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Abstract. Let G be a finite group and X be a conjugacy class of G. The rank of X

in G, denoted by rank(G : X), is defined to be the minimum number of elements of

X generating G. We investigate the ranks of the alternating group A11. We use the

structure constants method to determine the ranks of all the non-trivial classes of the

group A11.

Keywords: Conjugacy classes; Rank; Generation; Alternating simple group.

1. Introduction

Let G be a finite group and nX a non-identity conjugacy class of G. We define
rank(G : nX) to be the minimum number of elements of G in nX that generate
G. This is called the rank of nX in G.

∗The research is supported by National Research Foundation of South Africa (Grant No.
11561070).
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One of the applications of ranks of conjugacy classes of a finite group is that
they are involved in the computations of the covering number of the finite simple
group (see [16]). Moori in various papers (see [9], [10] and [11]), computed the
ranks of the involuntary classes of the Fischer sporadic simple group Fi22 and
his results were that rank(Fi22 : 2A) ∈ {5, 6} and rank(Fi22 : 2B) = 3 =
rank(Fi22 : 2C). On the other hand, the work of Hall and Soicher [8] implies
that rank(Fi22 : 2A) = 6.

In this paper, we determine the rank for each non-identity conjugacy class
of the group A11. We follow some of the methods used in the paper written by
Basheer and Moori [2], and the techniques used by Ganief when he computed
(p, q, r)-generations of certain groups [4].

2. Preliminaries

Let G be a finite group and C1, C2, · · · , Ck (not necessarily distinct) for k ≥ 3 be
conjugacy classes of G with g1, g2, · · · , gk being representatives for these classes
respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1,
denote by ∆G = ∆G(C1, C2, · · · , Ck) the number of distinct (k − 1)-tuples
(g1, g2, · · · , gk−1) ∈ C1 × C2 × · · · × Ck−1 such that g1g2 · · · gk−1 = gk. This
number is known as class algebra constant or structure constant. With Irr(G) =
{χ1, χ2, · · · , χr}, the number ∆G is easily calculated from the character table
of G through the formula

∆G(C1, C2, · · · , Ck) =

k−1∏

i=1

|Ci|

|G|

r∑

i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

(χi(1G))k−2
. (1)

Also for a fixed gk ∈ Ck we denote by ∆∗
G(C1, C2, · · · , Ck) the number of

distinct (k − 1)-tuples (g1, g2, · · · , gk−1) satisfying

g1g2 · · · gk−1 = gk and G = 〈g1, g2, · · · , gk−1〉 . (2)

Definition 2.1. If ∆∗
G(C1, C2, · · · , Ck) > 0, the group G is said to be (C1, C2, · · · ,

Ck)-generated.

Remark 2.2. A group G is (C1, C2, · · · , Ck)-generated if and only if ∆∗
G(C1, C2,

· · · , Ck) > 0.

Furthermore ifH is any subgroup of G containing a fixed element hk ∈ Ck, we
let ΣH(C1, C2, · · · , Ck) be the total number of distinct tuples (h1, h2, · · · , hk−1)
such that

h1h2 · · ·hk−1 = hk and 〈h1, h2, · · · , hk−1〉 ≤ H. (3)



Alternating Simple Group A11 745

The value of ΣH(C1, C2, · · · , Ck) can be obtained as a sum of the structure
constants ∆H(c1, c2, · · · , ck) of H-conjugacy classes c1, c2, · · · , ck such that ci ⊆
H ∩ Ci.

Theorem 2.3. Let G be a finite group and H be a subgroup of G containing a

fixed element g such that gcd(o(g), [NG(H):H ]) = 1. Then the number h(g,H) of
conjugates of H containing g is χH(g), where χH(g) is the permutation character

of G with action on the conjugates of H. In particular

h(g,H) =
m∑

i=1

|CG(g)|

|CNG(H)(xi)|
,

where x1, x2, · · · , xm are representatives of the NG(H)-conjugacy classes fused

to the G-class of g.

Proof. See [5] and [6, Theorem 2.1].

