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Abel Grassman groupoids (AG-groupoids). We explored several properties of an intra-

regular AG-groupoid using three parameters-fuzzy AG-subgroupoids and three parame-

ters-fuzzy right ideals.

Keywords: AG-groupoid; Completely regular; (∈γ ,∈γ ∨q
η
δ )-fuzzy ideals and (∈γ ,∈γ

∨q
η
δ )-fuzzy ideals.

1. Introduction

Dealing with imprecise information is a common task and challenge in every-
day life, as uncertainty is inevitably involved in every real world system. Two
most important types of approach one which is first of all represented by the-
oretical construction based on suitable and coherent logical reference models
are constructed to control, predict, and diagnose such systems, and so uncer-
tainty should be properly incorporated into system description. The second
which builds on multivariate statistical methodology (discriminate analysis, fac-
tor analysis, cluster analysis, correspondence analysis) and attempts to aggre-
gate, within reasonable dimensions, the basic information dispersed in consider-
ably extensive indicator vectors. For a long time dealing with uncertain infor-
mation was a big challenge. In practice we often experience those real situations
that are impossible to describe accurately. If we assign a truth-value of one to
the element that is included in the set, and a truth value comparable to zero
to such an element that lies outside the set, we create the range of two valued
logic. This sort of logic assumes that precise symbols must be employed, and it is
therefore not applicable to the real existence but only to an imagined existence.
If we consider the characteristic features of real world systems, we will conclude
that real situations are very often uncertain or vague in a number of ways. If the
information demanded by a system is lacking, the future state of such a system
may not be known completely. This type of uncertainty has been handled by
probability theories and statistics, and it is called stochastic uncertainty. The
vagueness, concerning the description of the semantic meaning of the events,
phenomena, or statements themselves, is called fuzziness.

Until the 1960s, uncertainty was considered solely in terms of probability
theory and understood as randomness. This seemingly unambiguous connection
between uncertainty and probability was paralleled by several mathematical the-
ories, distinct from probability theory, which are able to characterize situations
under uncertainty.

The creator of fuzzy set theory, L.A. Zadeh, referred to the last hypothesis
when he wrote: “As the complexity of a system increases, our ability to make
precise and yet significant statements about its behavior diminishes until the
threshold is reached beyond which precision and significance become almost
mutually exclusive characteristics”

Formal control logic is based in the teachings of Aristotle, where an element
either is or is not a member of a particular set, L.A. Zadeh was one of those
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who investigated alternative forms of data classification. The result of this in-
vestigation was the introduction of fuzzy sets and fuzzy theory at the University
of California Berkeley in 1965 [15]. Fuzzy logic, a more generalized data set,
allows for a ”class” with continuous membership gradations. This form of clas-
sification with degrees of membership offers a much wider scope of applicability,
especially in control applications. Fuzzy logic techniques have been applied to a
wide range of systems, with many electronic control systems in the automotive
industry, such as automatic transmission, engine control and antilock braking
systems. This important concept has opened up new insights and application
in a wide range of scientific field and plays an important role for solving real
life problems involving ambiguities. Rosenfeld in 1971, introduced the concept
of fuzzy set theory in groups [11]. Mordeson et al. [7] have discussed the vast
field of fuzzy semigroups, where theoretical exploration of fuzzy semigroups and
the applications of fuzzy set are used in fuzzy coding, fuzzy automata and fi-
nite state machines. The theory of soft sets (see [3, 4]) has many applications
in different fields such as the smoothness of functions, game theory, operations
research, Riemann integration etc.

Fuzzy set theory on semigroups has already been developed. In [8] Murali
initiated the notion of belongingness of a fuzzy point to a fuzzy subset under a
natural equivalence on a fuzzy subset. The idea of quasi-coincidence of a fuzzy
point with a fuzzy set was defined in [10]. These two concepts played a vital
role in producing different types of fuzzy subgroups. On bases of these ideas
Bhakat and Das [1, 2] introduced the concept of (α, β)-fuzzy subgroups by using
the “belongs to” relation ∈ and “quasi-coincident with” relation q between a
fuzzy point and a fuzzy subgroup, and introduced the concept of an (∈,∈ ∨q)-
fuzzy subgroups, where α, β ∈ {∈, q,∈ ∨q,∈ ∧q} and α 6=∈ ∧q. In [12] regular
semigroups are characterized by the properties of their (∈,∈ ∨q)-fuzzy ideals.
In [13] semigroups were characterized by the properties of their (∈,∈ ∨q)-fuzzy
ideals.

An AG-groupoid is a non-associative algebraic structure lies in between a
groupoid and a commutative semigroup. Although it is non-associative, some
times it possesses some interesting properties of a commutative semigroup. For
instance a2b2 = b2a2, for all a, b holds in a commutative semigroup. Now our aim
is to find out some logical investigations for intra-regular AG-groupoids using
the new generalized concept of fuzzy sets.

In this paper, we introduced some new types of fuzzy ideals namely (∈γ ,∈γ

∨qηδ ) -fuzzy right ideals in AG-groupoids and develop some new results. We give
some characterizations for intra-regular AG-groupoids using the properties of
(∈γ ,∈γ ∨qηδ )-fuzzy right ideals.

2. Preliminaries

A groupoid (S, .) is called an AG-groupoid (LA-semigroup in some articles [9]), if
its elements satisfy left invertive law: (ab)c = (cb)a. In an AG-groupoid medial



772 M. Khan et al.

law [6], (ab)(cd) = (ac)(bd), holds for all a, b, c, d ∈ S. It is also known that
in an AG-groupoid with left identity, the paramedial law: (ab)(cd) = (db)(ca),
holds for all a, b, c, d ∈ S.

If an AG-groupoid contains a left identity, the following law holds

a(bc) = b(ac), for all a, b, c ∈ S. (1)

Let S be an AG-groupoid. By an AG-subgroupoid of S we mean a nonempty
subset A of S such that A2 ⊆ A.

A left (right) ideal of S is a nonempty subset I of S such that SI ⊆ I
(IS ⊆ I). By a two-sided ideal or simply ideal, we mean a nonempty subset of
S which is both a left and a right ideal of S.

A nonempty subset A of an AG-groupoid S is called semiprime of S if a2 ∈ A
implies a ∈ A.

