The Conjugacy Classes Ranks of the Alternating Simple Group $\boldsymbol{A}_{11}{ }^{*}$

Ayoub B. M. Basheer and Malebogo J. Motalane
School of Mathematical and Computer Sciences, University of LImpopo, University of Limpopo (Turfloop), P Bag X1106, Sovenga 0727, South Africa
Email: ayoubbasheer@gmail.com; john.motalane@ul.ac.za
Thekiso T. Seretlo
Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa
Email: thekiso.seretlo@nwu.ac.za

Received 27 February 2020
Accepted 7 May 2022
Communicated by Y.Q. Chen
AMS Mathematics Subject Classification(2020): 20M35, 68Q70, 94A45

Abstract

Let G be a finite group and X be a conjugacy class of G. The rank of X in G, denoted by $\operatorname{rank}(G: X)$, is defined to be the minimum number of elements of X generating G. We investigate the ranks of the alternating group A_{11}. We use the structure constants method to determine the ranks of all the non-trivial classes of the group A_{11}.

Keywords: Conjugacy classes; Rank; Generation; Alternating simple group.

1. Introduction

Let G be a finite group and $n X$ a non-identity conjugacy class of G. We define $\operatorname{rank}(G: n X)$ to be the minimum number of elements of G in $n X$ that generate G. This is called the rank of $n X$ in G.

[^0]One of the applications of ranks of conjugacy classes of a finite group is that they are involved in the computations of the covering number of the finite simple group (see [16]). Moori in various papers (see [9], [10] and [11]), computed the ranks of the involuntary classes of the Fischer sporadic simple group $F i_{22}$ and his results were that $\operatorname{rank}\left(F i_{22}: 2 A\right) \in\{5,6\}$ and $\operatorname{rank}\left(F i_{22}: 2 B\right)=3=$ $\operatorname{rank}\left(F i_{22}: 2 C\right)$. On the other hand, the work of Hall and Soicher [8] implies that $\operatorname{rank}\left(F i_{22}: 2 A\right)=6$.

In this paper, we determine the rank for each non-identity conjugacy class of the group A_{11}. We follow some of the methods used in the paper written by Basheer and Moori [2], and the techniques used by Ganief when he computed (p, q, r)-generations of certain groups [4].

2. Preliminaries

Let G be a finite group and $C_{1}, C_{2}, \cdots, C_{k}$ (not necessarily distinct) for $k \geq 3$ be conjugacy classes of G with $g_{1}, g_{2}, \cdots, g_{k}$ being representatives for these classes respectively.

For a fixed representative $g_{k} \in C_{k}$ and for $g_{i} \in C_{i}, 1 \leq i \leq k-1$, denote by $\Delta_{G}=\Delta_{G}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$ the number of distinct $(k-1)$-tuples $\left(g_{1}, g_{2}, \cdots, g_{k-1}\right) \in C_{1} \times C_{2} \times \cdots \times C_{k-1}$ such that $g_{1} g_{2} \cdots g_{k-1}=g_{k}$. This number is known as class algebra constant or structure constant. With $\operatorname{Irr}(G)=$ $\left\{\chi_{1}, \chi_{2}, \cdots, \chi_{r}\right\}$, the number Δ_{G} is easily calculated from the character table of G through the formula

$$
\begin{equation*}
\Delta_{G}\left(C_{1}, C_{2}, \cdots, C_{k}\right)=\frac{\prod_{i=1}^{k-1}\left|C_{i}\right|}{|G|} \sum_{i=1}^{r} \frac{\chi_{i}\left(g_{1}\right) \chi_{i}\left(g_{2}\right) \cdots \chi_{i}\left(g_{k-1}\right) \overline{\chi_{i}\left(g_{k}\right)}}{\left(\chi_{i}\left(1_{G}\right)\right)^{k-2}} \tag{1}
\end{equation*}
$$

Also for a fixed $g_{k} \in C_{k}$ we denote by $\Delta_{G}^{*}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$ the number of distinct $(k-1)$-tuples $\left(g_{1}, g_{2}, \cdots, g_{k-1}\right)$ satisfying

$$
\begin{equation*}
g_{1} g_{2} \cdots g_{k-1}=g_{k} \quad \text { and } \quad G=\left\langle g_{1}, g_{2}, \cdots, g_{k-1}\right\rangle \tag{2}
\end{equation*}
$$

Definition 2.1. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \cdots, C_{k}\right)>0$, the group G is said to be $\left(C_{1}, C_{2}, \cdots\right.$, C_{k})-generated.

Remark 2.2. A group G is $\left(C_{1}, C_{2}, \cdots, C_{k}\right)$-generated if and only if $\Delta_{G}^{*}\left(C_{1}, C_{2}\right.$, $\left.\cdots, C_{k}\right)>0$.