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2,

· · · , Ck), namely ∆∗
G(C1, C2, · · · , Ck), where

∆∗
G(C1, · · · , Ck) ≥ ∆G(C1, · · · , Ck)−

∑

h(gk, H)ΣH(C1, · · · , Ck), (4)

gk is a representative of the class Ck and the sum is taken over all the rep-
resentatives H of G-conjugacy classes of maximal subgroups of G containing
elements of all the classes C1, C2, · · · , Ck. Since we have all the maximal sub-
groups of the sporadic simple groups except for G = M the Monster group, it
is possible to build a small subroutine in GAP [14] to compute the values of
∆∗

G = ∆G(C1, C2, · · · , Ck) for any collection of conjugacy classes and for any
alternating simple group.

The following results are in some cases useful in establishing non-generation
for finite groups.

Lemma 2.4. Let G be a finite centerless group. If ∆∗
G(C1, C2, · · · , Ck) <

|CG(gk)|, gk ∈ Ck, then ∆∗
G(C1, C2, · · · , Ck) = 0 and therefore G is not

(C1, C2, · · · , Ck)-generated.

Proof. See [2, Lemma 2.7].

Theorem 2.5. [12] Let G be a transitive permutation group generated by permu-

tations g1, g2, · · · , gs acting on a set of n elements such that g1g2 · · · gs = 1G. If
the generator gi has exactly ci cycles for 1 ≤ i ≤ s, then

∑s

i=1 ci ≤ (s− 2)n+2.

By the Atlas of finite group representations [15], the alternating group A11 is
acting on 11 points, so that n = 11. Since our generation is triangular, we have
s = 3. Hence if A11 is (l,m, n)-generated, then

∑
ci ≤ 13.



746 A.B.M. Basheer et al.

Theorem 2.6. [13] Let g1, g2, · · · , gs be elements generating a group G with

g1g2 · · · gs = 1G and V be an irreducible module for G with dimV = n ≥ 2.
Let CV(gi) denote the fixed point space of 〈gi〉 on V and let di be the codimen-

sion of CV(gi) in V. Then
∑s

i=1 di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible
module V and 1〈gi〉 being the trivial character of the cyclic group 〈gi〉 , the
codimension di of CV(gi) in V can be computed using the following formula
([4]):

di = dim(V)− dim(CV(gi)) = dim(V)−
〈

χ↓G〈gi〉,1〈gi〉

〉

= χ(1G)−
1

| 〈gi〉 |

o(gi)−1
∑

j=0

χ(gji ). (5)

The following results are in some cases useful in determining the ranks finite
groups.

Theorem 2.7. [2, Lemma 2.5] Let G be a (2X, sY, tZ)-generated simple group.

Then G is (sY, sY, (tZ)2)-generated.

Lemma 2.8. [1] Let G be a finite simple group such that G is (lX,mY, nZ)-
generated. Then G is ((lX, lX, . . . , lX

︸ ︷︷ ︸

m−times

), (nZ)m)-generated.

Corollary 2.9. [1] Let G be a finite simple group such that G is (lX,mY nZ)-
generated. Then rank(G : lX) ≤ m.

Proof. The result follows immediately from Lemma 2.8.

Theorem 2.10. [7] Let G be a (2X, sY, tZ)-generated simple group. Then G is

(sY, sY, (tZ)2)-generated.

Corollary 2.11. Let G be a finite simple group such that G is (2X,mY, nZ)-
generated. Then rank(G : mY ) = 2.

Proof. Since G is (lX,mY, nZ)-generated so by Lemma 2.8 we obtained that G
is (mY,mY, (nZ)m)-generated. Hence the result follows.

3. The Alternating Group A11

In this section we apply the results discussed in Section 2, to the alternating
group A11. We determine the ranks for all the nonidentity conjugacy classes
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of A11. The alternating group A11 is a simple and has order 19958400 = 27 ×
34 × 52 × 7 × 11. From [3], the group G has exactly 31 conjugacy classes of its
elements and 7 conjugacy classes of its maximal subgroups. Representatives of
these classes of maximal subgroups can be taken as follows:

H1 = A10 H2 = S9 H3 = (A8 × 3):2
H4 = (A7 ×A4):2 H5 = (A6 ×A5):2 H6 = M11

H7 = M11.

