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Abstract. In this paper, we study the semirings which satisfy the identities xn

≈ x,

(2n − 1)x ≈ x, (x + y)n−1
≈ xn−1 + yn−1 and (xy)n−1

≈ xn−1yn−1. We give the

characterizations of the binary relations L
·

∧D
+, L

·

∧L
+, L

·

∧R
+ and L

+
∧D

·, and

obtain the sufficient and necessary conditions which make these binary relations be

congruences. Finally, we show that the classes of semirings which can be determined

by the above congruences are indeed varieties of semirings.
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1. Introduction

By a semiring [13] we mean that an algebra (S,+, ·) of type (2, 2) such that

(i) (S,+) is a semigroup;

(ii) (S, ·) is a semigroup;

(iii) the distributive laws x(y+ z) ≈ xy+ xz and (x+ y)z ≈ xz+ yz hold in S.

The semigroup (S,+) is called the additive reduct and (S, ·) the multiplicative
reduct of the semiring (S,+, ·). For the sake of simplicity, we use S to denote
the system (S,+, ·).
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No. 11801239, 11971383) and Shaanxi Fundamental Science Research Project for Mathematics
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A semiring S is called multiplicative idempotent semiring if (S, ·) is an idem-
potent semigroup (band), i.e., if it satisfies the identity x2 ≈ x. If both (S,+)
and (S, ·) are idempotent semigroups (bands), i.e., if S satisfies the identities
x2 ≈ x and x+ x ≈ x, then S is called an idempotent semiring. The variety of
all idempotent semirings will be denoted by I [15, 14]. A semiring S is called
n-potent semiring if S satisfies the identity xn ≈ x for n ≥ 2.

By definition, semiring can be regarded as two semigroups on the same non-
empty set linked by distributive laws. It is well known that Green’s relations
play important roles in the development of semigroup theory. Therefore, many
scholars use Green’s relations [4] of multiplicative semigroups (resp. additive
semigroups) on semirings to study semirings. In recent years, some authors
have further extended the Green’s relations of semigroups to algebraic systems
of some given types (see [6] and [13]).

For a semiring S, Green’s relations L , R, H and D on the multiplicative
reduct (S, ·) are denoted by L·, R·, H· and D·, respectively. Dually, Green’s
relations L , R, H and D on the additive reduct (S,+) are denoted by L+,

R+, H+ and D+, respectively.

It follows from [5] that

(a, b) ∈ L· ⇐⇒ (∃u, v ∈ S1) ua = b, vb = a,

(a, b) ∈ R· ⇐⇒ (∃u, v ∈ S1) au = b, bv = a,

(a, b) ∈ L+ ⇐⇒ (∃s, t ∈ S0) s+ a = b, t+ b = a,

(a, b) ∈ R+ ⇐⇒ (∃u, v ∈ S0) a+ s = b, b+ t = a.

It is necessary to note that let ρ1 and ρ2 be equivalences. The meet ρ1 ∧ ρ2
means ρ1 ∩ ρ2 and the join ρ1 ∨ ρ2 means the smallest equivalence generated by
ρ1 and ρ2.

Many scholars studied idempotent semirings by the Green’s relations of mul-
tiplicative semigroups (resp. additive semigroups) on semirings. Pastijn and
Zhao [7] gave various characterizations for the idempotent semirings whose
Green’s D-relation on the multiplicative reduct is the least lattice congruence.
Zhao et al. [15] studied some subvarieties of I which are related to Green’s L -
relation, and provided equational bases for them and conditions guaranteeing
that some multiplicative Green’s relations are semiring congruences. Zhao et
al. [14] studied the classes of idempotent semirings which are related to the re-
lations D+, D·, D+ ∩D·, and D+ ∨D·. They proved that D· is the congruence
on an idempotent semiring if and only if both D+ ∩D· and D+ ∨D· are con-
gruences. Pastijn and Zhao [8] studied idempotent semirings with commutative
addition, and provided sufficient conditions for D·,L· and R· to be congruences.
Damljanović et al. [3] obtained the congruence openings of Green’s relations on
the additive reduct of a semiring and studied the variety of additively idempo-
tent semirings. Sen et al. [11] studied the semiring whose additive reduct is a