Furthermore if H is any subgroup of G containing a fixed element $h_{k} \in C_{k}$, we let $\Sigma_{H}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$ be the total number of distinct tuples $\left(h_{1}, h_{2}, \cdots, h_{k-1}\right)$ such that

$$
\begin{equation*}
h_{1} h_{2} \cdots h_{k-1}=h_{k} \quad \text { and } \quad\left\langle h_{1}, h_{2}, \cdots, h_{k-1}\right\rangle \leq H \tag{3}
\end{equation*}
$$

The value of $\Sigma_{H}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$ can be obtained as a sum of the structure constants $\Delta_{H}\left(c_{1}, c_{2}, \cdots, c_{k}\right)$ of H-conjugacy classes $c_{1}, c_{2}, \cdots, c_{k}$ such that $c_{i} \subseteq$ $H \cap C_{i}$.

Theorem 2.3. Let G be a finite group and H be a subgroup of G containing a fixed element g such that $\operatorname{gcd}\left(o(g),\left[N_{G}(H): H\right]\right)=1$. Then the number $h(g, H)$ of conjugates of H containing g is $\chi_{H}(g)$, where $\chi_{H}(g)$ is the permutation character of G with action on the conjugates of H. In particular

$$
h(g, H)=\sum_{i=1}^{m} \frac{\left|C_{G}(g)\right|}{\left|C_{N_{G}(H)}\left(x_{i}\right)\right|},
$$

where $x_{1}, x_{2}, \cdots, x_{m}$ are representatives of the $N_{G}(H)$-conjugacy classes fused to the G-class of g.

Proof. See [5] and [6, Theorem 2.1].

The above number $h(g, H)$ is useful in giving a lower bound for $\Delta_{G}^{*}\left(C_{1}, C_{2}\right.$, $\left.\cdots, C_{k}\right)$, namely $\Delta_{G}^{*}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$, where

$$
\begin{equation*}
\Delta_{G}^{*}\left(C_{1}, \cdots, C_{k}\right) \geq \Delta_{G}\left(C_{1}, \cdots, C_{k}\right)-\sum h\left(g_{k}, H\right) \Sigma_{H}\left(C_{1}, \cdots, C_{k}\right) \tag{4}
\end{equation*}
$$

g_{k} is a representative of the class C_{k} and the sum is taken over all the representatives H of G-conjugacy classes of maximal subgroups of G containing elements of all the classes $C_{1}, C_{2}, \cdots, C_{k}$. Since we have all the maximal subgroups of the sporadic simple groups except for $G=\mathbb{M}$ the Monster group, it is possible to build a small subroutine in GAP [14] to compute the values of $\Delta_{G}^{*}=\Delta_{G}\left(C_{1}, C_{2}, \cdots, C_{k}\right)$ for any collection of conjugacy classes and for any alternating simple group.

The following results are in some cases useful in establishing non-generation for finite groups.

Lemma 2.4. Let G be a finite centerless group. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \cdots, C_{k}\right)<$ $\left|C_{G}\left(g_{k}\right)\right|, g_{k} \in C_{k}$, then $\Delta_{G}^{*}\left(C_{1}, C_{2}, \cdots, C_{k}\right)=0$ and therefore G is not $\left(C_{1}, C_{2}, \cdots, C_{k}\right)$-generated.

Proof. See [2, Lemma 2.7].

Theorem 2.5. [12] Let G be a transitive permutation group generated by permutations $g_{1}, g_{2}, \cdots, g_{s}$ acting on a set of n elements such that $g_{1} g_{2} \cdots g_{s}=1_{G}$. If the generator g_{i} has exactly c_{i} cycles for $1 \leq i \leq s$, then $\sum_{i=1}^{s} c_{i} \leq(s-2) n+2$.

By the Atlas of finite group representations [15], the alternating group A_{11} is acting on 11 points, so that $n=11$. Since our generation is triangular, we have $s=3$. Hence if A_{11} is (l, m, n)-generated, then $\sum c_{i} \leq 13$.

Theorem 2.6. [13] Let $g_{1}, g_{2}, \cdots, g_{s}$ be elements generating a group G with $g_{1} g_{2} \cdots g_{s}=1_{G}$ and \mathbb{V} be an irreducible module for G with $\operatorname{dim} \mathbb{V}=n \geq 2$. Let $C_{\mathbb{V}}\left(g_{i}\right)$ denote the fixed point space of $\left\langle g_{i}\right\rangle$ on \mathbb{V} and let d_{i} be the codimension of $C_{\mathbb{V}}\left(g_{i}\right)$ in \mathbb{V}. Then $\sum_{i=1}^{s} d_{i} \geq 2 n$.

