientific Publishing, 1995.
[3] L. Carvalho, C. Diogo, S. Mendes, A bridge between quaternionic and complex numerical ranges, Linear Algebra and its Applications 581 (2019) 496-504.
[4] R. Kippenhahn, Uber die Wertvorrat einer matrix, Math. Nachr. 6 (1951) 193228.
[5] P. Santhosh Kumar, A note on convexity of sections of quaternionic numerical range, Linear Algebra and its Applications 572 (2019) 92-116.
[6] W. So, An explicit criterion for the convexity of quaternionic numerical range, Canadian Mathematical Bulletin 41 (1998) 105-108.
[7] W. So, The early development of quaternionic numerical range, Image (The Bulletin of the International Linear Algebra Society) 63 (2019) 7-11.
[8] R.C. Thompson, The upper numerical range of a quaternionic matrix is not a complex numerical range, Linear Algebra and its Applications 254 (1997) 19-28.
[9] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra and its Applications 251 (1997) 21-57.

