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1. Introduction

A 2n-dimensional Kähler manifold M with complex structure J and Hermitian
metric g is said to be globally conformal Kähler manifolds if there exist a function
f : M → R, such that the metric exp(f)g is also a Kählerian. Libermann
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[15] was the first to study this. Later Visman [19] proved the necessary and
sufficient condition for a locally conformal Kähler manifold to be a Kähler. It
is also considered as one of the sixteen classes of almost Hermitian manifolds
classified by Banaru [4]. Abedi introduced the conformal Sasakian manifolds [1]
and studied the submanifolds of conformal Sasakian manifolds. Since Kenmotsu
manifolds are contact manifolds which are not Sasakian, E. Abedi and R. Abedi
extended the concept of conformal manifolds to conformal Kenmotsu manifolds
[2]. Later Abedi studied different submanifolds of conformal manifolds [3].

On the other side, to study the geometry of unknown manifolds geometers
introduced the concept of embedding the unknown manifolds with rather known
manifolds and studied the geometry parallelly. This initiated the study on the-
ory of submanifolds and now it has wide range of applications in physics and
mathematics. The study of slant submanifolds has played an important role
in the study of spaces. This study was initiated by Chen [10, 9] on complex
manifolds. As slant submanifolds are the generalization of invariant and anti-
invariant submanifolds, many geometers has shown interest on this study. Lotta
[16] introduced the concept of slant immersions in to an almost contact metric
manifold. Carriazo introduced another new class of submanifolds called hemi-
slant submanifolds (it is also called as anti-slant or pseudo-slant submanifold)
[8]. Later many geometers (see [13], [11], [12], [14]) studied pseudo-slant sub-
manifolds on various contact manifolds. In 2015, Tastan studied the hemi-slant
submanifolds of a locally conformal Kähler manifold [17]. It is very interesting
that those theorems or results of Kähler manifolds can be applied to contact
manifolds. In this connection Venkatesha studied the pseudo-slant submanifolds
of conformal Sasakian manifolds [18]. In this paper we extended the study of
pseudo-slant submanifolds to conformal Kenmotsu manifolds.

The current paper is organized as follows: Section 2 deals with the basic
definitions and results on conformal Kenmotsu manifolds and submanifolds. We
give definition of pseudo-slant submanifolds and some important results in Sec-
tion 3. Parallelism of the canonical structures of the submanifolds of conformal
Kenmotsu manifolds are discussed in Section 3. The last section is devoted to
integrability of the distributions embedded with the definition of pseudo-slant
submanifolds of the conformal Kenmotsu manifolds.

2. Preliminaries

2m+ 1-dimensional differentiable manifold M̃ is said to be contact manifold if
a global 1-form η satisfies η ∧ (dη)m 6= 0 everywhere on M̃ . If M̃2m+1 with an
almost contact metric structure (φ, ξ, η, g) satisfies (see [5, 6]):

φ2 =− I + η ⊗ ξ, η(ξ) = 1, (1)

φξ =0, η ◦ φ = 0, (2)

g(φX, φY ) =g(X,Y )− η(X)η(Y ), (3)
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g(φX, Y ) =− g(X,φY ), g(X, ξ) = η(X), (4)

for any vector fields on M̃ . Then M̃ is called almost contact metric mani-
fold, where φ is a (1, 1)-tensor field, ξ is a characteristic vector field and g

is a Riemannian metric. Let Φ be the fundamental 2-form on M̃ defined by
Φ(X,Y ) = g(X,φY ) = −Φ(Y,X). Now if Φ = dη then almost contact metric
structure becomes contact metric structure.

Further a almost contact metric manifold M̃2m+1 is said to be Kenmotsu
manifolds if

(∇̃Xφ)Y =, ∇̃Xξ = −φX.

Let M̃ be a smooth manifold. (M̃2m+1, φ, ξ, η, g) is called a conformal Kenmotsu
manifold if [2]

g̃ = exp(f)g, φ̃ = φ, η̃ = (exp(f))1/2η, ξ̃ = (exp(−f))1/2ξ.

