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Abstract. Let H = H(V,E) be a graph. A subset of vertices M in V (H) is said to be a

resolving set (or metric generator) for H if every y, z ∈ V (H) with y 6= z, there exists

a vertex a ∈ M such that d(a, y) 6= d(a, z). A metric generator containing a minimum

number of vertices is called a metric basis for H and the cardinality of this metric basis

is the metric dimension of H , denoted by dim(H). Let Cq

n(1, 2) be a graph obtained

from the circulant graph Cn(1, 2) by joining n-paths of length q at each vertex of the

graph Cn(1, 2). In this work, we show that the metric dimension of the graph Cq

n(1, 2)

is three when n ≡ 0, 2, 3 mod(4) and four when n ≡ 1 mod(4).

Keywords: Circulant graph; Metric dimension; Resolving set; Pendant vertices; Pen-

dant edges.

1. Introduction

Suppose H = H(V,E) is a simple graph with E as the edge set and V as the
vertex set. The distance between two vertices y, z ∈ V , denoted by d(y, z), and
is the length of a shortest path between y and z. The degree (or valency) of a
vertex u ∈ V , denoted by du, is the number of edges in H containing u. If every
vertex of H has a finite degree, then H is said to be a locally finite graph. All of
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the graphs considered in this work are locally finite and connected.

A vertex z ∈ V is said to resolve (distinguish or recognize) two distinct ver-
tices z1, z2 in H if d(z, z1) 6= d(z, z2). Let M = {z1, z2, z3, ..., zp} be an ordered
subset of vertices and z be a vertex in H . The co-ordinate (or representation)
r(z|M) of z with respect toM is the p-tuple (d(z, z1), d(z, z2), d(z, z3), ..., d(z, zp)).
Then M is said to be a locating set [15] or a resolving set [5] if distinct vertices
of H have distinct co-ordinates with respect to M . A resolving set with mini-
mum cardinality is known as the basis for H and this cardinality is the metric

dimension of H , denoted by dim(H).

The concepts of resolving set and metric dimension in general graphs were
first introduced by Slater [15] and Harary and Melter [5]. Since then, these
notions have been extensively studied. Apart from these two important initial
papers [5, 15], several studies regarding applications as well as certain theoretical
properties, of this invariant, are available in the literature [1, 4, 8, 9, 10, 12, 16].

Many researchers have studied the metric dimension of different graph classes.
For example, the prism graph; the antiprism graph; generalized Petersen graphs
P (n, 2); convex polytopes (with bounded and unbounded metric dimension) [7,
13, 14]; Harary graphs H4,n; Mobius ladders; heptagonal circular ladder [12];
circulant graphs; etc. For the last two decades, the metric dimension of circulant
graphs has received a lot of attention, one can see [6, 8, 11, 17] and references
therein.

In this work, we construct a graph, denoted by Cq
n(1, 2), which is obtained

from the circulant graph Cn(1, 2) by joining n-paths of length q (≥ 1) at each
vertex of the graph Cn(1, 2) (see Fig. 1). In [2], the metric dimension of circulant
graphs Cn(1, 2) has been investigated. In this article, we extend this study to the
circulant path graph Cq

n(1, 2). We prove that dim(Cq
n(1, 2)) = dim(Cn(1, 2)),

for every n ≥ 8.

2. Preliminaries

In this section, we recall some basic definitions and results on the circulant
graphs and metric dimension of graphs.

Definition 2.1. [18] A graph H is said to be a regular graph if every vertex of H

has the same degree. A graph with all of its vertices is of degree k, is called a

regular graph of degree k or a k-regular graph.

