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Abstract. In this paper, a compact finite difference scheme is constructed and inves-

tigated for the fourth-order time-fractional integro-differential equation with singular

kernels. In temporal direction, the Caputo derivative is treated by L1 discrete for-

mula and the Riemann-Liouville fractional integral is discretized by trapezoidal PI

rule respectively. In spatial direction, the fourth order derivative is approximating by

high-order accuracy compact difference method. The detailed analysis shows that the

proposed scheme is unconditionally stable and convergent with the convergence order

O(N−min{rσ,2−α} + M−4). N,M denote the numbers of grids in temporal direction

and in spatial direction, α ∈ (0, 1) is the fractional order of the Caputo derivative and

σ is a regularity parameter. At last, some numerical results are also given to confirm

our theoretical statement.
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1. Introduction

Numerical methods will be studied for the fourth-order time-fractional integro-
differential equation as follows:

C
0 D

α
t u(x, t) + µuxxxx(x, t) +

∫ t

0

(t− s)β−1

Γ(β)
u(x,s)ds = f(x,t),

0 < x < L, 0 < t ≤ T,

(1)

subject to the initial condition

u(x, 0) = 0, 0 ≤ x ≤ L, (2)

and the boundary conditions

u(0, t) = φ1(t), u(L, t) = φ2(t),
∂2u(0, t)

∂x2
= ϕ1(t),

∂2u(L, t)

∂x2
= ϕ2(t), 0 < t ≤ T,

(3)

where µ is a positive constant and f(x, t) is a given function. The integral
term in (1) is known as Riemann-Liouville fractional integral [19, 16, 18] with
0 < β < 1, and the symbol C

0 D
α
t u(x, t) means Caputo fractional derivative of

order α, i.e.

C
0 D

α
t u(x, t) =

{

1
Γ(1−α)

∫ t

0
∂u(x,s)

∂s
ds

(t−s)α if 0 < α < 1,

∂tu(x, t) if α = 1.

In recent decades, fractional differential equations have received much atten-
tion from more and more scholars and been widely used in thermal systems,
mechanical systems and other application fields. Specific applications can be
found (see [13, 23, 15, 1, 17, 8, 14]). Currently, there are various numerical
methods for the fourth-order time-fractional equations as follows.

C
0 D

α
t u(x, t) + µuxxxx(x, t) = f(x,t).

Liu [13] introduced an auxiliary variable, then the fourth-order equation can
be splited into the coupled system of two second-order equations. Guo [6] pro-
posed fully discrete local discontinuous Galerkin method for some time-fractional
fourth-order differential equations. For Equation (1), due to the influence of
Riemann-Liouville fractional integral, the theoretical results are hard to obtain
in some way. Very recently, Qiao [19] construct a finite difference scheme for the
fractional integro-differential equation (4) under good regularity assumption on
uniform meshes and the theoretical analysis are investigated as well.

C
0 D

α
t u(x, t)− µ∆u(x, t) =

∫ t

0

(t− s)β−1

Γ(β)
∆u(x, s)ds+ f(x,t). (4)
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In addition, Qiao [20] formulate and analyze an ADI-OSC numerical scheme for
the multi-term time fractional integro-differential equation. Xu [28] analyze a
compact finite difference scheme, the stability and convergence are proved by
the discrete energy method, the Cholesky decomposition and the reduced-order
method.

Referring to the literatures [11], our work is based on more factual initial
singularity assumptions:

|∂lu(x, t)/∂tl| ≤ C(1 + tσ−l), 0 < σ < 1, l = 0, 1, 2, (5)

where (x, t) ∈ [0, L]× (0, T ], σ is a regularity parameter, which depends on the
orders of Caputo fractional derivative α and Riemann-Liouville integral β. To
overcome the challenge caused by initial singularity, nonuniform mesh technic
will be implemented in this work. In fact, the nonuniform mesh methods have
been used for solving integro-differential equations with singular kernel for many
years [10, 22, 29]. Tang [26] studied the numerical solutions of weakly singular
Volterra integral equations by collocation method on graded meshes. Ma [4]
investigated weakly singular Volterra integral equations by the graded mesh
methods as well. Cen [2] studied the numerical method for time-fractional KdV-
Burgers’ equation with initial singularity. Zhang [30] discussed the implicit finite
difference scheme with nonuniform time steps for the time fractional diffusion
equations.