Let ∇̃ and∇ be the connections of M̃ with respect to metrics g̃ and g respectively,
and are related by

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ζ} , (5)

where ω is global 1-form defined by ω(X) = X(f) and ζ is Lee vector field
metrically equivalent to ω i.e., g(ζ,X) = ω(X).

Further for a conformal Kenmotsu manifold we have

(∇Xφ)Y =(exp(f))1/2 {−g(X,φY )ξ − η(Y )φX} (6)

−
1

2
{ω(φY )X − ω(Y )φX + g(X,Y )φζ − g(X,φY )ζ} ,

∇Xξ =(exp(f))1/2 {X − η(X)ξ}+
1

2
{η(X)ζ − ω(ξ)X} . (7)

Definition 2.1. Let M be a submanifold of a Riemannian manifold M̃ with
Riemannian metric g. Then for all X,Y ∈ TM and V ∈ T⊥M the Gauss and
Weingarten formulas with respect to ∇ are given by

∇XY = ∇XY + h(X,Y ), (8)

∇XV = −AV X +∇⊥
XV, (9)

where ∇(respectively ∇⊥) is the induced Riemannian (respectively normal) con-
nection in TM (respectively T⊥M) with respect to ∇, A and h are the shape
operator and second fundamental form related by

g(h(X,Y ), V ) = g(AV X,Y ). (10)
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A submanifold M is said to be totally umbilical if h(X,Y ) = g(X,Y )H, where

H is the mean curvature of M in M̃ . If h = 0 (equivalently AV = 0) then M is
called totally geodesic.

Let for any X ∈ TM and V ∈ T⊥M . We can write

φX =TX +NX, (11)

φV = tV + nV, (12)

where TX and NX (respectively tV and nV ) are the tangential and normal
component of φX (respectively φV ). Using (1) in the above equations one can
get

T 2 = −tN − I + η ◦ ξ, NT + nN = 0, (13)

n2 = −I −Nt, T t+ tn = 0. (14)

Now for X ∈ TM , we take

X = PX +QX + η(X)ξ, (15)

such that P and Q are the projections on Dθ and D⊥ respectively.

3. Pseudo-slant Submanifold of Conformal Kenmotsu Manifold

Now let us recall some definitions of classes of submanifolds. Let M be a sub-
manifold. Then M is said to be

(i) Invariant submanifold if T is identically zero in (11), i.e., φX ∈ TM, ∀X ∈
TM .

(ii) Anti-invariant submanifold if N is identically zero in (11), i.e., φX ∈
T⊥M, ∀X ∈ TM .

(iii) Slant submanifold if there exists an angle θ(x) ∈ [0, π/2] between φX and
TX for all non-zero vector X tangent to M at x called slant angle which
is constant.

(iv) Pseudo-slant submanifold if there exists distributionsDθ andD⊥ such that

(a) TM admits orthogonal direct composition TM = Dθ ⊕D⊥⊕ < ξ >.
Dθ is a slant distribution with slant angle θ 6= π/2.

(b) D⊥ is an anti-invariant distribution [13].

From the above definitions we can note that slant submanifold is the gener-
alization of invariant (if θ = 0) and anti-invariant (if θ = π/2) submanifolds. A
proper slant submanifold is neither invariant nor anti-invariant submanifold i.e.,
θ ∈ (0, π/2). Hence in general we have the following theorem which characterize
slant submanifolds of almost contact metric manifolds;
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Theorem 3.1. [7] Let M be a slant submanifold of an almost contact metric

manifold M̃ such that ξ ∈ Γ(TM). Then, M is slant submanifold if and only if
there exists a constant γ ∈ [0, 1] such that

T 2 = −γ(I − η ⊗ ξ), (16)

furthermore, in this case, if θ is the slant angle of M , then γ = cos2 θ.

