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Abstract. Quaternionic numerical range is not always convex, and so it is natural to
characterize those matrices with convex quaternionic numerical range. In this pa-
per, we present a necessary and sufficient condition in terms of matrix entries for the
quaternionic numerical range of a 2 X 2 matrix to be convex. As a consequence, all
2 x 2 matrices with convex quaternionic numerical range are essentially Hermitian,
skew-Hermitian, or real matrices up to real translation and unitary similarity.
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1. Introduction

Let H be the skew algebra of quaternions generated by {1,1, j, k} over the reals
R:
H={qg=q0+qi+qj+aek:q,q,q¢,9 €R}
where i? = j2 = k? = ijk = —1. Denote qo = re(q) and q1i + g2 + g3k = im(q).
Define the conjugate of g as
q=qo — q1i — q2J — q3k,

and the length of ¢ as

lal = \/q(?+q%+qg+q§~
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Note that ¢ = gq = |q|?. Let H" be the collection of quaternionic vectors with
n components. For basic properties of quaternionic vectors and matrices, see [9].

Definition 1.1. Let A be an n X n quaternionic matriz. The quaternionic nu-
merical range (QNR) of A is defined as

W(A)={a*Az 2"z =1, €e H'} C H

where * denotes the conjugate transposition of vector or matriz.

Some basic properties of QNR are immediate:

(i) W(U*AU) = W(A) for any unitary matrix U, i.e., UU* = U*U = I,,,
(ii) W(al, + BA) = a+ W (A) for any «, 8 € R.

The first person to study QNR was Kippenhahn [4], in particular, he consid-
ered the convexity question of QNR. Unfortunately, Kippenhahn made a false
claim that QNR is convex. The details of his mistake and the early development
of QNR were discussed by W. So in [7].

In general, W(A) is not convex. The easiest counter example is to take A to
be the 1 x 1 matrix with the only entry . Hence W(A) = {q : re(q) =0, |q| = 1}
is NOT convex because i, —i € W (A) but the mid-point 3 (i+(—i)) = 0 ¢ W(A).
This example was first mentioned in literature by Au-Yeung in [2]. As a folklore,
we have the characterization.

Theorem 1.2. Let A = [a] be an 1x1 matriz. Then W (A) is convez iff im(a) =0,
n.e., a € R.

It will be nice if we can have a similar characterization in terms of matrix
entries for a general n x n matrix. Such problem seems very challenging. As a
first step, we are able to obtain a necessary and sufficient condition in terms of
matrix entries for the convexity of the QNR of a 2 x 2 matrix.

Theorem 1.3. Let A = a 2b .
2d ¢

(i) If b=d =0 then W(A) is convez iff re(a) = re(c) orim(a) =im(c) = 0.
(ii) Ifb=0and d # 0 or b # 0 and d = 0 then W(A) is convez iff im(a) =

im(c) = 0.
(iii) Ifbd # 0 and b+ d = 0 then W (A) is convez iff re(a) = re(c) or im(a) =
im(c) =0.

(iv) Ifbd # 0 and b+ d # 0 then W(A) is conver iff
(h —re(c)? im(a) + 4(h — re(c)) im(bd) + (b +d) im(c) (b+d) =0
or equivalently
(b+d) im(a) (b+d) + 4(h — re(a)) im(db) 4 (h — re(a))? im(c) =0
for both real Toots of the equation (h —re(a))(h —re(c)) = |b+ d|?.
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In Section 2, we recall different convexity conditions of QNR from literature
as a preparation for a proof of Theorem 1.3. Some are sufficient and some are
both necessary and sufficient; some are implicit and some are explicit. Then
we give a complete proof of Theorem 1.3 in Section 3 with many illustrative
examples taken from literature. Finally we conclude that 2 x 2 matrices with
convex QNR are essentially Hermitian, skew-Hermitian, or real matrices up to
real translation and unitary similarity.