A fuzzy subset f of a given set S is described as an arbitrary function f :
S −→ [0, 1], where [0, 1] is the usual closed interval of real numbers. For any
two fuzzy subsets f and g of S, f ≤ g means that f(x) ≤ g(x) and (f ∩ g)(x) =
f(x) ∧ g(x) for all x in S.

Let f and g be any fuzzy subsets of an AG-groupoid S. Then the product
f ◦ g is defined by

(f ◦ g) (a) =

{ ∨

a=bc

{f(b) ∧ g(c)} if there exist b, c ∈ S, such that a = bc,

0 otherwise.

The following definitions can be found in [7]:

A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid of
S if f(xy) ≥ f(x) ∧ f(y) for all x, y ∈ S.

A fuzzy subset f of an AG-groupoid S is called a fuzzy left (right) ideal of
S if f(xy) ≥ f(y) (f(xy) ≥ f(x)) for all x, y ∈ S. A fuzzy subset f of an AG-
groupoid S is called a fuzzy ideal of S if it is both a fuzzy left and fuzzy right
ideal of S.

Let =(X) denote the collection of all fuzzy subsets of an AG-groupoid S with
a left identity.

Note that S can be considered as a fuzzy subset of S itself and we write
S = CS , that is, S(x) = 1 for all x ∈ S. Moreover S ◦ S = S.

Definition 2.1. A fuzzy subset f of X of the form,

f(y) =

{

r(6= 0) if y = x,
0 otherwise.

is said to be a fuzzy point with support x and value r and is denoted by (x, r),
where r ∈ (0, 1].
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3.
(

∈γ,∈γ ∨q
η
δ

)

-Fuzzy Sets

In this section, we define three parameters fuzzy sets which are generalizations
of (∈γ ,∈γ ∨qδ) fuzzy sets and named them (∈γ ,∈γ ∨qηδ )−fuzzy sets or triplet
fuzzy sets. Let γ, δ, η ∈ [0, 1] be such that γ < η < δ. For any B ⊆ A, let χΓ

γB

where Γ = (γ, δ) be a fuzzy subset of X such that χΓ
γB (x) ≥ min {δ, η} = η for

all x ∈ B and χΓ
γB (x) ≤ γ other wise. Clearly, χΓ

γB is the characteristic function
of B if γ = 0 and η = 1.

For fuzzy point xr and a fuzzy subset f of X , we see that

(1) xr ∈γ f if f (x) ≥ r > γ.

(2) xrq
η
δ f if f (x) + r + η > 3δ.

(3) xr ∈γ ∨qηδ f if xr ∈γ f or xrq
η
δ f .

Now we introduce a new relation on =(X), denoted by “⊆ ∨qη(γ,δ)”, as follows:

For any f, g ∈ =(X), by f ⊆ ∨qη(γ,δ)g we mean that xr ∈r f implies xr ∈γ

∨qηδ g, for all x ∈ X and r ∈ (γ, η]. Moreover f and g are said to be (γη, δ)-equal,
denoted by f =(γ,δ) g, if f ⊆ ∨qη(γ,δ)g and g ⊆ ∨qη(γ,δ)f .

Definition 3.1. [2] A fuzzy subset λ of a group G is said to be a fuzzy subgroup

of G if for all x, y ∈ G,

(1) λ(xy) � M(λ(x), λ(y)) and

(2) λ(x−1) � λ(x).

Definition 3.2. [2] A fuzzy subset λ of a group G is said to be an (∈,∈ ∨q)-fuzzy
subgroup of G if for all x, y ∈ G and t, r ∈ (0, 1].

(1) xt, yr ∈ λ implies (xy)M(t,r) ∈ ∨qλ and

(2) λ(x−1) � λ(x).

Definition 3.3. [2] A fuzzy subset λ of a group G is said to be an (∈,∈ ∨q)-fuzzy
subgroup of G if for all x, y ∈ G and t, r ∈ (0, 1].

(1) xt, yr ∈ λ implies (xy)M(t,r) ∈ ∨qλ and

(2) xt ∈ λ implies x−1
t ) ∈ ∨qλ.

Lemma 3.4. Let f and g be a fuzzy subset of =(X). Then f ⊆ ∨qη(γ,δ)g if and

only if max {g (x) , γ} ≥ min {f (x) , δ, η} for all x ∈ X.

Proof. For fuzzy subset f and g we have f ⊆ ∨qη(γ,δ)g. Assume that there

exist x ∈ X and t ∈ (γ, η] such that max {g (x) , γ} < t ≤ min {f (x) , δ, η} .
Then max {g (x) , γ} < t > γ. This implies that g (x) < t > γ, which further

implies that xt ∈ ∈γg, also g (x) + t + η ≤ 3δ, implies that xtq
η
δ g, therefore

xt∈γ ∨qηδ g. From min {f (x) , δ, η} ≥ t, implies that f (x) ≥ t > γ, which implies
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that xt ∈γ f . But xt∈γ ∨qηδ g a contradiction to the definition of f ⊆ ∨qη(γ,δ)g.
Hence

max {g (x) , γ} ≥ min {f (x) , δ, η} for all x ∈ X .

Conversely, assume that there exist x ∈ X and t ∈ (γ, η] such that

max {g (x) , γ} ≥ min {f (x) , δ, η}

Further let xt ∈γ f implies that f (x) ≥ t > γ. Need to show that xt ∈γ ∨qηδ g.
Now

max {g (x) , γ} ≥ min {f (x) , δ, η} ≥ min {t, δ, η} = t

but max {g (x) , γ} = g (x), therefore g (x) ≥ t > γ, implies that xt ∈γ g, which
implies that xt ∈γ ∨qηδ g. Hence f ⊆ ∨qη(γ,δ)g.

Lemma 3.5. Let f ,g and h ∈ = (X). If f ⊆ ∨qη(γ,δ)g and g ⊆ ∨qη(γ,δ)h, then

f ⊆ ∨qη(γ,δ)h.

The relation “=(γη,δ)” is equivalence relation on =(X), Moreover, f =(γη,δ) g
if and only if max {min {f (x) , δ} , γ} = max {min {g (x) , δ} , γ} for all x ∈ X .

Lemma 3.6. Let A,B be any non-empty subset of an AG-groupoid S with left

identity. Then we have

(1) A ⊆ B if only if χΓ
γA ⊆(γη,δ) χ

Γ
γB, where Γ = (γ, δ) and γ,δ,η ∈ [0, 1].