semilattice and defined two binary relations
−

L and
−

R on a k-regular semiring
(S,+, ·) analogous to the Green’s relations on a regular semigroup. By defini-

tion of
−

L and
−

R, Basic properties of k-regular semirings whose k-idempotents
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are commutative have been studied. In 2016, Ren et al. [10] studied the Burn-
side ai-semiring which satisfies the identity xn ≈ x and characterized Green’s
relations of the multiplicative reduct on these semirings. The sufficient and
necessary conditions for these Green’s relations to be congruences are given.
In 2020, Cheng and Shao [2] studied several varieties of semirings by means
of congruence openings of multiplicative Green’s relations on a multiplicatively
idempotent semiring.

Let S be a semiring and satisfy the following identities for n ≥ 2:

xn ≈ x, (1)

(2n − 1)x ≈ x, (2)

(x+ y)n−1 ≈ xn−1 + yn−1, (3)

(xy)n−1 ≈ xn−1yn−1. (4)

Then (S, ·) is a completely regular semigroup [9] by aan−2a = a and aan−2 =
an−1 = an−2a for all a ∈ S. E·(S) is the set of all idempotents of (S, ·). By (1),
E·(S) = {an−1|a ∈ S} and by (4), E·(S) is subsemigroup of (S, ·), so (S, ·) is
an orthogroup. By (2), it is trivial to show that (S,+) is a completely regular
semigroup and E+(S) = {(2n − 2)a|a ∈ S}. Let us denote by COS

·
n
the class

of semirings defined by the additional identities (1), (2), (3) and (4). From
Birkhoff’s theorem [1], COS

·
n
is a semiring variety. It is easy to prove that I is

a subvariety of COS
·
n
.

In this paper, we mainly study some equivalences which are related to Green’s
L relation on any semiring in COS

·
n
. In Sect. 2 we study some equivalence rela-

tions which are the meet of Green’s L relation and other Green’s relations on the
member of COS

·
n
and give the sufficient and necessary conditions which make

these equivalence relations be congruences. Moreover, we prove that several
classes of semirings defined by the above congruences are some kinds of varieties
of semirings.

For S ∈ COS
·
n
, by [5] and [9], H+ is a congruence of the additive reduct

(S,+) of S. Moreover, every H+- class is a maximal subgroup of (S,+). We
denote by H+

a
the H+-class containing a for any a ∈ S.

Theorem 1.1. Let S be a semiring in COS
·
n
. Then, the following results hold:

(i) S satisfies the identity 3x ≈ x.

(ii) (S,+) is an orthogroup and (E+(S),+, ·) is a subsemiring of S.

Proof. Let S be a semiring in COS
·
n
.

(i) By (1) and (3) we have (x+x)n−1 ≈ xn−1+xn−1 and xn−1(x+x) ≈ x+x.
Further, we can easily deduce that

4x ≈2x+ 2x

≈xn−1(x+ x) + xn−1(x+ x)

≈(xn−1 + xn−1)(x + x)

≈2x.
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Hence, we have proved that E+(S) = {2a|a ∈ S}, which implies that for any a ∈
S, 2a = (2n− 2)a. By adding a to both sides, it follows that 3a = (2n− 1)a = a.
Therefore, 3x ≈ x holds on S.

(ii) It can be easily verified that (S,+) is a completely regular semigroup and
E+(S) = {2a|a ∈ S}. If a, b ∈ S, then

(a+ b)n−1(2a+ 2b) =(a+ b)n−2(a+ b)(2a+ 2b)

=(a+ b)n−22(a+ b)(a+ b)

=2(a+ b)n

=2(a+ b),

and

(a+ b)(2a+ 2b) =(a+ b)(4a+ 4b)

=(a+ b)(2a+ 2b) + (a+ b)(2a+ 2b)

=(2a+ 2b)(2a+ 2b),

(a+ b)n−1(2a+ 2b) =(2a+ 2b)n = 2a+ 2b.