Corollary 3.2. [7] Let M be a slant submanifold of an almost contact metric

manifold M̃ with slant angle θ. Then for any X,Y ∈ Γ(TM), we have

g(TX, TY ) = cos2 θ{g(X,Y )− η(X)η(Y )}, (17)

g(NX,NY ) = sin2 θ{g(X,Y )− η(X)η(Y )}. (18)

Lemma 3.3. Let M be a proper pseudo-slant submanifold of conformal Kenmotsu
manifold M̃ . Then

φD⊥⊥NDθ. (19)

Proof. Let X ∈ D⊥, Y ∈ Dθ. In view of (3) and (11) we get g(φX,NY ) =
g(φX, φY ) = g(X,Y )− η(X)η(Y ) = 0.

Lemma 3.4. Let M be a pseudo-slant submanifold of conformal Kenmotsu man-
ifold M̃ . Then

TD⊥ ={0}, (20)

TDθ =Dθ. (21)

Proof. (20) follows from (11). Now for X ∈ D⊥ and Y ∈ Dθ,

g(X,TY ) = g(X,φY ) = −g(Y, φX) = 0.

The above equation shows that TDθ⊥D⊥. Also we have g(TY, ξ) = 0 and from
the fact that TDθ ⊆ TM we can infer that TDθ ⊆ Dθ. Now for X ∈ Dθ, we
have from (16) that

X =
1

cos2 θ
(cos2 θ) =

1

cos2 θ
(−T 2X) = −

1

cos2 θ
(T (TX)).

Hence we get Dθ ⊆ TDθ. Thus we have (20).

Let M̃ be a conformal Kenmotsu manifold, M be a proper pseudo-slant
submanifold of M̃ . We take ζT and ζ⊥ as tangential and normal parts of Lee
vector field ζ, i.e.,

ζ = ζT + ζ⊥. (22)
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In view of (6), (8), (9), (11), (12) and the above equation we have the following
lemma.

Lemma 3.5. Let M be any submanifold of conformal Kenmotsu manifold M̃ .
Then

(∇XT )Y = ANY X + th(X,Y ) + (exp(f))1/2{g(X,φY )ξ − η(Y )TX} (23)

−
1

2
{ω(φY )X − ω(Y )TX + g(X,Y )TζT + g(X,Y )tζ⊥ − g(X,TY )ζT },

(∇⊥
XN)Y = −h(X,TY ) + nh(X,Y ) + (exp(f))1/2{η(Y )NX} (24)

−
1

2
{−ω(Y )NX + g(X,Y )NζT + g(X,Y )nζ⊥ − g(X,TY )ζ⊥},

(∇X t)V = AnV X − TAV X − (exp(f))1/2{g(X, tV )ξ} (25)

−
1

2
{ω(φV )X − ω(V )TX − g(X, tV )ζT },

(∇⊥
Xn)V = −h(X, tV )−NAV X +

1

2
{ω(V )NX + g(X, tV )ζ⊥}, (26)

for any X,Y ∈ TM and V ∈ T⊥M .

4. Parallelism of the Canonical Structures of the Submanifold of
Conformal Kenmotsu Manifold

Theorem 4.1. Let M be a submanifold of a conformal Kenmotsu manifold M̃ .
Then T is parallel if and only if

ANWY −ANY W =(exp(f))1/2{η(W )φY + η(Y )TW} −
1

2
{ω(φY )W

+ ω(Y )TW + g(TζT + tζ⊥,W )Y − TY g(ζT ,W )}, (27)

for any Y,W ∈ TM .

Proof. Let X,Y ∈ TM . From (23) we have

0 =ANY X + th(X,Y ) + (exp(f))1/2{g(X,φY )ξ − η(Y )TX}

−
1

2
{ω(φY )X − ω(Y )TX + g(X,Y )TζT + g(X,Y )tζ⊥ − g(X,TY )ζT }.