2. General Convexity Conditions

From now on, we assume n > 2. The problem of characterizing those matri-
ces with convex QNR after discovering that QNR is not convex in general was
proposed. W(A) is convex if A is Hermitian, i.e., A* = A, was proved. Later,
Au-Yeung [1] proved that W (A) is convex if A is skew-Hermitian, i.e., A* = —A.
Indeed, he gave a necessary and sufficient convexity condition for an n x n normal
matrix, i.e., AA* = A*A, via its eigenvalues h; + s34 where hy < hg < --- < hy,
and s; > 0:

W(A) is convex if and only if (h; — h2)s1 =0 = (hp—1 — hy)sn.

This result was based on the following general (though implicit) convexity con-
dition from the same paper.

Theorem 2.1. W (A) is convex iff W(A) NR = {re(q) : ¢ € W(A)}.

Later, So [6] was able to translate these implicit convexity condition into
more explicit condition using the notion of quasi-diagonal elements of a matrix.
Let A be an n x n matrix with n > 2, and H = $(A+A4*), S = J(A— A*). Since
H is Hermitian, we denote its real eigenvalues hy < --- < h,, and corresponding
orthonormal eigenvectors uq, ..., u,. Take sy = JujSus| > 0for 1 <t < n. We
call h; 4+ is; the quasi-diagonal elements of A because A is unitarily similar to a
matrix with h; + is; as its diagonal elements.

Theorem 2.2. Let A be an n X n matriz with quasi-diagonal elements hy + sy
for 1 <t <mn. Then W(A) is convez iff (h1 —h2)s1 =0 = (hn—1 — hn)Sn-

Note that the quasi-diagonal elements of a normal matrix are its eigenval-
ues. Hence Theorem 2.2 can be viewed as an extension of Au-Yeung’s result on
normal matrix to general matrix. An interesting sufficient convexity condition
was observed by Carvalho, Diogo and Mendes [3]: real matrix always has convex
QNR. We give a different proof via Theorem 2.2.

Corollary 2.3. If A is a real matriz then W(A) is conver.
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Proof. Let A be a real matrix and 7 denote the transpose of a matrix. Then

* T . . . . .
A+TA = % is real symmetric with real eigenvalues hq,--- ,h,, with corre-
sponding real orthonormal eigenvectors uy, ..., u,. Hence s; = |ul Su;| = 0 for

all ¢ because S = A*QAT is real skew-symmetric. Consequently, A has quasi-

diagonal elements hy + 0i,...,h, + 0i, i.e., real. By Theorem 2.2, W(A) is
convex. |

In section 3, we need the following specialization of Theorem 2.2 to the case
n=2.

Theorem 2.4. Let A be a 2 X 2 matriz such that H = (A + A*) has real
eigenvalues hy < ho with eigenvectors uy and us respectively. Also let S =
LA A,

Then W (A) is convex iff either hy = hy or u;Su; =0 fort =1,2.

3. 2 X 2 Convexity Results

In this section, we give the complete the proof of Theorem 1.3. We divide all
2 x 2 matrices into 3 types: (i) diagonal, (ii) (upper or lower) triangular, and
(iii) generic; and then treat them separately in 3 theorems followed with some
examples.

a0

Theorem 3.1. If A = {O .

] then
W (A) is convez iff re(a) = re(c) or im(a) = im(c) = 0.

Proof. Then H = 1(A + A*) = [re(ga)
im(a) 0

0 im(c)

0 _ 1 _ * _
re(c)} and § = (A - A*) =
Hence the eigenvalues of H are re(a) and re(c) with corre-

sponding eigenvectors Ll)] and [(1)} respectively. Hence, by Theorem 2.4, W (A)
is convex iff re(a) = re(c) or im(a) = im(c) = 0. ]
Ezample 3.2. Let A = (1) g . Then, by Theorem 3.1, W(A) is convex because
im(1) = im(2) = 0. Indeed, W(A) = {z € R:1 <z < 2}.

o
Example 3.3. Let A = 0
re(i) = 0 = re(j). Indeed, W(A) = {q: re(q) =0,|q| < 1}.

. Then, by Theorem 3.1, W(A) is convex because
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Example 3.4. Let A = é (1)} Then, by Theorem 3.1, W(A) is NOT convex
(

because re(i) = 0 # 1 = re(1) and im(i) = ¢ # 0. Indeed, W(A) = {a+(1—a)q
re(q) =0,]q =1,0 < a <1}, and so i,—i € W(A) but 0 ¢ W(A).