We construct a compact finite difference scheme on graded meshes and deduce
the stability and convergence results of the proposed numerical scheme. The L1
discrete formula is used to deal with the Caputo fractional derivative and the
compact difference approximation is employed for spatial directional derivatives.
Based on some cruical skills, the unconditional stability and convergence with
O(N−min{rσ,2−α} +M−4) are obtained.

The rest of the paper is organized as follows. Some preliminary knowledge
and the discrete scheme are introduced in Section 2. In Section 3, the stability is
presented for the discrete scheme and the convergence result is provided for the
discrete scheme. In Section 4, the results of numerical experiments are carried
out. This paper ends with a brief conclusion.

2. Preliminaries

Firstly, we divide time interval and space interval as follows. In space interval, for
a positive integerM , let h = L

M
, xi = ih (0 ≤ i ≤M). In time interval, we adopt

graded mesh, for a positive interval N , let tk = T ( k
N
)r (0 ≤ k ≤ N, r ≥ 1), τk =

tk − tk−1 (1 ≤ k ≤ N). Let Vh = {u|u = (u0, u1, . . . , uM ), u0 = uM = 0}. For
any u ∈ Vh, denote

δxui =
1

h
(ui − ui−1), δ2xui =

1

h2
(ui−1 − 2ui + ui+1), δ4xui = δ2x(δ

2
xui).
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For grid functions u, v, the notations of discrete inner products and norms
are defined as follow:

‖u‖2 = 〈u, u〉, 〈u, v〉 = h

M−1
∑

i=1

uivi, ‖δ2xu‖
2
= h

M−1
∑

i=1

(δ2xui)
2.

We introduce the compact operator

Hui =







1

6
(ui−1 + 4ui + ui+1) =

(

1 +
h2

6
δ2x

)

ui if 1 ≤ i ≤M − 1,

ui if i = 0, M.

According to [11, 9], we discretize the Caputo fractional derivative C
0 D

α
t u(t)

by the nonuniform L1 formula. For C
0 D

α
t u(t) at tk (1 ≤ k ≤ N), one has

C
0 D

α
t u(x, tk) =

k
∑

l=1

∫ tl

tl−1

(tk − s)−α

Γ(1− α)

u(tl)− u(tl−1)

τl
ds+ (Rα

t )
k

=

k
∑

l=1

a
(k)
k−l[u(tl)− u(tl−1)] + (Rα

t )
k,

(6)

where a
(k)
k−l =

∫ tl

tl−1

(tk−s)−α

Γ(1−α)τl
ds.

Denote

∂αt u(tk) =
k
∑

l=1

a
(k)
k−l[u(tl)− u(tl−1)], 1 ≤ k ≤ N, (7)

and

P
(n)
n−k =

1

a
(k)
0















1 if k = n,

n
∑

j=k+1

(a
(j)
j−k−1 − a

(j)
j−k)P

(n)
n−j if 1 ≤ k ≤ n− 1.

(8)

Lemma 2.1. [11] Let α ∈ (0, 1). Under the assumptions in (5), one has

n
∑

j=1

P
(n)
n−j |(Rα

t )
j | ≤ CN−min{rσ,2−α}, n ≥ 1.

Then, in order to approximate the Riemann-Liouville fractional 0I
β
t u(t), we

introduce the following trapezoidal PI rule in [5, 12]:

0I
β
t u(tk) =

τβ1
Γ(β + 2)

[wku(t0) +
k
∑

l=1

bk,lu(tl)] + (Rβ
t )

k
, 1 ≤ k ≤ N, (9)
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where wk = (kr − 1)β+1− krβ(kr −β− 1), bk,l = φk,l(β, r)−φk,l+1(β, r), bk,k =

(kr − (k − 1)r)β , with φk,l(β, r) =
(kr−(l−1)r)β+1−(kr−lr)β+1

lr−(l−1)r .

Denote

Qβ
t u(tk) =

τβ1
Γ(β + 2)

[wku(t0) +

k
∑

l=1

bk,lu(tl)], 1 ≤ k ≤ N. (10)

Error estimate results are given as follow.

Lemma 2.2. [27] Let β ∈ (0, 1). Under the assumption (5), then

n
∑

j=1

P
(n)
n−j |(R

β
t )

j | ≤ CN−min{rσ,2}, n ≥ 1.