Taking inner product of this equation with W ∈ TM , we get

0 =g(ANY X,W ) + g(th(X,Y ),W ) + (exp(f))1/2{g(X,φY )η(W )

− η(Y )g(TX,W )} −
1

2
{ω(φY )g(X,W )− ω(Y )g(TX,W )

+ g(X,Y )g(TζT + tζ⊥,W )− g(X,TY )g(ζT ,W )}.
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Thus, using the condition for totally umbilical in the above equation we get (27).

Converse part is trivial.

Theorem 4.2. Let M be a submanifold of a conformal Kenmotsu manifold M̃ .
Then covariant derivative of T is skew-symmetric.

Proof. Let X,Y,W ∈ TM . Using (23), (11), (12) and (22) we have

g((∇XT )Y,W ) =g(ANY X,W ) + g(th(X,Y ),W ) + (exp(f))1/2{g(X,φY )η(W )

− η(Y )g(TX,W )} −
1

2
{ω(φY )g(X,W )− ω(Y )g(TX,W )

+ g(X,Y )g(TζT + tζ⊥,W )− g(X,TY )g(ζT ,W )}

= g(h(X,W ), NY )− g(h(X,Y ), NW )

+ (exp(f))1/2{−g(φX, Y )η(W ) + η(Y )g(X,φW )}

−
1

2
{g(ζ, φY )g(X,W )− g(ζ, Y )g(TX,W )

+ g(X,Y )g(TζT + tζ⊥,W ) + g(TX, Y )g(ζ,W )},

g((∇XT )Y,W ) =− g(th(X,W ), Y )− g(ANWX,Y )

− (exp(f))1/2{η(Y )g(X,φW )− g(TX, Y )η(W )}

−
1

2
{−g(TζT + tζ⊥, Y )g(X,W )− g(ζ, Y )g(TX,W )

+ g(X,Y )g(TζT + tζ⊥,W ) + g(TX, Y )g(ζ,W )}

=− g(th(X,W ) +ANWX + (exp(f))1/2{g(X,φW )ξ

− η(W )TX} −
1

2
{(TζT + tζ⊥)g(X,W ) + ζT g(TX,W )

+Xg(ζ, φW )− TXg(ζ,W )}, Y ) = −g((∇XT )W,Y ).

Theorem 4.3. Let M be a submanifold of a conformal Kenmotsu manifold M̃ .
Then N is parallel if and only if t is parallel.

Proof. Let X,Y ∈ TM and V ∈ T⊥M . In view of (24), (11), (12), (22) and
(25), we have

g((∇XN)Y, V )

=− g(h(X,TY ), V ) + g(nh(X,Y ), V )

+ (exp(f))1/2{η(Y )g(NX,V )}

−
1

2
{−ω(Y )g(NX,V ) + g(X,Y )g(NζT , V )

+ g(X,Y )g(nζ⊥, V )− g(X,TY )g(ζ⊥, V )}

=− g(AV X,TY )− g(h(X,Y ), nV )− (exp(f))1/2{η(Y )g(X, tV )}

−
1

2
{g(ζ⊥, Y )g(X, tV )− g(X,Y )g(ζT , tV )− g(X,Y )g(ζ⊥, nV )
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+ g(TX, Y )g(ζ, V )}.

= g(TAVX,Y )− g(AnV X,Y )− (exp(f))1/2{η(Y )g(X, tV )}

−
1

2
{g(ζ, Y )g(X, tV )− g(X,Y )g(ζ, φV ) + g(TX, Y )ω(V )} (28)

= −g(−TAVX +AnV X − (exp(f))1/2{g(X, tV )ξ}

−
1

2
{−ζg(X, tV ) +Xω(φV )− TXω(V )}, Y )

= g((∇Xt)V, Y ).

This completes our proof.

Theorem 4.4. Let M be a submanifold of conformal Kenmotsu manifold M̃ .
Then N is parallel if and only if

AnV Y +AV TY

=− (exp(f))1/2{η(Y )tV }+
1

2
{ω(φV )Y + ω(V )TY − ω(Y )tV },

(29)

for any Y ∈ TM and V ∈ T⊥M .