Throughout this paper, by G we always mean the alternating group A11,
unless stated otherwise. It is well-known that G can be generated in terms of
permutations on 11 points. From GAP or the electronic Atlas of finite group
representations [15], the following two elements g1 and g2 generate G where:

g1 = (1, 2, 3)

g2 = (3, 4, 5, 6, 7, 8, 9, 10, 11),

with o(g1) = 3, o(g2) = 9 and o(g1g2) = 11.

In Table 1 we list representatives of classes of the maximal subgroups together
with the orbits lengths of G on these groups and the permutation characters.

In Table 2, we list the values of the cyclic structure for each conjugacy of
G which containing elements of prime order together with the values of both ci
and di obtained from Ree and Scotts theorems, respectively.

Table 3 gives the partial fusion maps of classes of maximal subgroups into
the classes of G. These will be used in our computations.

Table 1: Maximal subgroups of G

Maximal
Subgroup

Order
Orbit

Lengths
Character

H1 27 · 34 · 52 · 7 [1,10] 1a+ 10a
H2 27 · 34 · 5 · 7 [2,9] 1a+ 10a+ 44a
H3 27 · 33 · 5 · 7 [3,8] 1a+ 10a+ 44a+ 110a
H4 26 · 33 · 5 · 7 [7,4] 1a+ 10a+ 44a+ 110a+ 165a
H5 26 · 33 · 52 [5,6] 1a+ 10a+ 44a+ 110a +132a + 165a
H6 24 · 32 · 5 · 11 [11] 1a+ 132a+ 462a+ 825a+ 1100a
H7 24 · 32 · 5 · 11 [11] 1a+ 132a+ 462a+ 825a+ 1100a

4. The Conjugacy Class Ranks of G

Now we study the ranks of G with respect to the various conjugacy classes of
all its nonidentity elements. We start our investigation on the ranks of the non-
trivial classes of G by looking at the two classes of involutions 2A and 2B. It is
well known that the rank of any of these involutions classes will be at least 3.
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Table 2: Cycle structures of conjugacy classes of G

nX Cycle Structure ci di

2A 1722 9 2
2B 1324 7 4
3A 1831 9 2
3B 1532 7 4
3C 1233 5 6
4A 152 3 7 4
4B 1242 5 6
4C 112341 5 6
5A 1651 7 4
5B 1152 3 8
6A 1431 5 6
6B 142231 7 4
6C 122232 5 6
6D 132161 5 6
6E 213161 3 8
7A 1471 5 6
8A 122181 3 8
9A 1291 3 8
10 122251 5 6
11A 111 1 10
11B 111 1 10
12A 3142 3 8
12B 12213141 5 6
12C 114161 3 8
14A 2271 3 8
15A 133151 5 6
15B 3251 5 6
20 214151 3 8
21A 113151 3 8
21B 113151 3 8

The group G is not (2Y, 2Z, pX)-generated, for if G is (2Y, 2Z, pX)-generated,
then G is a dihedral group and thus is not simple for all Y, Z ∈ {A,B}. Also we
know that if G is (l,m, n)-generated with 1

l
+ 1

m
+ 1

n
≥ 1 and G is simple, then

G ∼= A5, but G ∼= A11 and A11 6∼= A5.

Lemma 4.1. rank(G : 2A) /∈ {3, 4}.

Proof. Now if G is (2A, 2A, 2A, nX)-generated, then by Scott’s Theorem [13] we
must have d2A+d2A+d2A+dnX ≥ 2×10. However, it is clear from Table 2 that
3×d2A+dnX = 3× 2+dnX < 20 for each nX , where nX is a set of all the non-
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Table 3: The partial fusion maps into G