0 c 2d ¢
W (A) is convex iff im(a) = im(c) = 0.

Theorem 3.5. If A = {a 2b] or A= [ @ 0] with bd # 0 then

Proof. Case 1: A = {8 2Cb] with b #£ 0.

Then H = 1(A+A%) = [”é“) Te?c) ] and § = L(A—A") = {i”i%) Z_mb(c) } .

Let the real eigenvalue of H be h with an eigenvector u = } . Then

—
NS

by = (h —re(a))r and bz = (h—re(c))y

Since b # 0, we have zy # 0. Hence |b|2 = (h — re(a))(h — re(c)), and so H has
two distinct eigenvalues because b # 0:

hizl( e(a) + re(c) + v/(re(a) —re(c ))2—|—4|b|2).

2
Now
u*Su = Tim(a)x — Jbx + Tby + Fim(c)y
— Zim(a)s — Zbba . Tbba . Zbim(c)bx
N h—re(c) h—re(c) (h—re(c))?
_ [ (h—re(c))%im(a) + bim(c)b
=X X
(h —re(c))?
and so if u is the eigenvector of H corresponds to h then u*Su = 0 iff

(h — re(c))?im(a) + bim(c)b = 0. Finally, by Theorem 2.4, W (A) is convex iff
u*Su = 0 for both eigenvectors of H corresponding to h iff (h——re(c))?im(a)+
b im(c)b = 0 = (hy — re(c))?im(a) + b im(c)b iff im(a) = im(c) = 0 because
h_ # hy.

a 0 .
Case 2: A= [2d c] with d # 0.
Let U = [(1) (1)} Then U is unitary and B = U*AU = [S 2ad]. Hence
W(A) = W(B) is convex iff im(c) = im(a) = 0 by Case 1. |
Example 3.6. Let A = (1) ! +]2+ k} Then, by Theorem 3.5, W(A) is convex

because im(1) = im(2) = 0.
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C [—1+i3-4k] [3+4i 165 3440 1—j
Ezample 8.7. [5] Let A = [ 0 14 ] [ 0 20"”} or[ 0 _2_'_52}.

Then, by Theorem 3.5, W(A) is not convex because im(a) # 0 for all three
matrices.

a 2b

Theorem 3.8. Let A = {2d .

} with bd # 0.

(i) Ifg=b+d =0 then
W(A) is convez iff re(a) = re(c) orim(a) =im(c) = 0.

(i) Ifg=b+d #0 then

W(A) is convex
iff (h —re(c))? im(a )+4(h—re( )) im(bd) gim(c)g=20
for both h = % [( ) +re(e)) £ /(re(a) — re(c))? + 4]q|?
iff gim(a) g+ 4(h — re(a )) Zm(db) (h - Te(a))z im(c) =
for both h = § [( ) +re(e)) £ /(re(a) —re(c))? + 4]q]?|.

s

Proof. (i) Note that H = 1(A + A*) = [re(a) q ] _ [Te(“) 0 ] and

7 re(c) 0 re(c)
§=1(A-A%) = [i”i(g) Z.mq(c)] _ [imo(a) imo(c)} Hence the eigenvalues of H

are re(a) and re(c) with corresponding eigenvectors 0 and 1 respectively.

Hence, by Theorem 2.4, W(A) is convex iff re(a) = re(c) or im(a) = im(c) = 0.

(i) Note that H = (A + A*) = [Teé“) req(c)] and § = 1(4 - 4%) =
[mi(]_f) mﬁc)] where p = b — d. Let the real eigenvalue of H be h with an

eigenvector u = [z] . Then

qy = (h—re(a))r and gz = (h—re(c))y.

Since q # 0, we have zy # 0. Hence |g|? = (h — re(a))(h — re(c)), and so H has
two distinct eigenvalues because g # 0:

( e(a) + re(c) £ v/(re(a) —re ))2+4|q|2).

N | =

hy =
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Now

u* Ku = Tim(a)x — gy px + Tpy + gim(c)y
Tqpx Tpqx Tqim(c)qx
h—re(c) h—re(c) (h—re(c))?