(2) χΓ
γA ∩ χΓ

γB =(γη,δ) χ
Γ
γ(A∩B).

(3) χΓ
γA ◦ χΓ

γB =(γη,δ) χ
Γ
γ(AB).

Definition 3.7. A fuzzy subset f of an AG-groupoid S with a left identity is called

an (∈γ ,∈γ ∨qηδ )-fuzzy AG-subgroupoid of S if for all x, y ∈ S and t, s ∈ (γ, η],
such that xt ∈γ f , yt ∈γ f we have (xy)min{t,s} ∈γ ∨qηδ .

Theorem 3.8. Let f be a fuzzy subset of an AG-groupoid S with a left identity.

Then f is an (∈γ ,∈γ ∨qηδ )-fuzzy AG-subgroupoid of S if and only if

max {f (xy) , γ} ≥ min {f (x) , f (y) , δ, η} where γ,δ ∈ [0, 1] .

Proof. Let f be a fuzzy subset of an AG-groupoid S which is an (∈γ ,∈γ ∨qηδ )-
fuzzy AG-subgroupoid of S. Assume that there exist x, y ∈ S, and t ∈ (γ, η],
such that

max {f (xy) , γ} < t ≤ min {f (x) , f (y) , δ, η} .

Then max {f (xy) , γ} < t ≥ γ, implies that f (xy) < t ≥ γ, which further

implies that (xy)t ∈γf, also f (xy) + t+ η ≤ 3δ, implies that (xy)t q
η
δ f, therefore

(xy)t ∈γ ∨qηδ f also and min {f (x) , f (y) , δ, η} ≥ t implies that f (x) ≥ t > γ,
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f (y) ≥ t > γ, which implies that xt ∈γ f , yt ∈γ f . But (xy)t ∈γ ∨qηδ f , which
contradicts the definition. Hence

max {f (xy) , γ} ≥ min {f (x) , f (y) , δ, η} for all x, y ∈ S.

Conversely, assume that there exist x, y ∈ S and t, s ∈ (γ, η] such that
xt ∈γ f , ys ∈γ f . Then f (x) ≥ t > γ, f (y) ≥ s > γ. Now by hypothesis we
have

max {f (xy) , γ} ≥ min {f (x) , f (y) , δ, η}

≥ min {t, s, δ, η}

> min {t, s} > γ,

but max {f (xy) , γ} = f (xy), therefore f (xy) ≥ min {t, s} > γ, implies that
(xy)min{t,s} ∈γ f ,which implies that (xy)min{t,s} ∈γ ∨qηδ f . Hence xt ∈γ f ,

ys ∈γ f which means that (xy)min{t,s} ∈γ ∨qηδ f for all x, y ∈ S ,therefore f is

an (∈γ ,∈γ ∨qηδ )-fuzzy AG-subgroupoid of S.

Definition 3.9. A fuzzy subset f of an AG-groupoid S with a left identity is

called an (∈γ ,∈γ ∨qηδ )-fuzzy right (respt left) ideal of S if for all x, y ∈ S and

t ∈ (γ, η] such that xt ∈γ f we have (xy)t ∈γ ∨qηδ f resp. yt ∈γ f implies that

(xy)t ∈γ ∨qηδ f .

Theorem 3.10. A fuzzy subset f of an AG-groupoid S with a left identity is called

(∈γ ,∈γ ∨qηδ )-fuzzy right ideal of S if and only if

max {f (xy) , γ} ≥ min {f (x) , δ, η} for all x,y ∈ S.

Proof. Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal of S. Suppose there are x, y ∈
S and t ∈ (γ, η] such that

max {f (xy) , γ} < t ≤ min {f (x) , δ, η} for some x, y ∈ S.

Then max {f (xy) , γ} < t ≥ γ. This implies that f (xy) < t ≥ γ, which

further implies that (xy)t ∈γf , also f (xy) + t+ η ≤ 3δ, implies that (xy)t q
η
δ f ,

therefore (xy)t ∈γ ∨qηδ f . From min {f (x) , δ, η} ≥ t, implies that f (x) ≥ t > γ,

which implies that xt ∈γ f . But (xy)t ∈γ ∨qηδ a contradiction to the definition.
Hence

max {f (xy) , γ} ≥ min {f (x) , δ, η} for all x,y ∈ S.

Conversely, assume that there are x, y ∈ S and t ∈ (γ, η] such that

max {f (xy) , γ} ≥ min {f (x) , δ, η} .

Further let xt ∈γ f . This implies that f (x) ≥ t > γ. Need to show that
(xy)t ∈γ ∨qηδ f . Now

max {f (xy) , γ} ≥ min {f (x) , δ, η} ≥ min {t, δ, η} = t,
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but max {f (xy) , γ} = f (xy), therefore f (xy) ≥ t > γ, implies that (xy)t ∈γ f ,
which implies that (xy)t ∈γ ∨qηδ f . Hence f is an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal
of S.

Example 3.11. Let S = {1, 2, 3} and define the binary operation ◦ as follows:

◦ 1 2 3
1 2 3 3
2 2 2 2
3 2 2 2

Then (S, ◦) is an AG-groupoid. Let us define a fuzzy subset f on S follows:

f (x) =







0.29 if x = 1
0.4 if x = 2
0.22 if x = 3

Then, we have

(1) f is an
(

∈0.2,∈0.2 ∨q0.210.3

)

-fuzzy subgroupoid of S.

(2) f is not an (∈0.2,∈0.2 ∨q0.3)-fuzzy subgroupoid of S, because

0.22 = max {f (1 ◦ 2) , 0.2} < min {f (1) , 0.3} = 0.29

Example 3.12. Consider the AG-groupoid defined by the following multiplication
table on S = {1, 2, 3, } :

◦ 1 2 3
1 2 2 2
2 2 2 2
3 1 2 2

Then clearly (S, ◦) is an AG-groupoid. Define a fuzzy subset f on S as
follows:

f (x) =







0.21 if x = 1
0.1 if x = 2
0.22 if x = 3

Then, we have

(1) f is an
(

∈0.01,∈0.01 ∨q0.10.2

)

-fuzzy right ideal.