H1-class 2a 2b 3a 3b 3c 5a 5b 7a
→ G 2A 2B 3A 3B 3C 5A 5B 7A

h 6 1 4
H2-class 2a 2b 2c 2d 3a 3b 3c 5a 7a
→ G 2A 2A 2B 2B 3C 3A 3B 5A 7A

h 15 6
H3-class 2a 2b 2c 2d 3a 3b 3c 3d 3e 5a 7a
→ G 2B 2B 2A 2A 3A 3B 3C 3A 3B 5A 7A

h 20 4
H4-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 7a
→ G 2A 2A 2A 2B 2B 3A 3A 3B 3B 3C 5A 7A

h 15 1
H5-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 5b 5c 5d
→ G 2A 2A 2B 2A 2B 3A 3B 3A 3B 3C 5A 5A 5B 5B

h 1 6 1 1
H6-class 2a 3a 5a 11a 11b
→ G 2B 3C 5B 11A 11B

h 5 1 1
H7-class 2a 3a 5a 11a 11b
→ G 2B 3C 5B 11A 11B

h 5 1 1

identity classes of G and therefore G is not (2A, 2A, 2A, nX)-generated, for any
nX. We use the similar arguments to prove that G is not (2A, 2A, 2A, 2A, nX)-
generated because 4 × d2A + dnX = 4 × 2 + dnX < 20 for any nX ∈ T. Hence
rank(G : 2A) /∈ {3, 4}.

Proposition 4.2. rank(G : 2A) = 5.

Proof. From Table 3 we see that H6 (or H7) (two non-conjugate copies) is
the only maximal subgroup containing elements of orders 2, 5 and 11. The
intersection of H6 from one conjugacy class with H7 from a different con-
jugacy class has no element of order 11. No element of order 2 from these
two maximal subgroups fuses to the class 2A of G. We then obtained that
∆∗

G(2A, 5B, 11X) = ∆G(2A, 5B, 11X) = 44 > 11 = |CG(11X)| for X ∈ {A,B}.
This proves that G is (2A, 5B, 11X)-generated for X ∈ {A,B}. Since G is
(2A, 5B, 11X)-generated for X ∈ {A,B}, by Corollary 2.9, we must have
rank(G : 2A) ≤ 5. Since by Lemma 4.1, rank(G : 2A) /∈ {3, 4}, it follows
that rank(G : 2A) = 5.

Lemma 4.3. The group G is (2B, 3C, 11X)-generated for X ∈ {A,B}.
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Proof. From Table 3 we see that H6 (or H7) (two non-conjugate copies) is the
only maximal subgroup containing elements of orders 2, 3 and 11. We obtained
that

∑

H6
(2a, 3a, 11x) = 11 and h(11X,H6) = 1 (or

∑

H7
(2a, 3a, 11x) = 11 and

h(11X,H7) = 1). We obtained that ∆G(2B, 3C, 11X) = 110 and it follows that
∆∗

G(2B, 5B, 11X) = ∆G(2B, 3C, 11X)−
∑

H6
(2a, 3a, 11x)−

∑

H7
(2a, 3a, 11x) =

110 − 11 − 11 = 88 > 11 = |CG(11X)| for X ∈ {A,B}. This proves that G is
(2B, 3C, 11X)-generated for X ∈ {A,B}.

Proposition 4.4. rank(G : 2B) = 3.

Proof. Since by Lemma 4.3, the group G is (2B, 3C, 11X)-generated for X ∈
{A,B}, by Corollary 2.9, we must have rank(G : 2B) ≤ 3. It then follows that
rank(G : 2B) = 3.

Proposition 4.5. rank(G : 3A) = 5.

Proof. Now if G is (3A, 3A, nX)-generated, then by Scott’s Theorem [13] we
must have d3A + d3A + dnX ≥ 2 × 10. However, it is clear from Table 2 that
2× d3A + dnX = 2× 2+ dnX < 20 for each non-identity class of G and therefore
G is not (3A, 3A, nX)-generated. We use similar arguments to prove that G is
not (3A, 3A, 3A, nX)- and (3A, 3A, 3A, 3A, nX)-generated because we obtained
that 3× d2A + dnX = 3× 2 + dnX < 20 and 4× d2A + dnX = 4× 2 + dnX < 20
for any non-identity nX of G.

By Table 3 we see that no maximal subgroup of G meets the classes 3A, 5B
and 11A of G. We then obtained that ∆∗

G(3A, 5B, 11A) = ∆G(3A, 5B, 11A) =
11 > 0, proving that G is (3A, 5B, 11A)-generated group. By applying Lemma
2.8, it follows that G is (3A, 3A, 3A, 3A, 3A, (11A)5)-generated. Using GAP,
(11A)5 = 11A so that G becomes (3A, 3A, 3A, 3A, 3A, 11A)-generated. Since
rank(G : 3A) /∈ {2, 3, 4}, it follows that rank(G : 3A) = 5.