Lemma 2.3. [21] If g(x) ∈ C8[xi−1, xi+1], 1 ≤ i ≤M − 1, then it holds that

1

6
[g(4)(xi−1) + 4g(4)(xi) + g(4)(xi+1)]

=
δ2xg(xi−1)− 2δ2xg(xi) + δ2xg(xi+1)

h2
+ (Rx)i,

where |(Rx)i| ≤ CM−4.

The difference scheme we will consider for (1)-(3) is as follows:

H∂αt uki + µδ4xu
k
i +

τβ1
Γ(β + 2)

wkHu0i +
τβ1

Γ(β + 2)

k
∑

l=1

bk,lHuli = Hfk
i , (11)

1 < i < M − 1,

u0i = 0, 0 ≤ i ≤M, (12)

uk0 = φ1(t), u
k
L = φ2(t), δ

2
xu

k
0 = ϕ1(t), δ

2
xu

k
L = ϕ2(t), 1 ≤ k ≤ N. (13)

It is easy to check that at each time level, the finite difference scheme (11)-
(13) is a linear tridiagonal system with strictly diagonally dominant coefficient
matrix, thus the difference scheme has a unique solution.

3. Convergence and Stability of the Compact Scheme

For the analysis of the stability and convergence, we give some notations and
lemmas as follows. By the Cholesky decomposition (square root method), there
exists a real positive definite B, which satisfies

H = BT B.
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Lemma 3.1. [21] For any grid function u, v ∈ Vh, and δ
2
xu0 = δ2xuM = 0. It holds

that
〈δ4xu, v〉 = 〈δ2xu, δ2xv〉.

Lemma 3.2. For any grid function u, v ∈ Vh, we have

〈Hu, v〉 = 〈Bu,Bv〉.

Proof. Using the definition of the inner product 〈., .〉 and combining HT = H =
BT B, it follows that

〈Hu, v〉 = h(Hu)T v = huT (HT v) = huT (BTBv) = h(Bu)T (Bv) = 〈Bu,Bv〉.

The proof is finished.

Lemma 3.3. [27] For any grid function {vk|∂vk = 0}, 1 ≤ k ≤ N, it holds that

〈∂αt Hvk, vk〉 ≥
1

2
∂αt ‖Bvk‖2.

Lemma 3.4. [21] For any grid function u ∈ Vh, it holds that

1

3
〈u, u〉 ≤ 〈Bu,Bu〉 ≤ 〈u, u〉.

Lemma 3.5. [27] Let wk, {bk,l} be defined as (9). Then we have

(i) wk ≤ β,

(ii)
τ
β
1

Γ(β+2)

∑k−1
l=1 bk,l <

Tβ

Γ(β+1) .

Lemma 3.6. [9] For any finite time T and nonnegative sequences (λ
(k)
l )k−1

l=0 ,
assume that there exists a constant λ, independent of time steps, such that λ ≥
max1≤k≤n

∑k−1
l=0 λ

(k)
l . Suppose that the grid function {vk|k ≥ 0} satisfies

∂αt (v
k)2 ≤

k
∑

l=1

λ
(k)
k−l(v

l)2 + vk(ξk + ηk), 1 ≤ k ≤ n,

where ξk, ηk are nonnegative sequences. When τn ≤ α

√

1
2Γ(2−α)λ , it holds that

vk ≤ 2Eα(2λt
α
k )
(

v0 + max
1≤j≤k

j
∑

l=1

P
(j)
j−lξ

l + ω1+α(tk) max
1≤j≤k

ηj
)

, 1 ≤ k ≤ n,



Fourth-order Fractional Integro-differential Equation 727

where Eα(z) =
∑∞

k=0
zk

Γ(1+kα) is the well-known Mittag-Leffler function.

We now consider the convergence of our numerical scheme.

Theorem 3.7. Assume that uni ∈ [0, L]× (0, T ] is the solution of problem (1)-(3).
Let {Un

i |0 ≤ i ≤M, 0 ≤ n ≤ N} be the solution of (11)-(13), denote

eni = uni − Un
i , 0 ≤ i ≤M, 0 ≤ n ≤ N.

When assumptions (5) hold and τN ≤ α

√

1
2Γ(2−α)λ with λ = 2Tβ

Γ(β+1) , then there

exist positive constant C such that

‖en‖ ≤ C(N−min{rσ,2−α} +M−4), 1 ≤ n ≤ N.