(2) f is not an (∈0.01,∈0.01 ∨q0.2)-fuzzy right ideal, because

0.1 = max {f (3 ◦ 2) , 0.01} < min {f (3) , 0.2} = 0.2

(3) f is not a fuzzy right ideal because

f (3 ◦ 2) < f (3)
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Lemma 3.13. R is a right ideal of an AG-groupoid S if and only if χΓ
γR is an

(∈γ ,∈γ ∨qηδ )-fuzzy right ideal of S.

Proof. (i) Let x, y ∈ R. It means that xy ∈ R. Then χΓ
γR (xy) ≥ δ + η > η,

χΓ
γR (x) > η and χΓ

γR (y) > η but γ < η < δ. Thus

max
{

χΓ
γR (xy) , γ

}

= χΓ
γR (xy) and min

{

χΓ
γR (x) , δ, η

}

= δ.

Hence max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

(ii) Let x /∈ R, y ∈ R.

Case 1. If xy /∈ R, then χΓ
γR (x) ≤ γ, χΓ

γR (y) > η and χΓ
γR (xy) < γ.

Therefore

max
{

χΓ
γR (xy) , γ

}

= γ and min
{

χΓ
γR (x) , δ, η

}

= χΓ
γR (x) .

Hence max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

Case 2. If xy ∈ R, then χΓ
γR (xy) > η, χΓ

γR (x) ≤ γ and χΓ
γR (y) > η.

Therefore

max
{

χΓ
γR (xy) , γ

}

= χΓ
γR (xy) andmin

{

χΓ
γR (x) , δ, η

}

= χΓ
γR (x)

Hence max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

(iii) Let x ∈ R, y /∈ R. Then xy ∈ R. Thus χΓ
γR (xy) > δ, χΓ

γR (y) ≤ γ and

χΓ
γR (x) > η. Thus

max
{

χΓ
γR (xy) , γ

}

= χΓ
γR (xy) and min

{

χΓ
γR (x) , δ, η

}

= δ.

Hence max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

(iv) Let x, y /∈ R. Then

Case 1. Assume that xy /∈ R. Then by definition we get χΓ
γR (xy) ≤ γ,

χΓ
γR (y) ≤ γ and χΓ

γR (x) ≤ γ. Thus

max
{

χΓ
γR (xy) , γ

}

= χΓ
γR (xy) and min

{

χΓ
γR (x) , δ, η

}

= δ.

Hence max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

Case 2. Assume that xy ∈ R. Then by definition we get χΓ
γR (xy) > η,

χΓ
γR (y) ≤ γ and χΓ

γR (x) ≤ γ. Thus

max
{

χΓ
γR (xy) , γ

}

= χΓ
γR (xy) and min

{

χΓ
γR (x) , δ, η

}

= χΓ
γR (x) .

Therefore max
{

χΓ
γR (xy) , γ

}

≥ min
{

χΓ
γR (x) , δ, η

}

.

Conversely, let rs ∈ RS, where r ∈ R and s ∈ S. By hypothesis
max

{

χΓ
γR (rs) , γ

}

≥ min
{

χΓ
γR (r) , δ, η

}

. Since r ∈ R, thus χΓ
γR (r) > η which

implies that min
{

χΓ
γR (r) , δ, η

}

= η. Thus

max
{

χΓ
γR (rs) , γ

}

≥ η
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This implies that χΓ
γR (rs) ≥ η which implies that rs ∈ R. Hence R is a right

ideal of S.

Definition 3.14. A fuzzy subset f of an AG-groupoid S is called (∈γ ,∈γ ∨qηδ )-
fuzzy semiprime if x2

t ∈γ f implies that xt ∈γ ∨qηδ f for all x ∈ S and t ∈ (γ, η].

Example 3.15. Consider an AG-groupoid S = {1, 2, 3, 4, 5} with the following
multiplication table

◦ 1 2 3 4 5 6
1 2 1 1 1 1 1
2 1 2 2 2 2 2
3 1 2 4 5 6 3
4 1 2 3 4 5 6
5 1 2 6 3 4 5
6 1 2 5 6 3 2

Clearly (S, ◦) is intra-regular because 1 =
(

3 ◦ 12
)

◦ 1, 2 =
(

2 ◦ 22
)

◦ 2,

3 =
(

4 ◦ 32
)

◦ 6, 4 =
(

4 ◦ 42
)

◦ 4, 5 =
(

6 ◦ 53
)

◦ 3, 6 =
(

5 ◦ 62
)

◦ 5.

Define a fuzzy subset f on S as given:

f (x) =































0.3 if x = 1
0.32 if x = 2
0.4 if x = 3
0.42 if x = 4
0.5 if x = 5
0.2 if x = 6

Then f is an
(

∈0.1,∈0.1 ∨q0.110.22

)

-fuzzy semiprime of S.

Theorem 3.16. A fuzzy subset f of an AG-groupoid S is called (∈γ ,∈γ ∨qηδ )-fuzzy
semiprime if and only if max {f (a) , γ} ≥ min

{

f
(

a2
)

, δ, η
}

.

Proof. Let f be (∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Assume that there exists a ∈ S
and t ∈ (γ, η], such that

max {f (a) , γ} < t ≤ min
{

f
(

a2
)

, δ, η
}

.

Then max {f (a) , γ} < t. This implies that f (a) < t > γ, which implies that

at∈γ f . Now since η < δ < t, so f (a) + t + η < 3δ. Thus at∈γ ∨qηδ f . Also
since min

{

f
(

a2
)

, δ, η
}

≥ t, implies that f
(

a2
)

≥ t > γ, this further implies
that a2t ∈γ f . Thus by definition of (∈γ ,∈γ ∨qηδ )-fuzzy semiprime at ∈γ ∨qηδ f

which is contradiction to at∈γ ∨qηδ f . Hence

max {f (a) , γ} ≥ min
{

f
(

a2
)

, δ, η
}

, for all a ∈ S.
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Conversely, assume that there exist a ∈ S and t ∈ (γ, η] such that a2t ∈γ f .
Then f

(

a2
)

≥ t > γ, thus

max {f (a) , γ} ≥ min
{

f
(

a2
)

, δ, η
}

≥ min {t, δ} = t

implies that max {f (a) , γ} ≥ t, but max {f (a) , γ} = f (a), therefore f (a) ≥ t >
γ, implies that at ∈γ f , which implies that at ∈γ ∨qηδ f . Hence f is (∈γ ,∈γ ∨qηδ )-
fuzzy semiprime.

