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Abstract. The purpose of the present paper is to obtain inclusion relations between

various subclasses of harmonic univalent mappings by applying a convolution opera-

tor involving generalized Wright functions. To be more precise, we investigate such

connections with Goodman-Rønning-type harmonic univalent functions, k-uniformly

harmonic convex functions and k-uniformly harmonic starlike functions in the open

unit disc U. Some of our results generalize and correct the results of Maharana and

Sahoo [11].
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1. Introduction

A continuous complex-valued function f = u + iv is said to be harmonic in a
simply-connected complex domain D ⊂ C, if both u and v are real and harmonic
in D. In any simply-connected domain we can be uniquely expressed as f = h+g,
where h and g are analytic in D, called the analytic and co-analytic part of
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the function f, respectively. Let H denote the class of functions of the form
f = h+ g, which are harmonic in the open unit disk U = (z : z ∈ C and |z| < 1)
and normalized by the condition f(0) = fz(0)− 1 = 0.

If f = h+ g ∈ H, then h and g can be expressed in Taylor series expansion
of the form

h(z) = z +
∞
∑

n=2

anz
n and g(z) =

∞
∑

n=1

bnz
n, |b1| < 1. (1)

Further, we denote H0 ⊆ H consisting of functions of the form (1) with
b1 = 0. Let SH represent the class of all harmonic functions f = h + g of the
form (1) which are univalent and sense-preserving in the open unit disk U. We
further let S0

H represent the subclass of SH consisting of functions of the form
(1) with b1 = 0. In other words, we say that S0

H ≡ SH ∩H0.

The family S0
H is compact and normal while the class SH is normal only but

not compact. For detailed study, one may refer the excellent text book by Duren
[7] or Ponnusamy and Rasila [13] (see also [4, 6, 12, 15, 16]). The geometric
subclasses of SH consisting of starlike, convex and close-to-convex functions in
D are denoted by S∗

H, KH and CH, respectively and S∗,0
H = S∗

H ∩ H0, K∗,0
H =

K∗
H ∩H0, C∗,0

H = C∗
H ∩H0.

A function f of the form (1) is said to be in the class NH(β), if it satisfy the
condition

<

(

f ′(z)

z′

)

≥ β, 0 ≤ β < 1.

A function f of the form (1) is said to be in the class GH(β), if it satisfy the
condition

<

(

(1 + eiα)
z f ′(z)

f(z)
− eiα

)

≥ β, α ∈ R, 0 ≤ β < 1,

where z′ = ∂
∂θ
(z ⇒ reiθ) and f ′(z) = ∂

∂θ
f(reiθ). Further, we suppose that T

consist of the functions f = h+ g in H so that h and g are of the form

h(z) = z −
∞
∑

n=2

|an|z
n and g(z) =

∞
∑

n=1

|bn|z
n. (2)

The class T was initially introduced and studied by Jahangiri [9] (see also
[20, 21]). The classes NH(β), T NH(β) and GH(β), T GH(β), were studied earlier
by Ahuja et al. [2] and Rosy et al. [19]. The applications of hypergeometric
function, generalized hypergeometric function, Wright function, Mittag-Leffler
function, generalized Wright hypergeometric function on univalent functions are
interesting topic of research in geometric function theory. Several researchers
obtain various fruitful results by applying these functions. Noteworthy contri-
bution in this direction may be found in [1, 11, 14, 15, 16, 17, 18, 22, 23].