Proof. We can get the following error equation

∂αt Heni + µδ4xe
n
i +

τβ1
Γ(β + 2)

wnHe0i +
τβ1

Γ(β + 2)

n
∑

l=1

bn,lHeli = Rn
i , (14)

1 < i < M − 1, 1 ≤ n ≤ N,

e0i = 0, 0 ≤ i ≤M,

en0 = 0, enM = 0, δ2xe
n
0 = 0, δ2xe

n
M = 0, 1 ≤ n ≤ N,

where Rn
i = −H(Rα

t )
n −H(Rβ

t )
n − µ(Rx)

n.

Making the inner product of Equation (14) with en, we obtain

〈∂αt Hen, en〉+ µ〈δ4xen, en〉+
τβ1

Γ(β + 2)
wn〈He0, en〉

=− τβ1
Γ(β + 2)

n
∑

l=1

bn,l〈Hel, en〉+ 〈Rn, en〉,
(15)

Lemmas 3.1, 3.3 and 3.4 give that

〈∂αt Hen, en〉 ≥ 1

2
∂αt ‖Ben‖2, (16)

τβ1 wn

Γ(β + 2)
〈He0, en〉 = 0,

τβ1 bn,n
Γ(β + 2)

〈Hen, en〉 ≥ 0,

〈δ4xen, en〉 = ‖δ2xen‖2 ≥ 0, 〈Rn, en〉 ≤
√
3‖Rn‖‖Ben‖.

To the term
∑n−1

l=1 bn,l〈Hel, en〉, it holds that
n−1
∑

l=1

bn,l〈Hel, en〉 =
n−1
∑

l=1

bn,l〈Bel,Ben〉 (17)

≥ −1

2

n−1
∑

l=1

bn,l‖Bel‖2 −
1

2

n−1
∑

l=1

bn,l‖Ben‖2.
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Denote

λ
(n)
n−l =



















τβ1
Γ(β + 2)

bn,l if 1 ≤ l ≤ n− 1,

τβ1
Γ(β + 2)

n−1
∑

l=1

bn,l if l = n.

Substituting (16), (17) into (15), we have

∂αt ‖Ben‖2 ≤
n
∑

l=1

λ
(n)
n−l‖Bel‖2 + ‖Ben‖‖2

√
3Rn‖

≤
n
∑

l=1

λ
(n)
n−l‖Bel‖2 + ‖Ben‖‖(Rt)

n‖+ ‖Ben‖‖(Rs)
n‖, (18)

where ‖(Rt)
n‖ = 2

√
3(‖H(Rα

t )
n‖+ ‖H(Rβ

t )
n‖), ‖(Rs)

n‖ = 2
√
3‖µ(Rx)

n‖.
By Lemma 3.5, there exists a constant λ = 2Tβ

Γ(β+1) , such that λ ≥
max1≤k≤n

∑k−1
l=0 λ

(k)
l . When τn ≤ α

√

1
2Γ(2−α)λ , Lemma 3.6 implies that

‖Ben‖ ≤ 2Eα(2λt
α
n)
(

‖He0‖+ max
1≤j≤n

j
∑

l=1

P
(j)
j−l‖(Rt)

l‖+ ω1+α(tn) max
1≤j≤n

‖(Rs)
j‖
)

.

Based on Lemmas 2.1, 2.2, 2.3 and 3.4, one has

‖en‖ ≤ C(N−min{rσ,2−α} +M−4).

The proof is completed.

Theorem 3.8. Following the idea of the proof for Theorem 3.7, stability statement
is obtained for the proposed compact scheme (11)-(13). Assume that Uk

i , V
k
i are

the solutions of the scheme. Denote

εki = Uk
i − V k

i , 0 ≤ i ≤M, 0 ≤ k ≤ N.

We have stability equations as follows

∂αt Hεki +Qβ
t Hεki + µδ4xε

k
i = gki , 1 ≤ i ≤M − 1, 1 ≤ k ≤ N, (19)

ε0i = ψi, 0 ≤ i ≤M,

εk0 = 0, εkM = 0, δ2xε
k
0 = 0, δ2xε

k
M = 0, 1 ≤ k ≤ N.