Theorem 3.17. For a right ideal R of an AG-groupoid S with a left identity, the

following statements are equivalent:

(1) R is semiprime.

(2) χΓ
γR is (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

Proof. (1) ⇒ (2) Let R be a semiprime ideal of an AG-groupoid S. Let a be an
arbitrary element of S such that a ∈ R. Then a2 ∈ R. Hence χΓ

γR (a) ≥ η and

χΓ
γR

(

a2
)

≥ η which implies that max
{

χΓ
γR (a) , γ

}

≥ min
{

χΓ
γR

(

a2
)

, δ, η
}

.

Now let a /∈ R. Since R is semiprime, we have a2 /∈ R. This im-
plies that χΓ

γR (a) ≤ γ and χΓ
γR

(

a2
)

≤ γ. Therefore, max
{

χΓ
γR (a) , γ

}

≥

min
{

χΓ
γR

(

a2
)

, δ, η
}

. Hence, max
{

χΓ
γR (a) , γ

}

≥ min
{

χΓ
γR

(

a2
)

, δ, η
}

for all
a ∈ S.

(2) ⇒ (1) Let χΓ
γR be a fuzzy semiprime. If a2 ∈ R, for some a in S,

then χΓ
γR

(

a2
)

≥ η. Since χΓ
γR is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime, we have

max
{

χΓ
γR (a) , γ

}

≥ min
{

χΓ
γR

(

a2
)

, δ, η
}

. Therefore max
{

χΓ
γR (a) , γ

}

≥ η. But

γ < η < δ, so χΓ
γR (a) ≥ η. Thus a ∈ R. Hence R is semiprime.

4. Intra-Regular AG-Groupoids

An element a of an AG-groupoid S is called intra-regular if there exist x, y ∈ S
such that a =

(

xa2
)

y. S is called intra-regular, if every element of S is intra-
regular.

Theorem 4.1. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.

(2) For a right ideal R of an AG-groupoid S, R ⊆ R2 and R is semiprime.

(3) For an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal f of S, f ⊆ ∨qη(γ,δ)f ◦ f and f is

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

Proof. (1) ⇒ (3) Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal of an intra-regular
AG-groupoid S with a left identity. Since S is intra-regular, for any a in S there
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exist x,y in S such that a =
(

xa2
)

y. Now

a =
(

xa2
)

y = (x (aa)) y = (a (xa)) y = (y (xa)) a

= ((uv) (xa)) a where y = uv

= ((ax) (vu)) a = (a (vu)) (ax)

For any a in S there exist p and q in S such that a = pq. Then

max {(f ◦ f) (a) , γ} = max

{

∨

a=pq

{{f (p) ∨ f (q)} , γ}

}

≥ max {min {{f (a (vu)) , f (ax)} , γ}}

≥ min {max {f (a (vu)) , γ} ,max {f (ax) , γ}}

≥ min {min {f (a) , δ, η} ,min {f (a) , δ, η}}

= min {f (a) , δ, η}

Thus by Lemma 3.4, f ⊆ ∨qη(γ,δ)f ◦f . Now to show that f is an (∈γ ,∈γ ∨qηδ )-

fuzzy semiprime. Since S = S2, for each y in S there exist u, v in S such that
y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where ((vu)x) = s.

Then

max {f (a) , γ} = max
{

f
(

a2s
)

, γ
}

≥ min
{

f
(

a2
)

, δ, η
}

Hence, f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

(3) ⇒ (2) Let R be any right ideal of an AG-groupoid S. By (3), χΓ
γR is

semiprime and by Theorem 3.17, R is semiprime. Now using Lemma 3.6, and
(3), we get

χΓ
γR = χΓ

γR∩R =(γη,δ) χ
Γ
γR ∩ χΓ

γR ⊆ ∨qη(γ,δ)χ
Γ
γR ◦ χΓ

γR =(γη,δ) χ
Γ
γR2

Hence by (1), we get R ⊆ R2.

(2) ⇒ (1) Since Sa2 is a right ideal containing a2, using (2) we get

a ∈ Sa2 ⊆
(

Sa2
)2

=
(

Sa2
) (

Sa2
)

⊆
(

Sa2
)

S.

Hence S is intra-regular.

Theorem 4.2. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.
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(2) For any right ideal R and any subset A of an AG-groupoid S, R∩A ⊆ RA
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy right ideal f and any (∈γ ,∈γ ∨qηδ )-fuzzy subset

g, f ∩ g ⊆ ∨qη(γ,δ)f ◦ g and f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

Proof. (1) ⇒ (3) Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal and g be an
(∈γ ,∈γ ∨qηδ )-fuzzy subset of an intra-regular AG-groupoid S. Since S is intra-
regular, for any a in S there exist x,y in S such that a =

(

xa2
)

y. Now using
medial and paramedial law, we get

a =
(

xa2
)

y = [(x (aa)) y] = [(a (xa)) y]

= [y (xa)] a,

y (xa) =
[

y
{

x
((

xa2
)

y
)}]

=
[

y
{(

xa2
)

(xy)
}]

=
[(

xa2
) (

xy2
)]

=
[(

y2x
) (

a2x
)]

=
[

a2
(

y2x2
)]

.

Thus

a =
(

a2t
)

a, since
(

y2x2
)

= t,

max {(f ◦ g) , γ} = max

{

∨

a=bc

{f (b) ∧ g (c)} , γ

}

≥ max
{

min
{{

f
(

a2t
)

, g (a)
}

, γ
}}

= min
{

max
{

f
(

a2t
)

, γ
}

,max {g (a) , γ}
}

≥ min {min {f (a) , δ, η} ,min {g (a) , δ, η}}

= min {f (a) , g (a) , δ, η}

= min {(f ∩ g) (a) , δ, η} .

By Lemma 3.4, we have f ∩ g ⊆ ∨qη(γ,δ)g ◦ f . Next we show that f is an

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Since S = S2, for each y in S there exist u, v in
S such that y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where ((vu)x) = s.