= Tim(a)x —

— 7 (e ) 20— Pint gt
(h —re(c))?

_ = ((h —re(c))?im(a) + 4(h — re(c))im(bd) + qim(cﬁ) .
O —re(e)?

and so if u is the eigenvector of H corresponds to h then u*Su = 0 iff (h —
re(c))?im(a) + 4(h — re(c))im(bd) + gim(c)g = 0. Hence, by Theorem 2.4,
W(A) is convex iff u*Su = 0 for both eigenvectors of H corresponding to hy
iff (h — re(c))?im(a) + 4(h — re(c))im(bd) + gim(c)g = 0 for both h, and h_.
Finally, we observe that

(h — re(c))?im(a) + 4(h — re(c))im(bd) + gim(c)g = 0

iff
g im(a) ¢+ 4(h — re(a)) im(db) + (h — re(a))? im(c) = 0

because |q|2 = (b — re(a))(h — re(c)) and im(bd)(b + d) = (b+ d)im(db). ]

Ezample 3.9. [8] Let A = [?}Z 1 "ij?’l where k1, kg, are positive real num-

bers. Then W (A) is not convex.

Proof. Note that b = % # 0 and d = % # 0, thus ¢ = b +d = 0. Moreover,
re(ki1i) =0 # 1 = re(1 + ki), and im(k1i) = k13 # 0. Hence, by Theorem 3.8
(i), W(A) is not convex. n

12 — 8¢ 12+ 64

Ezxample 3.10. Let A = { 6i 3 4 8i

} . Then W(A) is convex.

Proof. Note that a = 12 —8i, b = 6 + 31, d = 3¢ and ¢ = 3 + 8. Then
g=b+d=6+4+3i—3i =6 +# 0, and so |¢q| = 6. Moreover, re(a) = 12 and
re(c) = 3, hence

[(re(a) + re(©)) + v/(re(a) — re()” + 41aP?]

[(1243) + /(12— 3)2 + 4 - 62]
=15 or 0.

N — N —
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Note that im(a) = —8i, im(bd) = 18i, im(c) = 8i. Consequently,

(h —re(c))? im(a) + 4(h — re(c)) im(bd) + q im(c) G
= (15 — 3)%(—8i) + 4(15 — 3)(18i) + 6(8i)6

= —11527 + 864: + 288
=0.
and
(h —re(c))? im(a) + 4(h — re(c)) im(bd) + q im(c) G
= (0 —3)%(—8i) + 4(0 — 3)(18i) + 6(84)6
= —72i — 2167 + 288i
= 0.
Hence, by Theorem 3.8 (ii), W(A) is convex. ]

When n > 2, from Section 2, we know that W (A) is convex if A is Hermitian,

skew-Hermitian or real. It turns out that these are essentially all 2 x 2 matrices
with convex QNR.

Theorem 3.11. Let A be a 2 X 2 matriz with conver QNR. Then A is Hermitian,
skew-Hermitian with a real translation, or unitarily similar to a real matriz.

Proof. Let U be a unitary matrix such that

(ﬁAU:[a2ﬂ.
0 c
a 2b .
Then W <[0 . }) =W(U*AU) = W(A) is convex.
Case 1: b=0.

By Theorem 3.1, re(a) = re(c) or im(a) = im(c) = 0. Hence U*AU is skew-
Hermitian with a real translation or Hermitian, and so A is skew-Hermitian with
a real translation or Hermitian.

Case 2: b# 0.

By Theorem 3.5, im(a) = im(c) = 0. Take ¢ = |—2‘ and D = [

q 0
0 1}. Then D

re(a) 20|
0

is unitary and D*U*AUD = [ re(c)] is real. Hence A is unitarily similar

to a real matrix. [ |

The following example shows that 3 x 3 matrices with convex QNR have more
varieties than those mentioned in Theorem 3.11.
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100
Example 3.12. Let A = [ 02i 0. Then A is NOT Hermitian, NOT skew-
001
Hermitian with a real translation, and NOT unitarily similar to a real matrix.
However, by Theorem 2.2, W(A) is convex because A has quasi-diagonal ele-
ments h; + is; with hy = hy =0, hg =1; and s1 = s3 =1, s3 =0.
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