Hence, we can obtain that 2a + 2b = 2(a + b), which leads to (E+(S),+) be a
subsemigroup of (S,+). Thus, by summing up the above results, we have shown
that (S,+) is an orthogroup. Now, one can easily prove that (2a)(2b) = 2(ab)
for any a, b ∈ S. Hence, (E+(S),+, ·) is a subsemiring of S.

Corollary 1.2. Let S be a semiring in COS
·
n
. Then every H+-class is an abelian

group.

Corollary 1.3. Let S be a semiring in COS
·
n
and (E+(S),+) be a commutative

semigroup. Then (S,+) is a commutative Clifford semigroup.

Proof. If S ∈ COS
·
n
and (E+(S),+) is a commutative semigroup. This implies

that (S,+) is a Clifford semigroup. By [5, Theorem 4.2.1], (S,+) is a strong
semilattice of groups. From Theorem 1.1, (S,+) satisfies 3x ≈ x. In other
words, (S,+) is a strong semilattice of abelian groups. Then, we have proved
that (S,+) is a commutative semigroup.

2. Some Equivalence Classes Related to L
· and L

+

In this section, we concentrate on studying the Green’s L· and L+ relations of
semirings in COS

·
n
, and we give some characterizations of L· ∧D+, L· ∧L+,

L· ∧R+ and L+ ∧D·. Moreover, we obtain the sufficient and necessary condi-
tions which make these binary relations be congruences.

Let S ∈ COS
·
n
. By the application of the well known result given in [5]. we

can easily characterize L+ and L· relations as follows:
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(∀a, b ∈ S) aL+ b ⇔ a+ 2b = a, b+ 2a = b,
(∀a, b ∈ S) aL· b ⇔ abn−1 = a, ban−1 = b.

According to [15, 9], we directly have the following results.

Lemma 2.1. Let S be a semiring in COS
·
n
. Then D+ is a congruence on S, L+

and R+ are congruences on (S, ·).

Proof. Let S be a member in COS
·
n
. Then, it is trivial to see that D+ is a

congruence on (S,+). Next, we claim that D+ is a congruence on (S, ·).

Suppose that a, b ∈ S and aD+ b. Then, we can immediately prove that
a+ 2b+ 2a = a, b+ 2a+ 2b = b. Thus, for any c ∈ S

ac+ 2bc+ 2ac = ac, bc+ 2ac+ 2bc = bc.

ca+ 2cb+ 2ca = ca, cb+ 2ca+ 2cb = cb.

Therefore, D+ is indeed a congruence on (S, ·), and so D+ is a congruence on S.
Similarly, L+ and R+ are congruences on (S, ·).

Lemma 2.2. Let S be a semiring in COS
·
n

and a, b ∈ S with aL· b. Then

(a+ 2b)L·(b + 2a).

Now, with the above lemmas, we are able to give some characterization the-
orems for n-potent semirings.

Theorem 2.3. Let S be a semiring in COS
·
n

and a, b be any elements in S.
Then, the following statements hold:

(i) a(L· ∧D+)b if and only if

(∃u, v ∈ S) a = uvn−1un−1 + 2vun−1, b = vun−1 + 2uvn−1un−1;

(ii) a(L· ∧L+)b if and only if

(∃u, v ∈ S) a = vun−1 + 2uvn−1un−1 + 2vun−1, b = uvn−1un−1 + 2vun−1;

(iii) a(L· ∧R+)b if and only if

(∃u, v ∈ S) a = 2vun−1 + 2uvn−1un−1 + vun−1, b = 2vun−1 + uvn−1un−1;

(iv) a(L+ ∧D·)b if and only if

(∃u, v ∈ S) a = uvn−1 + 2u+ 2v + 2u, b = vun−1 + 2u+ 2v + 2u.
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Proof. (i) Suppose that a(L· ∧D+)b, by letting u = a + 2b, v = b + 2a. Then,
we deduce that

uvn−1un−1 + 2vun−1

=(a+ 2b)(b+ 2a)n−1(a+ 2b)n−1 + 2(b+ 2a)(a+ 2b)n−1

=(a+ 2b) + 2(b+ 2a)

=a+ 2b+ 2b+ 2a

=a,

vun−1 + 2uvn−1un−1

=(b+ 2a)(a+ 2b)n−1 + 2(a+ 2b)(b+ 2a)n−1(a+ 2b)n−1

=(b+ 2a) + 2(a+ 2b)

=b+ 2a+ 2a+ 2b

=b.