Then

max {f (a) , γ} = max
{

f
(

a2s
)

, γ
}

≥ min
{

f
(

a2
)

, δ, η
}

Hence, f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

(3) ⇒ (2) Let R be a right ideal and A be a subset of S. By Lemma 3.6, and
(3), we get

χΓ
γ(R∩A) =(γη,δ) χ

Γ
γR ∩ χΓ

γA ⊆ ∨qη(γ,δ)χ
Γ
γR ◦ χΓ

γA =(γη,δ) χ
Γ
γRA.
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By Lemma 3.6, R ∩ A ⊆ RA. Next to show that R is a semiprime. By
(3) , χΓ

γR is semiprime and by Theorem 3.17, R is semiprime.

(2) ⇒ (1) Sa2 is a right ideal containing a2. By (2), it is semiprime. Therefore

a ∈ Sa2 ∩ Sa ⊆
(

Sa2
)

(Sa) ⊆
(

Sa2
)

S.

Hence S is intra-regular.

Theorem 4.3. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.

(2) For any right ideal R and any subset A of an AG-groupoid S, R∩A ⊆ AR
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy right ideal f and any (∈γ ,∈γ ∨qηδ )-fuzzy subset

g, f ∩ g ⊆ ∨qη(γ,δ)g ◦ f and f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

Proof. (1) ⇒ (3) Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal and g be an
(∈γ ,∈γ ∨qηδ )-fuzzy subset of an intra-regular AG-groupoid S. Since S is intra-
regular, for any a in S there exist x,y in S such that a =

(

xa2
)

y. Now using
medial and paramedial law, we get

a =
(

xa2
)

y =
(

xa2
)

(uv) since y = uv

= (vu)
(

a2x
)

= a2 ((vu)x) = (aa) ((vu)x)

= (x (vu)) (aa) = a ((x (vu)) a) = a (za) since z = x (vu) .

Now

za = z
((

xa2
)

y
)

=
(

xa2
)

(zy) = (yz)
(

a2x
)

= a2 ((yz)x)

= (aa) ((yz)x) = (x (yz)) (aa) = a ((x (yz)) a) = at.

where t = (x (yz)) a. Therefore, we have

a = a (at) ,

max {(f ◦ g) , γ} = max

{

∨

a=bc

{g (b) ∧ f (c)} , γ

}

≥ max {min {{g (a) , f (at)} , γ}}

= min {max {g (a) , γ} ,max {f (at) , γ}}

≥ min {min {g (a) , δ, η} ,min {f (a) , δ, η}}

= min {g (a) , f (a) , δ, η}

= min {(f ∩ g) (a) , δ, η} .

By Lemma 3.4, we have f ∩ g ⊆ ∨qη(γ,δ)g ◦ f . Next we show that f is an

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Since S = S2, for each y in S there exist u, v in
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S such that y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where ((vu)x) = s.

Then

max {f (a) , γ} = max
{

f
(

a2s
)

, γ
}

≥ min
{

f
(

a2
)

, δ, η
}

Hence, f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

(3) ⇒ (2) Let R be a right ideal and A be a subset of S. By Lemma 3.6, and
(3), we get

χΓ
γ(R∩A) = χΓ

γ(A∩R) =(γη,δ) χ
Γ
γA ∩ χΓ

γR ⊆ ∨qη(γ,δ)χ
Γ
γA ◦ χΓ

γR =(γη,δ) χ
Γ
γAR.

By Lemma 3.6, R ∩ A ⊆ AR. Next to show that R is a semiprime. By (3) ,
χΓ
γR is semiprime and by Theorem 3.17, R is semiprime.

(2) ⇒ (1) Sa2 is a right ideal containing a2. By (2), it is semiprime. Therefore

a ∈ Sa2 ∩ Sa ⊆ (Sa)
(

Sa2
)

=
(

a2S
)

(aS) = [(aa) (SS)] (aS)

= [(SS) (aa)] (aS) ⊆
(

Sa2
)

S

Hence S is intra-regular.

Theorem 4.4. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.

(2) For any right ideal R and any subset A of an AG-groupoid S, A∩R ⊆ AR
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy subset f and any (∈γ ,∈γ ∨qηδ )-fuzzy right ideal

g of S, f ∩ g ⊆ ∨qη(γ,δ)f ◦ g and g is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

Proof. (1) ⇒ (3) Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy subset and g be an
(∈γ ,∈γ ∨qηδ )-fuzzy right ideal of an intra-regular AG-groupoid S. Since S is
an intra-regular it follow that for any a in S there exist x,y in S such that
a =

(

xa2
)

y. Now using medial and paramedial law, we get

a =
(

xa2
)

y =
(

xa2
)

(uv) since y = uv

= (vu)
(

a2x
)

= a2 ((vu)x) = (aa) ((vu)x)

= (x (vu)) (aa) = a ((x (vu)) a) = a (za) since z = x (vu) ,

za = z
((

xa2
)

y
)

=
(

xa2
)

(zy) = (yz)
(

a2x
)

= a2 ((yz)x) .

Thus

a = a
(

a2v
)

, where (yz)x = v.
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For any a in S there exist s and t in S such that a = st. Then

max {(f ◦ g) (a) , γ} = max

{

∨

a=st

{f (s) ∧ g (t)} , γ

}

≥ max
{

min
{{

f (a) , g
(

a2v
)}

, γ
}}

= min
{

max {f (a) , γ} ,max
{

g
(

a2v
)

, γ
}}

≥ min {min {f (a) , δ, η} ,min {g (a) , δ, η}}

= min {f (a) , g (a) , δ, η}

= min {(f ∩ g) (a) , δ, η} .

Thus by Lemma 3.4, f ∩ g ⊆ ∨qη(γ,δ)g ◦ f .

(3) ⇒ (2) Let R be a right ideal and A be any subset of S. By Lemma 3.6,
and (3), we get

χΓ
γ(A∩R) =(γη,δ) χ

Γ
γA ∩ χΓ

γR ⊆ ∨qη(γ,δ)χ
Γ
γA ◦ χΓ

γR =(γη,δ) χ
Γ
γAR.

By Lemma 3.6, A ∩R ⊆ AR.

(2) ⇒ (1) Sa2 is a right ideal containing a2. By (2), it is semiprime. Therefore

a ∈ Sa ∩ Sa2 ⊆ (Sa)
(

Sa2
)

=
(

a2S
)

(aS) ⊆
(

a2S
)

S

=
(

a2 (SS)
)

S =
(

(SS)a2
)

S =
(

Sa2
)

S.