Proposition 4.6. rank(G : 3B) = 3.

Proof. If the group G is (3B, 3B, nX)-generated then we must have c3B + c3B +
nX ≤ 13 where nX is any non-identity class of G. Since by Table 2 we have
c3B + c3B + cnX = 7 + 7 + cnX > 13, using Ree’s Theorem [12], it follows that
G is not (3B, 3B, nX)-generated. Thus rank(G : 3B) /∈ 2.

By Table 3 we see that no maximal subgroup of G meets the classes
3B, 3C and 11A or 11B of G. We then obtained that ∆∗

G(3B, 3C, 11X) =
∆G(3B, 3C, 11X) = 66 > 0, proving that G is (3B, 3C, 11X)-generated for
X ∈ {A,B}. By applying Lemma 2.8, then we obatined that the group G is
(3B, 3B, 3B, (11X)3)-generated for all X ∈ {A,B}. It is easy to check with GAP
that (11A)3 = 11A and (11B)3 = 11B. Thus G becomes (3B, 3B, 3B, 11X)-
generated for X ∈ {A,B}. Hence rank(G : 3B) = 3.

Proposition 4.7. rank(G : 3C) = 2.
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Proof. Since by Lemma 4.3, the group G is (2B, 3C, 11X)-generated for X ∈
{A,B}, by Corollary 2.11, it follows that rank(G : 3C) = 2.

Proposition 4.8. rank(G : 4A) = 3.

Proof. If the group G is (4A, 4A, nX)-generated then we must have c4A + c4A +
cnX ≤ 13 where nX is any non-identity class of G. Since by Table 2 we have
c3B + c3B + cnX = 7 + 7 + cnX > 13, using Ree’s Theorem [12], it follows that
G is not (3B, 3B, nX)-generated. Thus rank(G : 4A) /∈ 2.

By Table 3 we see that no maximal subgroup of G meets the classes 3A, 4A
and 11A of G. We then obtained that ∆∗

G(3A, 4A, 11A) = ∆G(3A, 4A, 11A) =
132 > 0, proving that G is (3A, 4A, 11A)-generated. By applying Lemma 2.8,
then we obatined that the group G is (4A, 4A, 4A, (11A)3)-generated. Since
(11A)3 = 11A, the group G will become (4A, 4A, 4A, 11A)-generated. Hence
rank(G : 4A) = 3.

Proposition 4.9. rank(G : 5A) = 3.

Proof. Now if G is (5A, 5A, nX)-generated, then by Scott’s Theorem we must
have d5A + d5A + dnX ≥ 2× 10. However, it is clear from Table 2 that 2× d5A +
dnX = 2× 4 + dnX < 20 for each nX a non-identity class of G and therefore G
is not (5A, 5A, nX)-generated. Thus rank(G : 5A) /∈ 2.

By Table 3 we see that no maximal subgroup of G meets the classes 3C, 5A
and 11A of G. We then obtained that ∆∗

G(3C, 5A, 11A) = ∆G(3C, 5A, 11A) =
22 > 0, proving that G is (3C, 5A, 11A)-generated. Applying Lemma 2.8, we
obatin that the group G is (5A, 5A, 5A, (11A)3)-generated. Since (11A)3 = 11A,
the group G will become (5A, 5A, 5A, 11A)-generated. Hence rank(G : 5A) = 3.

Proposition 4.10. rank(G : 6B) = 3.

Proof. Now if G is (6B, 6B, nX)-generated, then by Scott’s Theorem we must
have d6B + d6B + dnX ≥ 2× 10. However, it is clear from Table 2 that 2× d6B +
dnX = 2× 4 + dnX < 20 for each nX a non-identity class of G and therefore G
is not (6B, 6B, nX)-generated. Thus rank(G : 6B) /∈ 2.