Taking the inner product of (19) with εk, we get

〈∂αt Hεk, εk〉+
τβ1 wk

Γ(β + 2)
〈Hε0, εk〉+ µ〈δ4xεk, εk〉

=− τβ1
Γ(β + 2)

k
∑

l=1

bk,l〈Hεl, εk〉+ 〈gk, εk〉.
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From Theorem 3.7, there exists a constant C such that

‖εk‖ ≤ C
(

‖ψ‖+ max
1≤j≤N

‖gj‖
)

, 1 ≤ k ≤ N.

4. Numerical Experiments

We present numerical results which support the analyses of preceding sections.
We suppose L = π, T = µ = 1. Let Un be the numerical solutions.

Denote

E2(M,N) = max
0≤n≤N

‖un − Un‖,

rate1 = log2

(

E2(M, N2 )

E2(M,N)

)

, rate2 = log2

(

E2(
M
2 , N)

E2(M,N)

)

.

Example 4.1. The following problem is considered:

C
0 D

α
t u(x, t) + µuxxxx(x, t) +

∫ t

0

(t− s)β−1

Γ(β)
u(x,s)ds = f(x, t),

0 < x < L, 0 < t ≤ T,

u(x, 0) = 0, 0 ≤ x ≤ L,

u(0, t) = 0, u(L, t) = 0,
∂2u(0, t)

∂x2
= 0,

∂2u(L, t)

∂x2
= 0, 0 < t ≤ T,

where

f(x, t) = sin(x)

(

Γ(1 + α)

Γ(1)
+

Γ(1 + α)

Γ(1 + α+ β)
t(α+β) + tα

)

.

The exact solution for this problem is u(x, t) = sin(x)tα.

Table 1: Numerical convergence orders in temporal direction with M = 100, r =
2−α
α

.

N α = 0.5, β = 0.3 α = 0.4, β = 0.7 α = 0.6, β = 0.6
E2(M,N) Rate1 E2(M,N) Rate1 E2(M,N) Rate1

64 8.8761e-04 ∗ 6.4774e-04 ∗ 1.2000e-03 ∗
128 3.2928e-04 1.4306 2.2414e-04 1.2747 4.8490e-04 1.3213
256 1.2014e-04 1.4546 7.6738e-05 1.3228 1.9052e-04 1.3478
512 4.3413e-05 1.4686 2.6091e-05 1.5565 7.3974e-05 1.3648
1024 1.5595e-05 1.4771 8.8231e-06 1.5642 2.8498e-05 1.3761
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Table 2: Numerical convergence orders in temporal direction with M = 100, r =
1.

N α = 0.5, β = 0.3 α = 0.4, β = 0.7 α = 0.6, β = 0.6
E2(M,N) Rate1 E2(M,N) Rate1 E2(M,N) Rate1

64 2.3200e-02 ∗ 3.3100e-02 ∗ 1.5800e-02 ∗
128 1.7200e-02 0.4344 2.6200e-02 0.3378 1.0700e-02 0.5603
256 1.2500e-02 0.4554 2.0500e-02 0.3547 7.2000e-03 0.5747
512 9.1000e-03 0.4697 1.5900e-02 0.3663 4.8000e-03 0.5836
1024 6.5000e-03 0.4794 1.2300e-02 0.3747 3.2000e-03 0.5894

Table 3: Numerical convergence orders in spatial direction with N = 100000, r =
2−α
α

.

M α = 0.5, β = 0.5
E2(M,N) Rate2

5 8.1419e-05 ∗
10 4.9889e-06 4.0286
20 3.0295e-07 4.0416
40 1.6899e-08 4.1641

We choose different graded mesh coefficients r in the experiments, such as
r = 2−α

α
in Table 1 and Table 3, r = 1 in Table 2. The convergence orders in

temporal direction with M = 100 is reported in Table 1, Table 2. The temporal
rate with graded mesh is O(N−min{rσ,2−α}) with σ = α. The convergence rate
in spatial direction is O(M−4), which is listed in Table 3 with N = 100000. The
numerical results match that of the theoretical ones.

5. Conclusions

In this article, we construct a compact finite difference scheme on graded meshes
for the fourth-order time-fractional integro-differential equation with initial sin-
gularity. L1 formula and trapezoidal PI rule with nonuniform mesh are adopted
to approximate the Caputo derivative and the Riemann-Liouville integral. The
compact difference scheme is stable and convergent with the convergence order
O(N−min{rσ,2−α} +M−4). The theoretical results have been verified by some
numerical experiments. In the future, we plan to investigate the possibility to
construct higher order schemes.
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