Definition 2.2. [17] Let n, k and d1, d2, d3,...,dk be natural numbers such that

1 ≤ d1 < d2 < d3 < ... < dk ≤ bn
2
c. The circulant graph Cn(d1, d2, d3, ..., dk)

consists of vertices x0=n, x1, x2, ..., xn−1 and edges xlxl+dp
, where 0 ≤ l ≤ n− 1,

1 ≤ p ≤ k, the indices are taken modulo n. The naturals d1, d2, d3,...,dk are

called generators. The circulant graph Cn(d1, d2, d3, ..., dk) is either a regular

graph of valency 2k if dj < n
2
; j = 1, 2, 3, ..., k, or of valency 2k − 1 if n

2
is one
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of the generator.

By the definition of circulant graph, it is clear that Cn(1) is an undirected
cycle Cn and Cn(1, 2, ..., b

n
2
c ) is the complete graph Kn. Suppose F is a

family of connected graphs Hn : F = (Hn)n≥1 depending upon n as follows:
limn→∞ φ(n) = ∞ and |V (H)| = φ(n). We say F has a bounded metric dimen-
sion if there exists a constant D > 0 such that dim(Hn) ≤ D for every n ≥ 1;
otherwise, F has an unbounded metric dimension. If all graphs in F have an
equal metric dimension (i.e., independent of n), then F is known as the family
with a constant metric dimension. Cycle graphs Cn, path graphs Pn, heptagonal
circular ladder Γn, prism Dn, antiprism An, etc. are the families of graphs with
bounded metric dimension.

Khuller et al. [9] introduced a result for those graphs having metric dimension
two and is given as:

Theorem 2.3. Let A ⊆ V (H) be the metric basis for the connected graph H with

cardinality two i.e., |A| = 2, and say A = {$, ξ}. Then, the following are true:

(i) Between the vertices $ and ξ, there exists a unique shortest path P .

(ii) The valencies of the vertices $ and ξ can never exceed 3.

(iii) The valency of any other vertex on P can never exceed 5.

For the circulant graphs Cn(1, 2), Javaid et al. [8], proved the following result:

Theorem 2.4. For n ≥ 5, we have

dim(Cn(1, 2))

{

= 3 if n ≡ 0, 2, 3 (mod4);

≤ 4 if n ≡ 1 (mod4).

In [2], authors proved that dim(Cn(1, 2)) = 4 if n ≡ 1 (mod4) and dim(Cn(1
, 2)) = 3 otherwise. In this work, we consider a family of graph Cq

n(1, 2) for
which we have V (Cq

n(1, 2)) = {xj , y
l
j : 1 ≤ j ≤ n, 1 ≤ l ≤ q} (see Fig. 1). We

denote the sets of metric co-ordinates for these vertices xj , y
1
j , y

2
j , y

3
j , ..., y

q
j

(1 ≤ j ≤ n, q ≥ 1), respectively by X, Y1, Y2, Y3, ..., Yq for Cq
n(1, 2). We will

use resolving sets throughout the paper rather than locating sets and all vertex
indices are taken to be modulo n.

3. The Vertex Resolvability of Cq

n
(1, 2)

In this section, we study some basic properties and the metric dimension of the
graph Cq

n(1, 2), which is obtained from the circulant graph Cn(1, 2).
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Figure 1: The graph Cq
n(1, 2)

The graphCq
n(1, 2) is obtained from the circulant graph Cn(1, 2) [8] by placing

n new edges between the vertices of Cn(1, 2) and the pendant vertices of n-paths
as shown in Fig. 1. The graph Cq

n(1, 2) has n(q+1) vertices and n(q+2) edges,
where q ≥ 1. The set of edges and vertices of Cq

n(1, 2) is depicted separately by
E(Cq

n(1, 2)) and V (Cq
n(1, 2)), where V (Cq

n(1, 2)) = {xj , y
l
j : 1 ≤ j ≤ n, 1 ≤ l ≤

q} and E(Cq
n(1, 2)) = E(Cn(1, 2)) ∪ {xjy

1
j , y

l
jy

l+1
j : 1 ≤ j ≤ n, 1 ≤ l ≤ q − 1}.