Let X,Y ∈ TM , V ∈ T⊥M and N be parallel. From (28), we have

0 =g((∇XN)Y, V )

=− g(AV TY,X)− g(AnV Y,X)− (exp(f))1/2{η(Y )g(X, tV )}

−
1

2
{ω(Y )g(X, tV )− g(X,Y )ω(φV )− g(X,TY )ω(V )}.

Hence we get

0 =− g(AV TY +AnV Y + (exp(f))1/2{η(Y )tV }

+
1

2
{ω(Y )tV − ω(φV )Y − ω(V )TY }, X).

This proves our assertion.

Theorem 4.5. Let M be a submanifold of conformal Kenmotsu manifold M̃ .
Then covariant derivative of n is skew-symmetric.

Proof. Let X ∈ TM and U, V ∈ T⊥M . Then from (26), (11), (12) and (22) we
get

g((∇Xn)V, U) = −g((∇Xn)U, V ).

Hence the covariant derivative of n is skew-symmetric.



On Pseudo-Slant Submanifolds 863

5. Integrability of the Distributions

Theorem 5.1. Anti-invariant distribution D⊥ of a pseudo-slant submanifold M
of conformal Kenmotsu manifold M̃ is integrable if and only if

ANY X −ANXY =
1

2
{ω(NY )X − ω(NX)Y }. (30)

Proof. Let X,Y ∈ D⊥. Consider

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇Y X, ξ)

= g(∇Y ξ,X)− g(∇Xξ, Y ).

From (7), we get

g([X,Y ], ξ) = 0, for any X,Y ∈ D⊥. (31)

Further, from (23) and (20) we have

−T∇XY −ANY X − th(X,Y ) =(exp(f))1/2{g(X,φY )ξ − η(Y )TX}

−
1

2
{ω(NY )X + g(X,Y )(TζT + tζ⊥)}

=−
1

2
{ω(NY )X + g(X,Y )(TζT + tζ⊥)}. (32)

By interchanging X and Y we get

−T∇YX −ANXY − th(X,Y ) = −
1

2
{ω(NX)Y + g(X,Y )(TζT + tζ⊥)}. (33)

Using (32) and (33) and the fact that h is symmetric we get

T [X,Y ] +ANY X −ANXY =
1

2
{ω(NY )X − ω(NX)Y }.

Thus our assertion follows from (31) and (20).

Theorem 5.2. Slant distribution Dθ of a pseudo-slant submanifold M of confor-
mal Kenmotsu manifold M̃ is integrable if and only if

Q{∇XTY −∇Y TX +ANXY −ANY X +
1

2
{ω(φX)Y

− ω(φY )X − ω(X)TY + ω(Y )TX}+ g(X,TY )ζT } = 0,
(34)

for any X,Y ∈ Dθ.

Proof. Let X,Y ∈ Dθ. From (23) and (21) we get

∇XTY − T∇XY =ANY X + th(X,Y )

+ (exp(f))1/2{g(X,φY )ξ} −
1

2
{ω(φY )X − ω(Y )TX

+ g(X,Y )(TζT + tζ⊥)− g(X,TY )ζT }.

(35)
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Interchanging X and Y in the above equation we get

∇Y TX − T∇Y X =ANXY + th(X,Y ) (36)

+ (exp(f))1/2{g(Y, φX)ξ} −
1

2
{ω(φX)Y − ω(X)TY

+ g(X,Y )(TζT + tζ⊥)− g(Y, TX)ζT}.

It follows from (35) and (36) that

T [X,Y ] =∇XTY −∇Y TX +ANXY −ANY X

+ 2(exp(f))1/2{g(X,φY )ξ} +
1

2
{ω(φX)Y − ω(φY )X

− ω(X)TY + ω(Y )TX}+ g(X,TY )ζT .