In the present paper, we give a nice application of Wright hypergeometric
function on certain classes of harmonic univalent functions.
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Now, we recall the definition of Wright function

Wλ, µ(z) =

∞
∑

n=0

zn

n! Γ(λn+ µ)
, λ > −1, µ ∈ C. (3)

This function was introduced by British mathematician Wright [24] in 1933.
In [24], it is proved that this is an entire function for λ > −1. Recently, Sahed

and Salem [8] introduced generalized Wright function Wγ, δ
λ, µ(z) which is defined

as

Wγ, δ
λ, µ(z) =

∞
∑

n=0

(γ)n
(δ)n

zn

n! Γ(λn+ µ)
, (4)

where λ > −1, γ, δ, µ ∈ C, (γ)n is a Pochhammer symbol and defined as

(γ)n =
Γ(γ + n)

Γ(γ)
:=

{

1 if n = 0,
γ (γ + 1) · · · (γ + n− 1) if n ∈ N

(5)

and symbol Γ is the Gamma function. The functionW
γ, δ
λ, µ(z) is an entire function

of order 1
1+λ

.

Now, we define normalized generalized Wright function in the following way

W
γ, δ
λ, µ(z) = Γ(µ)(z)Wγ, δ

λ, µ(z) =

∞
∑

n=0

(γ)n
(δ)n

Γ(µ)

Γ(λn+ µ)

zn+1

n!
. (6)

The study of normalized generalized Wright function is of special interest
because by specific values of parameters it reduces to various known special
functions. Some particular cases are given below:

(i) If we take γ = δ, then W
γ, δ
λ, µ(z) reduces to normalized Wright function

Wλ, µ(z).

(ii) If we take λ = 0, then W
γ, δ
λ, µ(z) reduces to zW(γ; δ; z), where W(γ; δ; z)

represent the confluent hypergeometric function.

(iii) If we take δ = γ, λ = 1, µ = 1− ν, then W
γ, δ
λ, µ(−z) reduces to normalized

Bessel function of first kind Jν(z).

For complex parameters γ1, γ2, δ1, δ2, λ1, λ2, µ1, µ2 with λ1, λ2 > −1 and
µ1, µ2 > 0, we get

φ1(z) = W
γ1, δ1
λ1, µ1

(z) and φ2(z) = W
γ2, δ2
λ2, µ2

(z).

Corresponding to the functions φ1 and φ2, we consider the convolution operator

Ω

[

γ1, δ1, λ1, µ1

γ2, δ2, λ2, µ2

]

: H −→ H

defined as

Ω

[

γ1, δ1, λ1, µ1

γ2, δ2, λ2, µ2

]

f = f ∗ (φ1 + φ2) = h ∗ φ1 + g ∗ φ2
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for any function f = h+ g in H, where the symbol ′∗′ denotes the usual convo-
lution of two analytic functions. If we write

H(z) +G(z) = h ∗ φ1 + g ∗ φ2 (7)

then it follows from the definition of convolution that

H(z) = z +

∞
∑

n=2

(γ1)(n−1)

(δ1)(n−1)

Γ(µ1)

Γ(λ1(n− 1) + µ1)

an zn

(n− 1)!
, (8)

G(z) =

∞
∑

n=1

(γ2)(n−1)

(δ2)(n−1)

Γ(µ2)

Γ(λ2(n− 1) + µ2)

bn zn

(n− 1)!
. (9)

A function f of the form (1) is said to be in the class HUK(κ, β) if it satisfy
the condition

<

(

1 + (1 + κ eiη)
z2 h′′(z) + 2z g′(z) + z2 g′′(z)

z h′(z)− z g′(z)

)

≥ β,

where 0 ≤ k < ∞, 0 ≤ β < 1 and z ∈ U.

Further, we let T HUK(κ, β) = HUK(κ, β) ∩ T . A function f ∈ HUK(κ, β)
is called harmonic κ-uniformly convex functions in D. The classes HUK(κ, β)
and T HUK(κ, β) were extensively studied by Kim et al. [10].

Analogous to class HUK(κ, β), Ahuja et al. [2] define the class HUS∗(κ, β)
in the following way:

A function f of the form (1) is said to be in the class HUS∗(κ, β), if it satisfy
the condition

<

(

z f ′(z)

z′ f(z)
− β

)

≥ κ

∣

∣

∣

∣

z f ′(z)

z′ f(z)
− 1

∣

∣

∣

∣

, z ∈ U,

where 0 ≤ κ < ∞ and 0 ≤ β < 1. Further, we let T HUS∗(κ, β) = HUS∗(κ, β)∩
T .