Conversely, let u, v be elements of S and suppose that a = uvn−1un−1 +
2vun−1, b = vun−1 + 2uvn−1un−1. Then

abn−1 = uvn−1un−1 + 2uvn−1un−1 + 2vun−1 + 2vun−1

= uvn−1un−1 + 2vun−1

= a,

ban−1 = vun−1 + 2vun−1 + 2uvn−1un−1 + 2uvn−1un−1

= vun−1 + 2uvn−1un−1

= b.

Thus, we have proved that aL· b. Moreover, we have

a+ 2b+ 2a = (uvn−1un−1 + 2vun−1) + 2(uvn−1un−1) + 2vun−1

= (uvn−1un−1 + 2vun−1) + 2((uvn−1un−1 + 2vun−1))

= a,

b+ 2a+ 2b = vun−1 + 2uvn−1un−1 + 2(vun−1) + 2uvn−1un−1

= vun−1 + 2uvn−1un−1 + 2(vun−1 + 2uvn−1un−1)

= b,

which implies that aD+ b. Then a(L· ∧D+)b.

(ii) Let a(L· ∧L+)b. By taking u = b, v = a, then

vun−1 + 2uvn−1un−1 + 2vun−1 = a+ 2b+ 2a = a+ 2a = a,

and
uvn−1un−1 + 2vun−1 = b+ 2a = b.

For the converse part, let a = vun−1+2uvn−1un−1+2vun−1, b = uvn−1un−1+
2vun−1, for u, v ∈ S. Then a+2b = a, b+2a = a and uvn−1un−1L· vun−1. Thus
aL· b and aL+ b. This implies that a(L· ∧L+)b.
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(iii) This part is similar to (ii).

(iv) If a(L+ ∧D·)b, by letting u = abn−1, v = ban−1, then

uvn−1 + 2u+ 2v + 2u = (u+ 2v + 2u)(v + 2u)n−1

= (abn−1)(ban−1)n−1

= abn−1an−1 = a,

vun−1 + 2u+ 2v + 2u = (v + 2u)(u+ 2v + 2u)n−1

= (ba+ 2ab)(ab+ 2ba+ 2ab)

= (ban−1)(abn−1)n−1

= ban−1bn−1 = b.

Conversely, let u, v be elements of S and suppose that a = (u + 2v + 2u)(v +
2u)n−1, b = (v + 2u)(u + 2v + 2u)n−1. Then (u + 2v + 2u)L+(v + 2u). By
Lemma 2.1, L+ is a congruence on (S, ·), thus aL+ b.

abn−1an−1 =((u+ 2v + 2u)(v + 2u)n−1)((u + 2v + 2u)n−1(v + 2u)n−1)

=(u+ 2v + 2u)(v + 2u)n−1)((u + 2v + 2u)(v + 2u)n−1))n−1

=a,

ban−1bn−1 =((v + 2u)(u+ 2v + 2u)n−1)((v + 2u)n−1(u + 2v + 2u)n−1)

=((v + 2u)(u+ 2v + 2u)n−1)((v + 2u)(u+ 2v + 2u)n−1)n−1

=b.

Therefore, aL· b, and so a(L+ ∧D·)b.

The above theorem gives some characterizations of L· ∧D+, L· ∧L+, L· ∧R+

and L+ ∧D·. However, these binary relations are not congruences in general.
Here are two examples as follows.