(37)

Now applying Q (as defined in (15)) to the above equation we get,

QT [X,Y ] =Q{∇XTY −∇Y TX +ANXY −ANY X

+
1

2
{ω(φX)Y − ω(φY )X − ω(X)TY + ω(Y )TX}+ g(X,TY )ζT }.

Thus we infer that Dθ is integrable if and only if (34) satisfies.

Let M be a pseudo-slant submanifold of conformal Kenmotsu manifold and
∇́ (respectively ∇́⊥) be induced Riemannian (respectively normal connection)

with respect to ∇̃ in M (respectively normal bundle T⊥M). Then the Gauss

and Weingarten formulas with respect to ∇̃ are given by

∇̃XY = ∇́XY + h́(X,Y ), (38)

∇̃XV = −ÁV X + ∇́⊥
XV, (39)

for any X,Y ∈ TM and V ∈ T⊥M . Here h́ and Á are the second fundamental
form and shape operator with respect to ∇̃ and are related by

g(h́(X,Y ), V ) = g(ÁV X,Y ). (40)

Lemma 5.3. Let M be a pseudo-slant submanifold of a conformal Kenmotsu
manifold M̃ . Then we have

∇́XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ζT }, (41)

h́(X,Y ) = h(X,Y )−
1

2
g(X,Y )ζ⊥, (42)

ÁV X = AV X −
1

2
ω(V )X, (43)

∇́⊥
XV = ∇⊥

XV +
1

2
ω(X)V, (44)
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for any X,Y ∈ TM and V ∈ T⊥M .

Proof. Using Gauss and Weingarten formulas in (5), we get equations from (41)
to (44).

Corollary 5.4. Let M be a proper pseudo-slant submanifold of conformal Ken-
motsu manifold M̃ . Then the anti-invariant distribution D⊥ is integrable if and
only if

ÁNXY = ÁNY X,

for any X,Y ∈ D⊥.

Proof. From Theorem 5.1, we know that anti-invariant distribution D⊥ of M is
integrable if and only if ANY X−ANXY = 1

2
{ω(NY )X−ω(NX)Y }. Considering

(43) in this we get

ÁNXY = ÁNY X,

for any X,Y ∈ D⊥. This completes the proof.

Lemma 5.5. Let M be a proper pseudo-slant submanifold of conformal Kenmotsu
manifold M̃ . Then for any X ∈ D⊥ and Y ∈ TM , we have

−T (∇́XY ) =ÁNY X − ω(NY )− g(X,Y )(TζT + tω⊥) + th́(X,Y ). (45)

Proof. Let X ∈ TM and Y ∈ D⊥. From (5), (6), (8) and (9), we get

−ANY X +∇⊥
XNY =−

1

2
{ω(NY )X − ω(Y )φX + g(X,Y )φζ}

+ φ(∇XY + h(X,Y )).

Again using Lemma 5.3, (11), (12) and (22) in the above equation we get

−ÁNY X + ∇́⊥
XNY =

1

2
ω(NY )X + ω(Y )TX + ω(Y )NX

− (TζT +NζT + tζ⊥ + nζ⊥)g(X,Y )

+ T ∇́XY +N∇́XY + th́(X,Y ) + nh́(X,Y ).

Thus (45) follows from taking the tangential part of the above equation.

Now for any X ∈ TM and Y, V ∈ D⊥, taking inner product of (45) with by
V ∈ D⊥we have

0 = −g(T ∇́XY, V )

= g(ÁNY V − ÁNV Y,X)− ω(NY )g(X,V )− g(TζT + tζ⊥, V )g(X,Y ).
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If ω(NY )V + g(TζT + tζ⊥, V )Y = 0, then we get ÁNY V − ÁNV Y = 0. In view
of Corollary 5.4 one can state the following result.

Theorem 5.6. The anti-invariant distribution D⊥ of proper pseudo-slant sub-
manifold of conformal Kenmotsu manifold M̃ is integrable if and only if

ω(NY )V + g(TζT + tζ⊥, V )Y = 0. (46)

for any Y, V ∈ D⊥.
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