With χ being the ordinary irreducible character afforded by the irreducible module \mathbb{V} and $\mathbf{1}_{\left\langle g_{i}\right\rangle}$ being the trivial character of the cyclic group $\left\langle g_{i}\right\rangle$, the codimension d_{i} of $C_{\mathbb{V}}\left(g_{i}\right)$ in \mathbb{V} can be computed using the following formula ([4]):

$$
\begin{align*}
d_{i} & =\operatorname{dim}(\mathbb{V})-\operatorname{dim}\left(C_{\mathbb{V}}\left(g_{i}\right)\right)=\operatorname{dim}(\mathbb{V})-\left\langle\chi \downarrow_{\left\langle g_{i}\right\rangle}^{G}, \mathbf{1}_{\left\langle g_{i}\right\rangle}\right\rangle \\
& =\chi\left(1_{G}\right)-\frac{1}{\left|\left\langle g_{i}\right\rangle\right|} \sum_{j=0}^{o\left(g_{i}\right)-1} \chi\left(g_{i}^{j}\right) . \tag{5}
\end{align*}
$$

The following results are in some cases useful in determining the ranks finite groups.

Theorem 2.7. [2, Lemma 2.5] Let G be a $(2 X, s Y, t Z)$-generated simple group. Then G is $\left(s Y, s Y,(t Z)^{2}\right)$-generated.

Lemma 2.8. [1] Let G be a finite simple group such that G is $(l X, m Y, n Z)$ generated. Then G is $((\underbrace{l X, l X, \ldots, l X}_{m \text {-times }}),(n Z)^{m})$-generated.

Corollary 2.9. [1] Let G be a finite simple group such that G is (lX,mYnZ)generated. Then $\operatorname{rank}(G: l X) \leq m$.

Proof. The result follows immediately from Lemma 2.8.

Theorem 2.10. [7] Let G be a $(2 X, s Y, t Z)$-generated simple group. Then G is $\left(s Y, s Y,(t Z)^{2}\right)$-generated.

Corollary 2.11. Let G be a finite simple group such that G is $(2 X, m Y, n Z)$ generated. Then $\operatorname{rank}(G: m Y)=2$.

Proof. Since G is $(l X, m Y, n Z)$-generated so by Lemma 2.8 we obtained that G is $\left(m Y, m Y,(n Z)^{m}\right)$-generated. Hence the result follows.

3. The Alternating Group \boldsymbol{A}_{11}

In this section we apply the results discussed in Section 2, to the alternating group A_{11}. We determine the ranks for all the nonidentity conjugacy classes
of A_{11}. The alternating group A_{11} is a simple and has order $19958400=2^{7} \times$ $3^{4} \times 5^{2} \times 7 \times 11$. From [3], the group G has exactly 31 conjugacy classes of its elements and 7 conjugacy classes of its maximal subgroups. Representatives of these classes of maximal subgroups can be taken as follows:

$$
\begin{array}{lll}
H_{1}=A_{10} & H_{2}=S_{9} & H_{3}=\left(A_{8} \times 3\right): 2 \\
H_{4}=\left(A_{7} \times A_{4}\right): 2 & H_{5}=\left(A_{6} \times A_{5}\right): 2 & H_{6}=M_{11} \\
H_{7}=M_{11} . & &
\end{array}
$$

Throughout this paper, by G we always mean the alternating group A_{11}, unless stated otherwise. It is well-known that G can be generated in terms of permutations on 11 points. From GAP or the electronic Atlas of finite group representations [15], the following two elements g_{1} and g_{2} generate G where:

$$
\begin{aligned}
& g_{1}=(1,2,3) \\
& g_{2}=(3,4,5,6,7,8,9,10,11)
\end{aligned}
$$

with $o\left(g_{1}\right)=3, o\left(g_{2}\right)=9$ and $o\left(g_{1} g_{2}\right)=11$.
In Table 1 we list representatives of classes of the maximal subgroups together with the orbits lengths of G on these groups and the permutation characters.

In Table 2, we list the values of the cyclic structure for each conjugacy of G which containing elements of prime order together with the values of both c_{i} and d_{i} obtained from Ree and Scotts theorems, respectively.

Table 3 gives the partial fusion maps of classes of maximal subgroups into the classes of G. These will be used in our computations.