We call the cycle generated by vertices {xj : j = 1, 2, ..., n} in the graph,
Cq

n(1, 2) as the x-cycle, and the vertices {ylj : 1 ≤ j ≤ n, 1 ≤ l ≤ q} as the outer
vertices. In the next result, we obtain that the metric dimension of Cq

n(1, 2) is 3
when n ≡ 0, 2, 3(mod4), and is 4 whenever n ≡ 1 (mod 4).

Theorem 3.1. For n ≥ 8, we have

dim(Cq
n(1, 2)) =

{

3 if n ≡ 0, 2, 3 (mod 4);

4 if n ≡ 1 (mod 4).

Proof. To prove this theorem, we divide our proof into the following four cases:

Case 1. n ≡ 0 mod(4).

For this, we write n = 4w, w ≥ 2, w ∈ Z
+. Let R = {x1, x3, x2w+1} ⊂

V(Cq
n(1, 2)). We show that R is a resolving set for Cq

n(1, 2) (for w = 2 it is
obvious, so we take w ≥ 3). For this, we give the co-ordinates to every element
of V(Cq

n(1, 2)) with respect to R.
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The co-ordinate for the vertices {xj : j = 1, 2, ..., n} are

γ(x2k|R) =



















(1, 1, w) k = 1;

(k, k − 1, w − k + 1) 2 ≤ k ≤ w;

(w,w, 1) k = w + 1;

(2w − k + 1, 2w − k + 2, k − w) w + 2 ≤ k ≤ 2w

and

γ(x2k+1|R) =



















(0, 1, w) k = 0;

(1, 0, w − 1) k = 1;

(k, k − 1, w − k) 2 ≤ k ≤ w;

(2w − k, 2w − k + 1, k − w) w + 1 ≤ k ≤ 2w − 1.

The co-ordinates for the vertices {ylj : 1 ≤ j ≤ n, 1 ≤ l ≤ q } are γ(ylj|R) =
γ(xj |R) + (l, l, l) for 1 ≤ j ≤ n and 1 ≤ l ≤ q.

From these codes, we find that |X| = |Y1| = |Y2| = ... = |Yl| = n and the sum
of all of these cardinalities is equal to |V (Cq

n(1, 2))|. Moreover, all of these sets are
pairwise disjoint, and so we find that no pair of two distinct vertices in Cq

n(1, 2)
are having the same metric codes, which implies that dim(Cq

n(1, 2)) ≤ 3. On
the other hand, we show that dim(Cq

n(1, 2)) ≥ 3 by proving that there exists no
resolving set R such that |R| = 2. On the contrary, suppose dim(Cq

n(1, 2)) = 2.
By Theorem 2.3, we find that the valency of basis vertices can be 0, 1, 2, or
3. But except the vertices ylj (1 ≤ l ≤ n and 1 ≤ l ≤ q), all other vertices of
Cq

n(1, 2) have valency 5. Then, we have the following cases:

When the pair of vertices are in {ylj : 1 ≤ l ≤ n, 1 ≤ l ≤ q} of the graph

Cq
n(1, 2). Without loss of generality, we suppose that first resolving vertex is yl1.

Suppose, second resolving vertex is ylj (2 ≤ j ≤ 2w + 1 and 1 ≤ l ≤ q). Now,
again we have two cases:

Subcase 1.1. j ≡ 0 mod(2): Then for j = 2 and 1 ≤ l ≤ q, we have
γ(y4w|{y

l
1, y

l
2}) = γ(y3|{y

l
1, y

l
2}), and when 4 ≤ j ≤ 2w and 1 ≤ l ≤ q, we have

γ(x2|{y
l
1, y

l
j}) = γ(x3|{y

l
1, y

l
j}), a contradiction.

