Estimates of Prime Factors of the Generalized Fermat Number

Wei Xie
School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi, 710000, China
Email: xiewei1729@163.com

Received 31 October 2018
Accepted 23 August 2023

Communicated by Wenbin Guo

AMS Mathematics Subject Classification(2020): 11A51

Abstract

Let $F_{n}=2^{2^{n}}+1$ and $F_{a, n}=a^{2^{n}}+1$ where a is a positive even integer. For any integer $k>1$, let $P(k)$ be the largest prime factor of k. In this paper, we obtain an improvement of the lower bound of $P\left(F_{a, n}\right)$. We also obtain the lower bounds of $P\left(F_{n}\right)$ and $P\left(F_{a, n}\right)$ when F_{n} and $F_{a, n}$ are square-free.

Keywords: Generalized Fermat number; Greatest prime factor; Square-free number; The lower bound.

1. Introduction

Let $F_{n}=2^{2^{n}}+1$ and $F_{a, n}=a^{2^{n}}+1(2 \mid a)$. For any integer $k>1$, let $P(k)$ be the largest prime factor of k. In [4], Le proved that $P\left(F_{n}\right)>2^{n-4} n$ when $n \geqslant 2^{18}$. Grytczuk, Wójtowicz and Luca showed that $P\left(F_{n}\right)>2^{n+2}(4 n+9)+1$ when $n \geqslant 4$ and $P\left(F_{a, n}\right)>2^{n-4} n$ when $n \geqslant a^{18}$ (see [3]). After that, Grytczuk and Mçdryk proved that $P\left(F_{a, n}\right)>2^{n+2}(n+1) \log _{a} 2+1$ in [2]. Chen showed that $P\left(F_{n}\right)>2^{n+2}\left(4 n+16+4 \log _{2}(n+7)\right)+1$ when $n \geqslant 4$ (see [1]). In this paper, we obtain an improvement of the lower bound of $P\left(F_{a, n}\right)$.

2. Main Results

Theorem 2.1. If $n \geqslant 3$, then

$$
P\left(F_{a, n}\right) \geqslant 2^{n+2}\left[(n+1) \log _{a} 2+\log _{a} \log _{a} 2^{2(n+1)}\right]+1
$$

Proof. From [2], $F_{a, n}=\prod_{i=1}^{s}\left(2^{n+1} h_{i}+1\right), 1 \leqslant h_{1} \leqslant h_{2} \leqslant \cdots \leqslant h_{s}$. It is easy to know that $2^{n+1} \mid \sum h_{i}$ and $F_{a, n}>\prod_{i}\left(2^{n+1} h_{i}\right)$. Then

$$
\sum_{i}\left((n+1) \log _{a} 2+\log _{a} h_{i}\right) \leqslant 2^{n} \leqslant \frac{1}{2} \sum_{i} h_{i}
$$

So there exists at least one i with $2(n+1) \log _{a} 2+2 \log _{a} h_{i} \leqslant h_{i}$. We have

$$
\begin{aligned}
h_{i} & \geqslant 2(n+1) \log _{a} 2+2 \log _{a}\left(2(n+1) \log _{a} 2+2 \log _{a} h_{i}\right) \\
& \geqslant 2(n+1) \log _{a} 2+2 \log _{a} \log _{a} 2^{2(n+1)}
\end{aligned}
$$

This proves Theorem 2.1.

Theorem 2.2. Let $b=\log _{a} 2^{2 n+1}+\log _{a} \log _{a} 2^{3 n+1}$. If $F_{a, n}$ is square-free, then

$$
P\left(F_{a, n}\right)>2^{n+1}\left(\frac{2^{n}}{\max (b, 1)}-0.5\right)+1
$$

Proof. Let $\sum_{i=1}^{s} h_{i}=2^{n+1} \Delta$. Since $F_{a, n}$ has no square factors, we have

$$
\begin{equation*}
s \leqslant \sqrt{s(s+1)} \leqslant \sqrt{2 \sum h_{i}}=2^{\frac{n}{2}+1} \sqrt{\Delta} \tag{1}
\end{equation*}
$$

Note that $2^{n}<s \log _{a}\left(1+\frac{1}{2^{n+1}}\right)+(n+1) s \log _{a} 2+\log _{a} \prod_{i=1}^{s} h_{i}$. So

$$
\begin{align*}
\frac{2^{n}}{s} & <\log _{a}\left(1+\frac{1}{2^{n+1}}\right)+(n+1) \log _{a} 2+\log _{a} \frac{\sum_{i=1}^{s} h_{i}}{s} \\
& <(n+2) \log _{a} 2+\log _{a} \frac{2^{n+1} \Delta}{s} \\
& <(n+2) \log _{a} 2+\log _{a}\left[2 \Delta\left((n+2) \log _{a} 2+\log _{a} 2^{n+1} \Delta\right)\right] \\
& =\log _{a}\left(2^{n+3} \Delta\right)+\log _{a} \log _{a}\left(2^{2 n+3} \Delta\right) \tag{2}
\end{align*}
$$

By (1) and (2), it follows that

$$
\begin{equation*}
2^{\frac{n-2}{2}}<\left(\log _{a}\left(2^{n+3} \Delta\right)+\log _{a} \log _{a}\left(2^{2 n+3} \Delta\right)\right) \sqrt{\Delta} \tag{3}
\end{equation*}
$$

From (3), $\sqrt{\Delta}>\frac{2^{\frac{n-2}{2}}}{b}$ when $\sqrt{\Delta}<2^{\frac{n-2}{2}}$. Hence,

$$
\begin{equation*}
\sqrt{\Delta} \geqslant \frac{2^{\frac{n-2}{2}}}{\max (b, 1)} \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
h_{s}>\sqrt{2 \sum_{i=0}^{s-1}\left(h_{s}-i\right)}-0.5 \geqslant \sqrt{2 \sum_{i=1}^{s} h_{i}}-0.5=2^{\frac{n+2}{2}} \sqrt{\Delta}-0.5 \tag{5}
\end{equation*}
$$

(4) and (5) complete the proof.

From [2], all divisors of F_{n} for $n>1$ are of the form $2^{n+2} k+1(k \in \mathbb{N})$. Similar to the discussion of $F_{a, n}$, we have the following theorem.

Theorem 2.3. If F_{n} is square-free, then

$$
P\left(F_{n}\right)>2^{n+2}\left[\frac{2^{n}}{2 n+1+\log _{2}(3 n+1)}-0.5\right]+1
$$

References

[1] Y.G. Chen, A note on the prime factors of Fermat numbers, Southeast Asian Bull. Math. 28 (2) (2004) 241-242.
[2] A. Grytczuk, B. Mçdryk, Lower bound for the greatest prime divisors of the generalized Fermat numbers, Southeast Asian Bull. Math. 28 (2) (2004) 265-268.
[3] A. Grytczuk, M. Wójtowicz, F. Luca, Another note on the greatest prime factors of Fermat numbers, Southeast Asian Bull. Math. 25 (1) (2001) 111-115.
[4] M. Le, A note on the greatest prime factors of Fermat numbers, Southeast Asian Bull. Math. 22 (1) (1998) 41-44.