Example 2.4. Let (S,+, ·) be a semiring with the following addition and multi-
plication tables:

+ a b c d e
a a a a a a
b b b b b b
c c c c c c
d d d d d d
e e e e e e

· a b c d e
a a d e d e
b a b b d e
c a c c d e
d a d d d e
e a e e d e

It is routine to check that (S, ·) is a band, and (S,+) is a left zero band with

L+ = D+ = ∇. So we can easily see that S is a semiring in COS
·
2
. Further,

from the multiplication table, we can check cb = c, bc = b, which implies that
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cL· b. So we have c(L· ∧D+)b and c(L· ∧L+)b. But (ac, ab) /∈ L·. Thus L· ∧D+

and L· ∧L+ are not congruences on S.

Example 2.5. Let (S,+, ·) be a semiring with the following addition and mul-
tiplication tables:

+ a b c d e
a a d e d e
b a b b d e
c a c c d e
d a d d d e
e a e e d e

· a b c d e
a a a a a a
b b b b b b
c c c c c c
d d d d d d
e e e e e e

It can be easily checked that (S,+) is a band, and (S, ·) is a left zero band
with L· = D· = ∇. Further, S is a semiring in COS

·
2
. From the addition table,

b + 2c = b + c = b, c + 2b = c + b = c. Thus, we have cL+ b and also have
c(L+ ∧D·)b. But (a+ b)+2(a+ c) = d+ e = e 6= a+ b, (a+ c)+2(a+ b) 6= a+ c,
that is (a+ b, a+ c) /∈ L+ ∧D·. So L+ ∧D· is not a congruence on S.

In the following, we shall give the sufficient and necessary conditions which
make L· ∧D+, L· ∧L+, L· ∧R+ and L+ ∧D· be congruences.

Theorem 2.6. The following statements hold for a semiring S in COS
·
n
:

(i) L· ∧D+ is a congruence on S if and only if S satisfies the following iden-

tities:

(s(x, y) + z)(t(x, y) + z)n−1 ≈ s(x, y) + z,

(z + s(x, y))(z + t(x, y))n−1 ≈ z + s(x, y),

(zs(x, y))(zt(x, y))n−1 ≈ zs(x, y),

where s(x, y) = yxn−1 + 2xyn−1xn−1, t(x, y) = xyn−1xn−1 + 2yxn−1.

(ii) L· ∧L+ is a congruence on S if and only if S satisfies the following iden-

tities:

(z + p(x, y)) + 2(z + q(x, y)) ≈ z + p(x, y),

(z + p(x, y))(z + q(x, y))n−1 ≈ z + p(x, y),

(p(x, y) + z) + 2(q(x, y) + z) ≈ p(x, y) + z,

(zp(x, y))(zq(x, y))n−1 ≈ zp(x, y),

where p(x, y) = xyn−1xn−1 + 2yxn−1, q(x, y) = yxn−1 + 2xyn−1xn−1 +
2yxn−1.

(iii) L· ∧R+ is a congruence on S if and only if S satisfies the following iden-
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tities:

2(m(x, y) + z) + (w(x, y) + z) ≈ w(x, y) + z,

(w(x, y) + z)(m(x, y) + z)n−1 ≈ w(x, y) + z,

(z + w(x, y))(z +m(x, y))n−1 ≈ z + w(x, y),

(zw(x, y))(zm(x, y))n−1 ≈ zw(x, y),

where w(x, y) = 2yxn−1 + 2xyn−1xn−1 + yxn−1,m(x, y) = 2yxn−1 +
xyn−1xn−1.

(iv) L+ ∧D· is a congruence on S if and only if S satisfies the following iden-

tities:

(z + u(x, y)) + 2(z + v(x, y)) ≈ z + u(x, y),

(z + u(x, y))(z + v(x, y))n−1(z + u(x, y)n−1 ≈ z + u(x, y),

(u(x, y) + z)(v(x, y) + z)n−1(u(x, y + z)n−1 ≈ u(x, y) + z,

where u(x, y) = xyn−1 + 2x+ 2y + 2x, v(x, y) = yxn−1 + 2x+ 2y + 2x.

Proof. We only prove (ii). (i),(iii) and (iv) can be proved similarly.