Table 1: Maximal subgroups of G

Maximal Subgroup	Order	Orbit Lengths	Character
H_{1}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	$[1,10]$	$1 a+10 a$
H_{2}	$2^{7} \cdot 3^{4} \cdot 5 \cdot 7$	$[2,9]$	$1 a+10 a+44 a$
H_{3}	$2^{7} \cdot 3^{3} \cdot 5 \cdot 7$	$[3,8]$	$1 a+10 a+44 a+110 a$
H_{4}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 7$	$[7,4]$	$1 a+10 a+44 a+110 a+165 a$
H_{5}	$2^{6} \cdot 3^{3} \cdot 5^{2}$	$[5,6]$	$1 a+10 a+44 a+110 a+132 a+165 a$
H_{6}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$[11]$	$1 a+132 a+462 a+825 a+1100 a$
H_{7}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$[11]$	$1 a+132 a+462 a+825 a+1100 a$

4. The Conjugacy Class Ranks of G

Now we study the ranks of G with respect to the various conjugacy classes of all its nonidentity elements. We start our investigation on the ranks of the nontrivial classes of G by looking at the two classes of involutions $2 A$ and $2 B$. It is well known that the rank of any of these involutions classes will be at least 3 .

Table 2: Cycle structures of conjugacy classes of G

$n X$	Cycle Structure	c_{i}	d_{i}
$2 A$	$1^{7} 2^{2}$	9	2
$2 B$	$1^{3} 2^{4}$	7	4
$3 A$	$1^{8} 3^{1}$	9	2
$3 B$	$1^{5} 3^{2}$	7	4
$3 C$	$1^{2} 3^{3}$	5	6
$4 A$	$1^{5} 23$	7	4
$4 B$	$1^{2} 4^{2}$	5	6
$4 C$	$1^{1} 2^{3} 4^{1}$	5	6
$5 A$	$1^{6} 5^{1}$	7	4
$5 B$	$1^{1} 5^{2}$	3	8
$6 A$	$1^{4} 3^{1}$	5	6
$6 B$	$1^{4} 2^{2} 3^{1}$	7	4
$6 C$	$1^{2} 2^{2} 3^{2}$	5	6
$6 D$	$1^{3} 2^{1} 6^{1}$	5	6
$6 E$	$2^{1} 3^{1} 6^{1}$	3	8
$7 A$	$1^{4} 7^{1}$	5	6
$8 A$	$1^{2} 2^{1} 8^{1}$	3	8
$9 A$	$1^{2} 9^{1}$	3	8
10	$1^{2} 2^{2} 5^{1}$	5	6
$11 A$	11^{1}	1	10
$11 B$	11^{1}	1	10
$12 A$	$3^{1} 4^{2}$	3	8
$12 B$	$1^{2} 2^{1} 3^{1} 4^{1}$	5	6
$12 C$	$1^{1} 4^{1} 6^{1}$	3	8
$14 A$	$2^{2} 7^{1}$	3	8
$15 A$	$1^{3} 3^{1} 5^{1}$	5	6
$15 B$	$3^{2} 5^{1}$	5	6
20	$2^{1} 4^{1} 5^{1}$	3	8
$21 A$	$1^{1} 3^{1} 5^{1}$	3	8
$21 B$	$1^{1} 3^{1} 5^{1}$	3	8

The group G is not $(2 Y, 2 Z, p X)$-generated, for if G is $(2 Y, 2 Z, p X)$-generated, then G is a dihedral group and thus is not simple for all $Y, Z \in\{A, B\}$. Also we know that if G is (l, m, n)-generated with $\frac{1}{l}+\frac{1}{m}+\frac{1}{n} \geq 1$ and G is simple, then $G \cong A_{5}$, but $G \cong A_{11}$ and $A_{11} \not \not A_{5}$.

Lemma 4.1. $\operatorname{rank}(G: 2 A) \notin\{3,4\}$.
Proof. Now if G is $(2 A, 2 A, 2 A, n X)$-generated, then by Scott's Theorem [13] we must have $d_{2 A}+d_{2 A}+d_{2 A}+d_{n X} \geq 2 \times 10$. However, it is clear from Table 2 that $3 \times d_{2 A}+d_{n X}=3 \times 2+d_{n X}<20$ for each $n X$, where $n X$ is a set of all the non-