By Table 3 we see that no maximal subgroup of G meets the classes 3C,
6B and 11A of G. We obtain that ∆∗

G(3C, 6B, 11A) = ∆G(3C, 6B, 11A) =
330 > 0, proving that G is (3C, 6B, 11A)-generated. By applying Lemma 2.8,
then we obatined that the group G is (6B, 6B, 6B, (11A)3)-generated. Since
(11A)3 = 11A, the group G will become (6B, 6B, 6B, 11A)-generated. Hence
rank(G : 6B) = 3.

Proposition 4.11. Let nX ∈ T := {4B, 4C, 5B, 6A, 6C, 6D, 6E, 7A, 8A, 9A, 10A,
11A, 11B, 12A, 12B, 12C, 14A, 15A, 15B, 20A, 21A, 21B}. Then

rank(G : nX) = 2.
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Proof. From Table 3 we see that H6 (or H7) (two non-conjugate copies) is the
only maximal subgroup containing elements of order 11. The intersection of
H6 from one conjugacy class with H7 from a different conjugacy class has no
element of order 11. In Table 4, we listed we list the values of ∆G, h and ∆∗

G

for all nX ∈ T. Since ∆∗
G(nX, nX, 11A) > 11 = |CG(23A)|, it follows that G is

(nX, nX, 11A)-generated where nX ∈ T. This proves that rank(G : nX) = 2
for all nX ∈ T.

The main result of this paper is summarized by the following theorem.

Theorem 4.12. For the alternating group G, we have

(i) rank(G : 2A) = rank(G : 3A) = 5,

(ii) rank(G : 2B) = rank(G : 3B) = rank(G : 4A) = rank(G : 5A) =
rank(G : 6B) = 3,

(iii) rank(G : nX) = 2 if nX /∈ {1A, 2A, 2B, 3A, 3B, 4A, 5A, 6B} and where

nX is a conjugacy class of G.

Proof. (i) See Propositions 4.2 and 4.5.

(ii) The results follow by the proofs of Propositions 4.4, 4.6, 4.8, 4.9 and 4.10.

(iii) See Propositions 4.7 and 4.11.

Table 4 gives the partial structure contants of G computed using GAP to-
gether with the relevant information need in the calculations ∆∗

G. We give
some information about ∆G(nX, nX, 11A) = ∆G, h(11A,M6) (or h(11A,M7)),∑

M6
(nx, nx, 11a) =

∑

M6
and

∑

M7
(nx, nx, 11a) =

∑

M7
. The last column

∆∗
G(nX, nX, 11A) = ∆∗

G establishes each generation of G by its triples (nX, nX,
11A).

References

[1] F. Ali, J. Moori, On the ranks of Janko groups J1, J2, J3 and J4, Quaest. Math.
31 (2008) 37–44.

[2] A.B.M. Basheer and J. Moori, On the ranks of finite simple groups, Khayyam J.
of Math. 2 (1) (2016) 18–24.

[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite
Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford
University Press, 1985.

[4] S. Ganief, 2-Generations of the Sporadic Simple Groups, Ph.D. Thesis, University
of KwaZulu-Natal, Pietermaritzburg, 1997.

[5] S. Ganief and J. Moori, 2-generations of the smallest Fischer group Fi22, Nova J.
Math. Game Theory Algebra 6 (2-3) (1997), 127–145.

[6] S. Ganief and J. Moori, (p,q,r)-generations of the smallest Conway group Co3, J.
Algebra 188 (2) (1997) 516–530.

[7] S. Ganief and J. Moori, 2-generations of the fourth Janko group J4, J. Algebra
212 (1) (1999) 305–322.



Alternating Simple Group A11 753
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7A 825 1 0 0 825
8A 318780 1 429 429 317922
9A 221760 1 0 0 221760
10A 11880 1 0 0 11880
11A 147600 1 35 35 147530
11B 162000 1 80 80 161840
12A 80850 1 0 0 80850
12B 31680 1 0 0 31680
12C 139260 1 0 0 139260
14A 23265 1 0 0 23265
15A 6160 1 0 0 6160
15B 8976 1 0 0 8976
20A 44748 1 0 0 44748
21A 44880 1 0 0 44880
21B 44880 1 0 0 44880
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