Subcase 1.2. j ≡ 1 mod(2): Then for 3 ≤ j ≤ 2w − 1 and 1 ≤ l ≤ q, we have
γ(x4w|{y

l
1, y

l
j}) = γ(x4w−1|{y

l
1, y

l
j}), and for j = 2w + 1 and 1 ≤ l ≤ q, we have

γ(x2|{y
l
1, y

l
j}) = γ(x4w |{y

l
1, y

l
j}), a contradiction.

Hence, we find no resolving set with two vertices for V(Cq
n(1, 2)) implying

that dim(Cq
n(1, 2)) = 3 in this case.

Case 2. n ≡ 2 mod(4).

For this, we write n = 4w + 2, w ≥ 2, w ∈ Z
+. Let R = {x1, x4, x2w+3} ⊂

V(Cq
n(1, 2)). We show that R is a resolving set for Cq

n(1, 2) (for w = 2 it is
obvious, so we take w ≥ 3). For this, we give the co-ordinates for every element
of V(Cq

n(1, 2)) with respect to R.
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The co-ordinates for the vertices {xj : j = 0, 1, 2, ..., n} are

γ(x2k|R) =



















(1, 1, w + 1) k = 1;

(k, k − 2, w − k + 2) 2 ≤ k ≤ w + 1;

(2w − k + 2, w, 1) k = w + 2;

(2w − k + 2, 2w − k + 3, k − w − 1) w + 3 ≤ k ≤ 2w + 1

and

γ(x2k+1|R) =































(0, 2, w) k = 0;

(1, 1, w) k = 1;

(k, k − 1, w − k + 1) 2 ≤ k ≤ w;

(w,w, 0) k = w + 1;

(2w − k + 1, 2w − k + 3, k − w − 1) w + 2 ≤ k ≤ 2w.

The co-ordinates for the vertices {ylj : 1 ≤ j ≤ n, 1 ≤ l ≤ q } are γ(ylj|R) =
γ(xj |R) + (l, l, l) for 1 ≤ j ≤ n and 1 ≤ l ≤ q.

From these codes, we find that |X| = |Y1| = |Y2| = ... = |Yl| = n and the
sum of all of these cardinalities is equal to |V (Cq

n(1, 2))|. Moreover, all of these
sets are pairwise disjoint, and so we find that no pair of two distinct vertices in
Cq

n(1, 2) are having the same metric codes, which implies that dim(Cq
n(1, 2)) ≤ 3,

in this case. On the other hand, we show that dim(Cq
n(1, 2)) ≥ 3 by proving

that there exists no resolving set R such that |R| = 2. On the contrary, suppose
dim(Cq

n(1, 2)) = 2. By Theorem 2.3, we find that the valency of basis vertices
can be 0, 1, 2, or 3. But except the vertices ylj (1 ≤ l ≤ n and 1 ≤ l ≤ q), all
other vertices of Cq

n(1, 2) have valency 5. Then, we have the following cases:

When the pair of vertices are in {ylj : 1 ≤ l ≤ n, 1 ≤ l ≤ q} of the graph
Cq

n(1, 2). Without loss of generality, we suppose that first resolving vertex is
yl1 (1 ≤ l ≤ q). Suppose, second resolving vertex is ylj (2 ≤ j ≤ 2w + 2 and
1 ≤ l ≤ q). Now, again we have two cases:

Subcase 2.1. j ≡ 0 mod(2): Then for 2 ≤ j ≤ 2w − 2 and 1 ≤ l ≤ q, we
have γ(y4w+2|{y

l
1, y

l
j}) = γ(x4w|{y

l
1, y

l
j}), when j = 2w and 1 ≤ l ≤ q, we have

γ(x4w|{y
l
1, y

l
j}) = γ(x4w−1|{y

l
1, y

l
j}), and when j = 2w + 2 and 1 ≤ l ≤ q, we

have γ(x2|{y
l
1, y

l
j}) = γ(x4w+2|{y

l
1, y

l
j}), a contradiction.