Table 3: The partial fusion maps into G

$\begin{array}{rr} \hline H_{1} \text {-class } \\ \rightarrow \quad & G \\ & h \end{array}$	$\begin{array}{cccccccc} \hline \hline 2 \mathrm{a} & 2 \mathrm{~b} & 3 \mathrm{a} & 3 \mathrm{~b} & 3 \mathrm{c} & 5 \mathrm{a} & 5 \mathrm{~b} & 7 \mathrm{a} \\ 2 \mathrm{~A} & 2 \mathrm{~B} & 3 \mathrm{~A} & 3 \mathrm{~B} & 3 \mathrm{C} & 5 \mathrm{~A} & 5 \mathrm{~B} & 7 \mathrm{~A} \\ & & & & & 6 & 1 & 4 \\ \hline \end{array}$
$\begin{array}{\|r\|} \hline H_{2} \text {-class } \\ \rightarrow \quad \\ \hline \end{array}$	2 a 2 b 2 c 2 d 3 a 3 b 3 c 5 a 7 a 2 A 2 A 2 B 2 B 3 C 3 A 3 B 5 A 7 A 15 6
$\begin{array}{\|r\|} \hline H_{3} \text {-class } \\ \rightarrow \quad G \\ \\ \hline \end{array}$	2 a 2 b 2 c 2 d 3 a 3 b 3 c 3 d 3 e 5 a 7 a 2 B 2 B 2 A 2 A 3 A 3 B 3 C 3 A 3 B 5 A 7 A 20 4
$\begin{array}{\|rr\|} \hline H_{4} \text {-class } \\ \rightarrow & G \\ & h \end{array}$	2 a 2 b 2 c 2 d 2 e 3 a 3 b 3 c 3 d 3 e 5 a 2 A 7 a 2 A 2 A 2 B 2 B 3 A 3 A 3 B 3 B 3 C 5 A 7 A 15 1
$\begin{array}{r} \hline H_{5} \text {-class } \\ \rightarrow \quad G \\ \\ \hline \end{array}$	$\begin{array}{\|ccccccccccccccc} \hline 2 \mathrm{a} & 2 \mathrm{~b} & 2 \mathrm{c} & 2 \mathrm{~d} & 2 \mathrm{e} & 3 \mathrm{a} & 3 \mathrm{~b} & 3 \mathrm{c} & 3 \mathrm{~d} & 3 \mathrm{e} & 5 \mathrm{a} & 5 \mathrm{~b} & 5 \mathrm{c} & 5 \mathrm{~d} \\ 2 \mathrm{~A} & 2 \mathrm{~A} & 2 \mathrm{~B} & 2 \mathrm{~A} & 2 \mathrm{~B} & 3 \mathrm{~A} & 3 \mathrm{~B} & 3 \mathrm{~A} & 3 \mathrm{~B} & 3 \mathrm{C} & 5 \mathrm{~A} & 5 \mathrm{~A} & 5 \mathrm{~B} & 5 \mathrm{~B} \\ & & & & & & & & & 1 & 6 & 1 & 1 \\ \hline \end{array}$
$\begin{array}{r} \hline H_{6} \text {-class } \\ \rightarrow \quad G \\ \\ \hline \end{array}$	$\begin{array}{\|ccccc} \hline 2 \mathrm{a} & 3 \mathrm{a} & 5 \mathrm{a} & 11 \mathrm{a} & 11 \mathrm{~b} \\ 2 \mathrm{~B} & 3 \mathrm{C} & 5 \mathrm{~B} & 11 \mathrm{~A} & 11 \mathrm{~B} \\ & 5 & 1 & 1 \\ \hline \end{array}$
$\begin{array}{\|r\|} \hline H_{7} \text {-class } \\ \rightarrow \quad G \\ \end{array}$	$\begin{array}{\|ccccc} \hline 2 \mathrm{a} & 3 \mathrm{a} & 5 \mathrm{a} & 11 \mathrm{a} & 11 \mathrm{~b} \\ 2 \mathrm{~B} & 3 \mathrm{C} & 5 \mathrm{~B} & 11 \mathrm{~A} & 11 \mathrm{~B} \\ & 5 & 1 & 1 \\ \hline \hline \end{array}$

identity classes of G and therefore G is not $(2 A, 2 A, 2 A, n X)$-generated, for any $n X$. We use the similar arguments to prove that G is not $(2 A, 2 A, 2 A, 2 A, n X)$ generated because $4 \times d_{2 A}+d_{n X}=4 \times 2+d_{n X}<20$ for any $n X \in T$. Hence $\operatorname{rank}(G: 2 A) \notin\{3,4\}$.

Proposition 4.2. $\operatorname{rank}(G: 2 A)=5$.
Proof. From Table 3 we see that H_{6} (or H_{7}) (two non-conjugate copies) is the only maximal subgroup containing elements of orders 2,5 and 11. The intersection of H_{6} from one conjugacy class with H_{7} from a different conjugacy class has no element of order 11. No element of order 2 from these two maximal subgroups fuses to the class $2 A$ of G. We then obtained that $\Delta_{G}^{*}(2 A, 5 B, 11 X)=\Delta_{G}(2 A, 5 B, 11 X)=44>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that G is $(2 A, 5 B, 11 X)$-generated for $X \in\{A, B\}$. Since G is $(2 A, 5 B, 11 X)$-generated for $X \in\{A, B\}$, by Corollary 2.9 , we must have $\operatorname{rank}(G: 2 A) \leq 5$. Since by Lemma 4.1, $\operatorname{rank}(G: 2 A) \notin\{3,4\}$, it follows that $\operatorname{rank}(G: 2 A)=5$.

Lemma 4.3. The group G is $(2 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$.