Hence S is intra-regular.

Theorem 4.5. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:
(1) S is intra-regular.

(2) For any subsets A,B and for any right ideal R of S, A ∩B ∩R ⊆ (AB)R
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy subsets f ,g and any (∈γ ,∈γ ∨qηδ )-fuzzy right

ideal of h, f ∩ g ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h) and h is an (∈γ ,∈γ ∨qηδ )-fuzzy

semiprime ideal of S.

Proof. (1) ⇒ (2) Let f, g be (∈γ ,∈γ ∨qηδ )-fuzzy subsets and h be an
(∈γ ,∈γ ∨qηδ )-fuzzy right ideal of an intra-regular AG-groupoid S. Since S
is intra-regular it follow that for any a in S there exist x,y in S such that
a =

(

xa2
)

y. Now using medial, paramedial laws, we get

a =
(

xa2
)

y = [(uv) (aa)] y, where x = uv

= [(aa) (vu)] y = [y (vu)] (aa) = a [{y (vu)} a]

= a (ta) , where t = y (vu) .

ta = t
[(

xa2
)

y
]

=
(

xa2
)

(ty) =
[

(yt)
(

a2x
)]

= (aa) [(yt)x]

= [x (yt)] (aa) = a [{x (yt)} a] = a (za) , where z = x (yt) .

za = z
[(

xa2
)

y
]

=
(

xa2
)

(zy) = (yz)
(

a2x
)

= a2 [(yz)x]

= a2 [(yz)x] = a2w, where w = (yz)x.
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Thus a = a
[

a
(

a2w
)]

= a
[

a2 (aw)
]

= a2 [a (aw)].

For any a in S there exist b and c in S such that a = bc. Then

max {((f ◦ g) ◦ h) (a) , γ}

= max

{

∨

a=bc

{(f ◦ g) (b) ∧ h (c)} , γ

}

≥ max {min {(f ◦ g) (aa) , h (a (aw))} , γ}

≥ max {min {f (a) , g (a) , h (a (aw))} , γ}

= min {max {f(a), γ} ,max {g(a), γ} ,max {h (a (aw)) , γ}}

≥ min {min {f(a), δ, η} ,min {g(a), δ, η} ,min {h (a (aw)) , δ, η}}

= min {min {f(a), g(a), h(a)} , δ, η}

= min {(f ∩ g ∩ h) (a) , δ, η} .

Thus by Lemma 3.4, f ∩ g ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h). Next we show that h is

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Since S = S2, for each y in S there exist u, v in
S such that y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where s = (vu)x.

Then

max {h(a), γ} = max
{

h
(

a2s
)

, γ
}

≥ min
{

h(a2), δ, η
}

.

Hence, h is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

(3) ⇒ (2) Let R be a right ideal and A,B be any subsets of S. Then by
Lemma 3.6 and (3), we get

χΓ
γ(A∩B)∩R =(γη,δ) χ

Γ
γA∩χΓ

γB∩χΓ
γR ⊆ ∨qη(γ,δ)

(

χΓ
γA ◦ χΓ

γB

)

◦χΓ
γR =(γη,δ) χ

Γ
γ(AB)R.

By Lemma 3.6, we get (A ∩B) ∩ R ⊆ (AB)R. Since R be any right ideal
of an AG-groupoid S. By (3), χΓ

γR is semiprime and by Theorem 3.17, R is
semiprime.

(2) ⇒ (1) Sa2 is a right ideal of an AG-groupoid S containing a2. By (2), it
is semiprime. Thus by (2), we get

a ∈ Sa ∩ Sa ∩ Sa2 ⊆ [(Sa) (Sa)]
(

Sa2
)

= [(SS) (aa)]
(

Sa2
)

⊆
(

Sa2
)

S.

Hence S is intra-regular.

Theorem 4.6. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.
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(2) For any subsets A,B and for any right ideal R of S, A ∩R ∩B ⊆ (AR)B
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy subsets f ,h and any (∈γ ,∈γ ∨qηδ )-fuzzy right

ideal of g, f ∩ g ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h) and g is an (∈γ ,∈γ ∨qηδ )-fuzzy

semiprime ideal of S.

Proof. (1) ⇒ (3) Let f, h be (∈γ ,∈γ ∨qηδ )-fuzzy subsets and g be an
(∈γ ,∈γ ∨qηδ )-fuzzy right ideal of an intra-regular AG-groupoid S. Since S
is intra-regular it follow that for any a in S there exist x,y in S such that
a =

(

xa2
)

y. Now using medial, paramedial laws, we get

a =
(

xa2
)

y = [(a(xa))y] = [(y(xa))a],

y(xa) = y[x((xa2)y)] = y[
(

xa2
)

(yx)] = [
(

xa2
) (

xy2
)

] =
(

y2x
) (

a2x
)

= a2
(

y2x2
)

= (aa)
(

y2x2
)

=
(

x2y2
)

(aa) = a
[(

x2y2
)

a
]

(

x2y2
)

a =
(

x2y2
) [(

xa2
)

y
]

=
(

xa2
) [(

x2y2
)

y
]

=
[

y
(

x2y2
)] (

a2x
)

= a2
[{(

y
(

y2x2
))}

x
]

Thus a =
[

a
(

a2v
)]

a, where
{

y
(

y2x2
)}

x = v.

For any a in S there exist b and c in S such that a = bc. Then

max {((f ◦ g) ◦ h) (a) , γ}

= max

{

∨

a=bc

{(f ◦ g) (b) ∧ h (c)} , γ

}

≥ max
{

min
{

(f ◦ g)
(

a
(

a2v
))

, h (a)
}

, γ
}

≥ max
{

min
{

f (a) , g
(

a2v
)

, h (a)
}

, γ
}

= min
{

max {f(a), γ} ,max
{

g(a2v), γ
}

,max {h (a) , γ}
}

≥ min {min {f(a), δ, η} ,min {g(a), δ, η} ,min {h (a) , δ, η}}

= min {min {f(a), g(a), h(a)} , δ, η}

= min {(f ∩ g ∩ h) (a) , δ, η} .

Thus by Lemma 3.4, (f ∩ g) ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h). Next we show that g is

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Since S = S2, for each y in S there exist u, v in
S such that y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where s = (vu)x.