Let S be a semiring in COS
·
n
and L· ∧L+ be a congruence on S. Then by

(ii) in Theorem 2.3, for any u, v ∈ S, p(u, v)(L· ∧L+)q(u, v) in which p(u, v) =
uvn−1un−1+2vun−1 and q(u, v) = vun−1+2uvn−1un−1+2vun−1. Consequently,
for w ∈ S

(vun−1 + 2uvn−1un−1 + 2vun−1 + w) (L· ∧ L+) (uvn−1un−1 + 2vun−1 + w),

(w + vun−1 + 2uvn−1un−1 + 2vun−1) (L· ∧ L+) (w + uvn−1un−1 + 2vun−1 + 2vu),

w(vun−1 + 2uvn−1un−1 + 2vun−1) (L· ∧ L+) w(uvn−1un−1 + 2vun−1).

These imply that

(w + vun−1 + 2uvn−1un−1 + 2vun−1) L+ (w + uvn−1un−1 + 2vun−1),

(w + vun−1 + 2uvn−1un−1 + 2vun−1) L· (w + uvn−1un−1 + 2vun−1),

(vun−1 + 2uvn−1un−1 + 2vun−1 + w) L· (uvn−1un−1 + 2vun−1 + w),

w(vun−1 + 2uvn−1un−1 + 2vun−1) L· w(uvn−1un−1 + 2vun−1).

Thus, by (4),(5)

(w + p(u, v)) + 2(w + q(u, v)) ≈ w + p(u, v),

(w + p(u, v))(w + q(u, v))n−1 ≈ w + p(u, v),

(p(u, v) + w) + 2(q(u, v) + w) ≈ p(u, v) + w,

(wp(u, v))(wq(u, v))n−1 ≈ wp(u, v).

Thereby S satisfies these identities.

Conversely, we suppose that S is a semiring in COS
·
n
satisfying these identi-

ties, and a(L· ∧L+)b for some a, b ∈ S. It follows from Theorem 2.3, there exist
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u, v ∈ S such that a = uvn−1un−1 + 2vun−1, b = vun−1 + 2uvn−1un−1. For any
c ∈ S, from these identities

(c+ b) + 2(c+ a) = c+ b, (c+ b)(c+ a)n−1 = (c+ b).

By interchanging a and b above,

(c+ a) + 2(c+ b) = c+ a, (c+ a)(c+ b)n−1 = (c+ a).

That is (c + a)(L· ∧L+)(c + b). Consequently, L· ∧L+ is a left congruence on
the additive reduct (S,+). From these identities, (b+ c)(a+ c)n−1 = (b+ c). By
interchanging a and b again, (a+ c)(b+ c)n−1 = (a+ c). Thus, (a+ c)L·(b+ c).
Now, by the above two formulas, we get

(a+ c)(
·

L∧
+

L)(b+ c).

This shows that L· ∧L+ is a right congruence (S,+). For the multiplicative
reduct (S, ·), by Lemma 2.1 that L+ is a congruence on (S, ·) and L· is right
congruence on (S, ·), so L· ∧L+ is a right congruence on (S, ·). Finally, we prove
that L· ∧L+ is also a left congruence on (S, ·). From these identities we have
(cb)(ca)n−1 = cb. And by interchanging a and b, we can similarly obtain

(ca)(cb)n−1 = ca.

In conclusion, we have cbL· ca, and so (ca)L· ∧L+(cb). Thus, L· ∧L+ is a left
congruence on (S,+, ·).

We define some subclasses of COS
·
n
in the following way

{S ∈ COS
·
n
: L· ∧D+ ∈ Con(S)}, {S ∈ COS

·
n
: L· ∧L+ ∈ Con(S)},

{S ∈ COS
·
n
: L· ∧R+ ∈ Con(S)}, {S ∈ COS

·
n
: L+ ∧D· ∈ Con(S)}.

By Theorem 2.6, these semirings classes are subvarieties of COS
·
n
.

Since I is subvariety of COS
·
n
, Theorems 2.3 and 2.6 also hold in I. Thus

some results obtained by Zhao, Shum and Guo [15] are generalized and extended.
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