Proof. From Table 3 we see that H_{6} (or H_{7}) (two non-conjugate copies) is the only maximal subgroup containing elements of orders 2,3 and 11 . We obtained that $\sum_{H_{6}}(2 a, 3 a, 11 x)=11$ and $h\left(11 X, H_{6}\right)=1\left(\right.$ or $\sum_{H_{7}}(2 a, 3 a, 11 x)=11$ and $\left.h\left(11 X, H_{7}\right)=1\right)$. We obtained that $\Delta_{G}(2 B, 3 C, 11 X)=110$ and it follows that $\Delta_{G}^{*}(2 B, 5 B, 11 X)=\Delta_{G}(2 B, 3 C, 11 X)-\sum_{H_{6}}(2 a, 3 a, 11 x)-\sum_{H_{7}}(2 a, 3 a, 11 x)=$ $110-11-11=88>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that G is $(2 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$.

Proposition 4.4. $\operatorname{rank}(G: 2 B)=3$.
Proof. Since by Lemma 4.3, the group G is $(2 B, 3 C, 11 X)$-generated for $X \in$ $\{A, B\}$, by Corollary 2.9, we must have $\operatorname{rank}(G: 2 B) \leq 3$. It then follows that $\operatorname{rank}(G: 2 B)=3$.

Proposition 4.5. $\operatorname{rank}(G: 3 A)=5$.
Proof. Now if G is $(3 A, 3 A, n X)$-generated, then by Scott's Theorem [13] we must have $d_{3 A}+d_{3 A}+d_{n X} \geq 2 \times 10$. However, it is clear from Table 2 that $2 \times d_{3 A}+d_{n X}=2 \times 2+d_{n X}<20$ for each non-identity class of G and therefore G is not $(3 A, 3 A, n X)$-generated. We use similar arguments to prove that G is not $(3 A, 3 A, 3 A, n X)$ - and $(3 A, 3 A, 3 A, 3 A, n X)$-generated because we obtained that $3 \times d_{2 A}+d_{n X}=3 \times 2+d_{n X}<20$ and $4 \times d_{2 A}+d_{n X}=4 \times 2+d_{n X}<20$ for any non-identity $n X$ of G.

By Table 3 we see that no maximal subgroup of G meets the classes $3 A, 5 B$ and $11 A$ of G. We then obtained that $\Delta_{G}^{*}(3 A, 5 B, 11 A)=\Delta_{G}(3 A, 5 B, 11 A)=$ $11>0$, proving that G is $(3 A, 5 B, 11 A)$-generated group. By applying Lemma 2.8 , it follows that G is $\left(3 A, 3 A, 3 A, 3 A, 3 A,(11 A)^{5}\right)$-generated. Using GAP, $(11 A)^{5}=11 A$ so that G becomes $(3 A, 3 A, 3 A, 3 A, 3 A, 11 A)$-generated. Since $\operatorname{rank}(G: 3 A) \notin\{2,3,4\}$, it follows that $\operatorname{rank}(G: 3 A)=5$.

Proposition 4.6. $\operatorname{rank}(G: 3 B)=3$.
Proof. If the group G is $(3 B, 3 B, n X)$-generated then we must have $c_{3 B}+c_{3 B}+$ $n X \leq 13$ where $n X$ is any non-identity class of G. Since by Table 2 we have $c_{3 B}+c_{3 B}+c_{n X}=7+7+c_{n X}>13$, using Ree's Theorem [12], it follows that G is not $(3 B, 3 B, n X)$-generated. Thus $\operatorname{rank}(G: 3 B) \notin 2$.

By Table 3 we see that no maximal subgroup of G meets the classes $3 B, 3 C$ and $11 A$ or $11 B$ of G. We then obtained that $\Delta_{G}^{*}(3 B, 3 C, 11 X)=$ $\Delta_{G}(3 B, 3 C, 11 X)=66>0$, proving that G is $(3 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$. By applying Lemma 2.8, then we obatined that the group G is $\left(3 B, 3 B, 3 B,(11 X)^{3}\right)$-generated for all $X \in\{A, B\}$. It is easy to check with GAP that $(11 A)^{3}=11 A$ and $(11 B)^{3}=11 B$. Thus G becomes $(3 B, 3 B, 3 B, 11 X)$ generated for $X \in\{A, B\}$. Hence $\operatorname{rank}(G: 3 B)=3$.

Proposition 4.7. $\operatorname{rank}(G: 3 C)=2$.

Proof. Since by Lemma 4.3, the group G is $(2 B, 3 C, 11 X)$-generated for $X \in$ $\{A, B\}$, by Corollary 2.11, it follows that $\operatorname{rank}(G: 3 C)=2$.