Subcase 2.2. j ≡ 1 mod(2): Then for 3 ≤ j ≤ 2w − 1 and 1 ≤ l ≤ q, we have
γ(x4w+2|{y

l
1, y

l
j}) = γ(x4w+1|{y

l
1, y

l
j}), and for j = 2w + 1 and 1 ≤ l ≤ q, we

have γ(x2|{y
l
1, y

l
j}) = γ(x4w+1|{y

l
1, y

l
j}), a contradiction.

Hence, we find no resolving set with two vertices for V(Cq
n(1, 2)) implying

that dim(Cq
n(1, 2)) = 3, as well in this case.

Case 3. n ≡ 3 mod(4).

For this, we write n = 4w + 3, w ≥ 2, w ∈ Z
+. Let R = {x1, x2, x2w+2} ⊂

V(Cq
n(1, 2)). We show that R is a resolving set for Cq

n(1, 2) (for w = 2 it is
obvious, so we take w ≥ 3). For this, we give the co-ordinates for every element
of V(Cq

n(1, 2)) with respect to R.



Metric Dimension of Circulant Graph Cn(1, 2) 841

The co-ordinates for the vertices of {xj : j = 0, 1, 2, ..., n} are

γ(x2k|R) =

{

(k, k − 1, w − k + 1) 1 ≤ k ≤ w + 1;

(2w − k + 2, 2w − k + 3, k − w − 1) w + 2 ≤ k ≤ 2w + 1

and

γ(x2k+1|R) =











(0, 1, w) k = 0;

(k, k, w − k + 1) 1 ≤ k ≤ w;

(2w − k + 2, 2w − k + 2, k − w) w + 1 ≤ k ≤ 2w + 1.

The co-ordinates for the vertices {ylj : 1 ≤ j ≤ n, 1 ≤ l ≤ q } are γ(ylj|R) =
γ(xj |R) + (l, l, l) for 1 ≤ j ≤ n and 1 ≤ l ≤ q.

From these codes, we find that |X| = |Y1| = |Y2| = ... = |Yl| = n and the
sum of all of these cardinalities is equal to |V (Cq

n(1, 2))|. Moreover, all of these
sets are pairwise disjoint, and so we find that no pair of two distinct vertices in
Cq

n(1, 2) are having the same metric codes, which implies that dim(Cq
n(1, 2)) ≤ 3,

in this case. On the other hand, we show that dim(Cq
n(1, 2)) ≥ 3 by proving

that there exists no resolving set R such that |R| = 2. On the contrary, suppose
dim(Cq

n(1, 2)) = 2. By Theorem 2.3, we find that the valency of basis vertices
can be 0, 1, 2, or 3. But except the vertices ylj (1 ≤ l ≤ n and 1 ≤ l ≤ q), all
other vertices of Cq

n(1, 2) have valency 5. Then, we have the following cases:

When the pair of vertices are in {ylj : 1 ≤ l ≤ n, 1 ≤ l ≤ q} of the graph
Cq

n(1, 2). Without loss of generality, we suppose that first resolving vertex is
yl1 (1 ≤ l ≤ q). Suppose, second resolving vertex is ylj (2 ≤ j ≤ 2w + 3 and
1 ≤ l ≤ q). Now, again we have two cases:

Subcase 3.1. j ≡ 0 mod(2): Then for 2 ≤ j ≤ 2w and 1 ≤ l ≤ q, we have
γ(x4w+1|{y

l
1, y

l
j}) = γ(y4w+3|{y

l
1, y

l
j}), and for j = 2w + 2 and 1 ≤ l ≤ q, we

have γ(x2|{y
l
1, y

l
j}) = γ(x4w+2|{y

l
1, y

l
j}), a contradiction.

Subcase 3.2. j ≡ 1 mod(2): Then for 3 ≤ j ≤ 2w + 1 and 1 ≤ l ≤ q, we have
γ(x4w+3|{y

l
1, y

l
j}) = γ(x4w+2|{y

l
1, y

l
j}), and for j = 2w + 3 and 1 ≤ l ≤ q, we

have γ(x3|{y
l
1, y

l
j}) = γ(x4w+2|{y

l
1, y

l
j}), a contradiction.