Then

max {g(a), γ} = max
{

g
(

a2s
)

, γ
}

≥ min
{

g(a2), δ, η
}

.

Hence, g is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.
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(3) ⇒ (2) Let R be a right ideal and A,B be any subsets of S. Then by
Lemma 3.6, and (iii), we get

χΓ
γ(A∩R)∩B =(γη,δ) χ

Γ
γA∩χΓ

γR∩χΓ
γB ⊆ ∨qη(γ,δ)

(

χΓ
γA ◦ χΓ

γR

)

◦χΓ
γB =(γη,δ) χ

Γ
γ(AR)B.

By Lemma 3.6, we get (A ∩R)∩B ⊆ (AR)B. Since R is a right ideal of an AG-
groupoid S. By (iii), χΓ

γR is semiprime and by Theorem 3.17, R is semiprime.

(2) ⇒ (1) Sa2 is a right ideal of an AG-groupoid S containing a2. By (ii), it
is semiprime. Thus (2), we get

a ∈ Sa ∩ Sa2 ∩ Sa ⊆
[

(Sa)
(

Sa2
)]

(Sa) ⊆ [S
(

Sa2
)

]S

= [S
(

Sa2
)

] (SS) = (SS) [
(

Sa2
)

S] = S[
(

Sa2
)

S]

=
(

Sa2
)

(SS) =
(

Sa2
)

S.

Hence S is intra-regular.

Theorem 4.7. Let S be an AG-groupoid with a left identity. Then the following

conditions are equivalent:

(1) S is intra-regular.

(2) For any subsets A,B and for any right ideal R of S, R ∩A ∩B ⊆ (RA)B
and R is a semiprime ideal.

(3) For any (∈γ ,∈γ ∨qηδ )-fuzzy subsets g, h and any (∈γ ,∈γ ∨qηδ )-fuzzy right

ideal of f , f ∩ g ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h) and f is an (∈γ ,∈γ ∨qηδ )-fuzzy

semiprime ideal of S.

Proof. (1) ⇒ (3) Let f be an (∈γ ,∈γ ∨qηδ )-fuzzy right ideal and g, h be
(∈γ ,∈γ ∨qηδ )-fuzzy subsets of an intra-regular AG-groupoid S. Now since S
is intra-regular it follow that for any a in S there exist x,y in S such that
a =

(

xa2
)

y. Now using medial, and paramedial law, we get

a =
(

xa2
)

y = [(uv) (aa)] y, where x = uv

= [(aa) (vu)] y = [y (vu)] (aa) = (aa) [(vu) y] = [{(vu) y} a] a

= (ta) a, where t = (vu) y.

ta = t
[(

xa2
)

y
]

=
(

xa2
)

(ty) =
[

(yt)
(

a2x
)]

= (aa) [(yt)x] = [{(yt)x} a]a

= (za)a, where z = (yt)x,and za = z
[(

xa2
)

y
]

=
(

xa2
)

(zy) = (yz)
(

a2x
)

= a2 [(yz)x] = a2w, where w = (yz)x.

Thus a =
[(

a2w
)

a
]

a. For any a in S there exist b and c in S such that
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a = bc. Then

max {((f ◦ g) ◦ h) (a) , γ}

= max

{

∨

a=bc

{(f ◦ g) (b) ∧ h (c)} , γ

}

≥ max
{

min
{

(f ◦ g)
((

a2w
)

a
)

, h (a)
}

, γ
}

≥ max
{

min
{

f
(

a2w
)

, g (a) , h (a)
}

, γ
}

= min
{

max
{

f
(

a2w
)

, γ
}

,max {g (a) , γ} ,max {h (a) , γ}
}

≥ min {min {f (a) , δ, η} ,min {g (a) , δ, η} ,min {h (a) , δ, η}}

= min {min {f (a) , g (a) , h (a)} , δ, η}

= min {(f ∩ g ∩ h) , δ, η} .

Thus by Lemma 3.4, f ∩ g ∩ h ⊆ ∨qη(γ,δ) ((f ◦ g) ◦ h). Next we show that f is

(∈γ ,∈γ ∨qηδ )-fuzzy semiprime. Since S = S2, for each y in S there exist u, v in
S such that y = uv. Thus

a =
(

xa2
)

y =
(

xa2
)

(uv) = (vu)
(

a2x
)

= a2 ((vu)x) = a2s, where s = (vu)x.

Then

max {f(a), γ} = max
{

f
(

a2s
)

, γ
}

≥ min
{

f(a2), δ, η
}

.

Hence, f is an (∈γ ,∈γ ∨qηδ )-fuzzy semiprime.

(3) ⇒ (2) Let R be a right ideal and A, B be any subsets of S. Then by
Lemma 3.6, and (3), we get

χΓ
γ(R∩A)∩B = (γη,δ)χ

Γ
γR ∩ χΓ

γA ∩ χΓ
γB

⊆ ∨qη(γ,δ)
(

χΓ
γR ◦ χΓ

γA

)

◦ χΓ
γB

= (γη,δ)χ
Γ
γ(R∩A)∩B.

Hence by Lemma 3.6, we get (R ∩ A) ∩B ⊆ (R ∩ A) ∩B.

(2) ⇒ (1) Sa2 is a right ideal of an AG-groupoid S containing a2. By (2), it
is semiprime. Thus we get

a ∈ Sa2 ∩ Sa ∩ Sa ⊆
[(

Sa2
)

(Sa)
]

Sa ⊆
[(

Sa2
)

S
]

S

= (SS)
(

Sa2
)

= (SS) [(SS) (aa)] = (SS) [(aa) (SS)]

= (SS)
(

a2S
)

=
(

Sa2
)

S.

Hence S is intra-regular.
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Conclusion. In this paper, we characterized intra-regular AG-groupoids with a
left identity using the properties of their (∈γ ,∈γ ∨qηδ )-fuzzy right ideals. We dis-
cussed several important features of an intra-regular AG-groupoid by using the
(∈γ ,∈γ ∨qηδ )-fuzzy AG-subgroupoid and (∈γ ,∈γ ∨qηδ )-fuzzy right ideals. This
study can give a new direction for applications of fuzzy set theory in algebraic
logic, non-classical logics, fuzzy coding, fuzzy finite state mechanics and fuzzy
languages.
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