Proposition 4.8. $\operatorname{rank}(G: 4 A)=3$.
Proof. If the group G is $(4 A, 4 A, n X)$-generated then we must have $c_{4 A}+c_{4 A}+$ $c_{n X} \leq 13$ where $n X$ is any non-identity class of G. Since by Table 2 we have $c_{3 B}+c_{3 B}+c_{n X}=7+7+c_{n X}>13$, using Ree's Theorem [12], it follows that G is not $(3 B, 3 B, n X)$-generated. Thus $\operatorname{rank}(G: 4 A) \notin 2$.

By Table 3 we see that no maximal subgroup of G meets the classes $3 A, 4 A$ and $11 A$ of G. We then obtained that $\Delta_{G}^{*}(3 A, 4 A, 11 A)=\Delta_{G}(3 A, 4 A, 11 A)=$ $132>0$, proving that G is $(3 A, 4 A, 11 A)$-generated. By applying Lemma 2.8, then we obatined that the group G is $\left(4 A, 4 A, 4 A,(11 A)^{3}\right)$-generated. Since $(11 A)^{3}=11 A$, the group G will become $(4 A, 4 A, 4 A, 11 A)$-generated. Hence $\operatorname{rank}(G: 4 A)=3$.

Proposition 4.9. $\operatorname{rank}(G: 5 A)=3$.
Proof. Now if G is $(5 A, 5 A, n X)$-generated, then by Scott's Theorem we must have $d_{5 A}+d_{5 A}+d_{n X} \geq 2 \times 10$. However, it is clear from Table 2 that $2 \times d_{5 A}+$ $d_{n X}=2 \times 4+d_{n X}<20$ for each $n X$ a non-identity class of G and therefore G is not $(5 A, 5 A, n X)$-generated. Thus $\operatorname{rank}(G: 5 A) \notin 2$.

By Table 3 we see that no maximal subgroup of G meets the classes $3 C, 5 A$ and $11 A$ of G. We then obtained that $\Delta_{G}^{*}(3 C, 5 A, 11 A)=\Delta_{G}(3 C, 5 A, 11 A)=$ $22>0$, proving that G is $(3 C, 5 A, 11 A)$-generated. Applying Lemma 2.8, we obatin that the group G is $\left(5 A, 5 A, 5 A,(11 A)^{3}\right)$-generated. Since $(11 A)^{3}=11 A$, the group G will become $(5 A, 5 A, 5 A, 11 A)$-generated. Hence $\operatorname{rank}(G: 5 A)=3$.

Proposition 4.10. $\operatorname{rank}(G: 6 B)=3$.
Proof. Now if G is $(6 B, 6 B, n X)$-generated, then by Scott's Theorem we must have $d_{6 B}+d_{6 B}+d_{n X} \geq 2 \times 10$. However, it is clear from Table 2 that $2 \times d_{6 B}+$ $d_{n X}=2 \times 4+d_{n X}<20$ for each $n X$ a non-identity class of G and therefore G is not $(6 B, 6 B, n X)$-generated. Thus $\operatorname{rank}(G: 6 B) \notin 2$.

By Table 3 we see that no maximal subgroup of G meets the classes $3 C$, $6 B$ and $11 A$ of G. We obtain that $\Delta_{G}^{*}(3 C, 6 B, 11 A)=\Delta_{G}(3 C, 6 B, 11 A)=$ $330>0$, proving that G is $(3 C, 6 B, 11 A)$-generated. By applying Lemma 2.8, then we obatined that the group G is $\left(6 B, 6 B, 6 B,(11 A)^{3}\right)$-generated. Since $(11 A)^{3}=11 A$, the group G will become $(6 B, 6 B, 6 B, 11 A)$-generated. Hence $\operatorname{rank}(G: 6 B)=3$.

Proposition 4.11. Let $n X \in T:=\{4 B, 4 C, 5 B, 6 A, 6 C, 6 D, 6 E, 7 A, 8 A, 9 A, 10 A$, $11 A, 11 B, 12 A, 12 B, 12 C, 14 A, 15 A, 15 B, 20 A, 21 A, 21 B\}$. Then $\operatorname{rank}(G: n X)=2$.

Proof. From Table 3 we see that H_{6} (or H_{7}) (two non-conjugate copies) is the only maximal subgroup containing elements of order 11. The intersection of H_{6} from one conjugacy class with H_{7} from a different conjugacy class has no element of order 11. In Table 4, we listed we list the values of Δ_{G}, h and Δ_{G}^{*} for all $n X \in T$. Since $\Delta_{G}^{*}(n X, n X, 11 A)>11=\left|C_{G}(23 A)\right|$, it follows that G is $(n X, n X, 11 A)$-generated where $n X \in T$. This proves that $\operatorname{rank}(G: n X)=2$ for all $n X \in T$.

The main result of this paper is summarized by the following theorem.