Hence, we find no resolving set with two vertices for V(Cq
n(1, 2)) implying

that dim(Cq
n(1, 2)) = 3, as well in this case.

Case 4. n ≡ 1 mod(4).

For this, we write n = 4w+1, w ≥ 2, w ∈ Z
+. Let R = {x1, x2, x3, x2w+2} ⊂

V(Cq
n(1, 2)). We show that R is a resolving set for Cq

n(1, 2) (for w = 2 it is
obvious, so we take w ≥ 3). For this, we give the co-ordinates for every element
of V(Cq

n(1, 2)) with respect to R.

The co-ordinates for the vertices {xj : j = 1, 2, ..., n} are

γ(x2k|R) =



















(1, 0, 1, w) k = 1;

(k, k − 1, k − 1, w − k + 1) 2 ≤ k ≤ w;

(w, k − 1, k − 1, 0) k = w + 1;

(2w − k + 1, 2w − k + 1, 2w − k + 2, k − w − 1) w + 2 ≤ k ≤ 2w
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and

γ(x2k+1|R) =



















(0, 1, 1, w) k = 0;

(k, k, k − 1, w − k + 1) 1 ≤ k ≤ w;

(w,w,w, 1) k = w + 1;

(2w − k + 1, 2w − k + 1, 2w − k + 2, k − w) w + 2 ≤ k ≤ 2w.

The co-ordinates for the vertices {ylj : 1 ≤ j ≤ n, 1 ≤ l ≤ q } are γ(ylj|R) =
γ(xj |R) + (l, l, l, l) for 1 ≤ j ≤ n and 1 ≤ l ≤ q.

Again from these codes, we find that |X| = |Y1| = |Y2| = ... = |Yl| = n and
the sum of all of these cardinalities is equal to |V (Cq

n(1, 2))|. Moreover, all of
these sets are pairwise disjoint, and so we find that no pair of two distinct vertices
in Cq

n(1, 2) are having the same metric codes, which implies that dim(Cq
n(1, 2)) ≤

4, in this case. Conversely, to complete the proof, we show that dim(Cq
n(1, 2)) ≥

4. In [2], Borchert and Gosselin proved that dim(Cn(1, 2)) = 4 if n ≡ 1(mod4)
and dim(Cn(1, 2)) = 3 otherwise. Buczkowski et al. [3], proved that if H is
a graph obtained from a nontrivial connected graph G by adding a pendant
edge to G, then dim(G) ≤ dim(H) ≤ dim(G) + 1. From this, we find that
dim(Cq

n(1, 2)) ≥ 4 for q = 1 and so repeating this q times we always have
dim(Cq

n(1, 2)) ≥ 4 for every 1 ≤ l ≤ q, which concludes the proof in this case.

For q = 1, we call the graph Cq
n(1, 2) as the circulant graph with pendant

edges (see Fig. 2). Then, by Theorem 3.1, we have the following corollary:

Corollary 3.2. For n ≥ 8, we have

dim(C1
n(1, 2)) =

{

3 if n ≡ 0, 2, 3 (mod4);

4 if n ≡ 1 (mod4).

Figure 2: The graph C1
n(1, 2)
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4. Conclusion

In this article, we have studied the metric dimension of the graph Cq
n(1, 2),

which is obtained from the circulant graph Cn(1, 2) by joining n-path of length
q at each vertex of the graph Cn(1, 2). We proved that, dim(Cq

n(1, 2)) = 3, for
n ≡ 0, 2, 3 mod(4) and dim(Cq

n(1, 2)) = 4, for n ≡ 1 mod(4). We also observed
that dim(Cn(1, 2)) = dim(Cq

n(1, 2)), for every n ≥ 8 and q ≥ 1.
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