Theorem 4.12. For the alternating group G, we have
(i) $\operatorname{rank}(G: 2 A)=\operatorname{rank}(G: 3 A)=5$,
(ii) $\operatorname{rank}(G: 2 B)=\operatorname{rank}(G: 3 B)=\operatorname{rank}(G: 4 A)=\operatorname{rank}(G: 5 A)=$ $\operatorname{rank}(G: 6 B)=3$,
(iii) $\operatorname{rank}(G: n X)=2$ if $n X \notin\{1 A, 2 A, 2 B, 3 A, 3 B, 4 A, 5 A, 6 B\}$ and where $n X$ is a conjugacy class of G.

Proof. (i) See Propositions 4.2 and 4.5 .
(ii) The results follow by the proofs of Propositions 4.4, 4.6, 4.8, 4.9 and 4.10.
(iii) See Propositions 4.7 and 4.11 .

Table 4 gives the partial structure contants of G computed using GAP together with the relevant information need in the calculations Δ_{G}^{*}. We give some information about $\Delta_{G}(n X, n X, 11 A)=\Delta_{G}, h\left(11 A, M_{6}\right)\left(\right.$ or $\left.h\left(11 A, M_{7}\right)\right)$, $\sum_{M_{6}}(n x, n x, 11 a)=\sum_{M_{6}}$ and $\sum_{M_{7}}(n x, n x, 11 a)=\sum_{M_{7}}$. The last column $\Delta_{G}^{*}(n X, n X, 11 A)=\Delta_{G}^{*}$ establishes each generation of G by its triples $(n X, n X$, 11A).

References

[1] F. Ali, J. Moori, On the ranks of Janko groups J_{1}, J_{2}, J_{3} and J_{4}, Quaest. Math. 31 (2008) 37-44.
[2] A.B.M. Basheer and J. Moori, On the ranks of finite simple groups, Khayyam J. of Math. 2 (1) (2016) 18-24.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, 1985.
[4] S. Ganief, 2-Generations of the Sporadic Simple Groups, Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, 1997.
[5] S. Ganief and J. Moori, 2-generations of the smallest Fischer group Fi in 2, Nova J. Math. Game Theory Algebra 6 (2-3) (1997), 127-145.
[6] S. Ganief and J. Moori, (p,q,r)-generations of the smallest Conway group Co Co_{3}, J. Algebra 188 (2) (1997) 516-530.
[7] S. Ganief and J. Moori, 2-generations of the fourth Janko group J_{4}, J. Algebra 212 (1) (1999) 305-322.

Table 4: Some information on the classes $n X \in T$

$n X$	Δ_{G}	h	$h \sum_{M_{6}}$	$h \sum_{M_{7}}$	Δ_{G}^{*}
$4 B$	1320	1	77	77	1166
$4 C$	2640	1	0	0	2640
$5 B$	31680	1	297	297	31086
$6 A$	55	1	0	1	55
$6 C$	3960	1	0	0	3960
$6 D$	8800	1	0	0	8800
$6 E$	55220	1	154	154	54912
$7 A$	825	1	0	0	825
$8 A$	318780	1	429	429	317922
$9 A$	221760	1	0	0	221760
$10 A$	11880	1	0	0	11880
$11 A$	147600	1	35	35	147530
$11 B$	162000	1	80	80	161840
$12 A$	80850	1	0	0	80850
$12 B$	31680	1	0	0	31680
$12 C$	139260	1	0	0	139260
$14 A$	23265	1	0	0	23265
$15 A$	6160	1	0	0	6160
$15 B$	8976	1	0	0	8976
$20 A$	44748	1	0	0	44748
$21 A$	44880	1	0	0	44880
$21 B$	44880	1	0	0	44880

[8] J.I. Hall, L.H Soicher, Presentations of some 3-transposition groups, Comm. Algebra 23 (1995) 2517-2559.
[9] J. Moori, Generating sets for F_{22} and its automorphism group, J. Algebra 159 (1993) 488-499
[10] J. Moori, Subgroups of 3-transposition groups generated by four 3-transpositions, Quaest. Math. 17 (1994) 483-494.
[11] J. Moori, On the ranks of the Fischer group F_{22}, Mathematica Japonicae 43 (1996) 365-367.
[12] R. Ree, A theorem on permutations, J. Comb. Theory A 10 (1971) 174-175.
[13] L.L. Scott, Matrices and cohomolgy, Ann. Math. 105 (3) (1977) 67-76.
[14] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. http://www.gap-system.org
[15] R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbott, Atlas of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/
[16] I. Zisser, The covering numbers of the Sporadic simple groups, Israel J. Math. 67 (1989) 217-224.

[^0]: *The research is supported by National Research Foundation of South Africa (Grant No. 11561070).