For simplicity, throughout this article we will use the notation

Ω(f) := Ω

[

γ1, δ1, λ1, µ1

γ2, δ2, λ2, µ2

]

f

and call this the convolution image of f.

In this paper, we obtain some inclusion relations among the classes NH(β),
GH(β), HUK(κ, β), HUS∗(κ, β), K0

H, S∗,0
H and C0

H by applying the convolution
operator Ω over the generalized Wright function.

2. Preliminary Results

In order to prove our main results, we shall require the following results, due to
Clunie and Shal-Small [5] (see also [7]), Rosy et al. [19], Kim et al. [10] and
Ahuja et al. [2].
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Lemma 2.1. [5] Let f = h+ ḡ ∈ K0
H, where h and g are given by (1) with b1 = 0.

Then, for n ≥ 2 we have

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
.

Lemma 2.2. [5] Let f = h+ ḡ ∈ C0
H ∪ S∗, 0

H , where h(z) and g(z) are of the form

(1) with b1 = 0. Then, for n ≥ 2 we have

|an| ≤
(2n+ 1) (n+ 1)

6
and |bn| ≤

(2n− 1) (n− 1)

6
.

Lemma 2.3. [19] Let f = h+ ḡ, where h and g are given by (1). If for some β,

0 ≤ β < 1 the inequality

∞
∑

n=2

(2n− 1− β)|an|+
∞
∑

n=1

(2n+ 1 + β)|bn| ≤ 1− β (10)

is satisfied, then f is a sense-preserving harmonic univalent mapping lying in

GH(β).

Remark 2.4. [19] Let f = h+ ḡ be given by (2) is in the family T GH(β), if and
only if the coefficient condition (10) holds. Moreover, if f ∈ T GH(β), then

|an| ≤
1− β

2n− 1− β
, n ≥ 2 and |bn| ≤

1− β

2n+ 1 + β
, n ≥ 1.

Lemma 2.5. [3] Let f = h+ g where h and g are given by (2) and suppose that

0 ≤ β < 1. Then we have

f ∈ T NH(β) ⇔
∞
∑

n=2

n|an|+
∞
∑

n=1

n|bn| ≤ 1− β.

Remark 2.6. [3] If f = h+ g ∈ T NH(β) where h and g are given by (2), then

|an| ≤
1− β

n
for n ≥ 2 and |bn| ≤

1− β

n
for n ≥ 1.

Lemma 2.7. [10] Let f = h + g where h and g are given by (1). If for some κ,

0 ≤ κ < ∞ and β, 0 ≤ β < 1, then the inequality

∞
∑

n=2

n{n(κ+ 1)− (κ+ β)}|an|+
∞
∑

n=1

n{n(κ+ 1) + (κ+ β)}|bn| ≤ 1− β, (11)
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is satisfied, then f is sense preserving harmonic univalent in U and f ∈
HUK(κ, β).

Remark 2.8. [10] A mapping f = h+g, where h and g are given by (2), belongs
to the family T HUK(κ, β) if and only if the condition (11) holds. Moreover, if
f ∈ T HUK(κ, β), then the coefficient inequalities

|an| ≤
1− β

n{n(κ+ 1)− (κ+ β)}
, n ≥ 2 and |bn| ≤

1− β

n{n(κ+ 1) + (κ+ β)}

hold for n ≥ 1.

Lemma 2.9. [2] Let f = h + g, where h and g are given by (1). If for some κ,

0 ≤ κ < ∞ and β, 0 ≤ β < 1, the inequality

∞
∑

n=2

{n(κ+ 1)− (κ+ β)} |an|+
∞
∑

n=1

{n(κ+ 1) + (κ+ β)} |bn| ≤ 1− β, (12)

is satisfied, then f is sense preserving harmonic univalent in U and f ∈
HUS∗(κ, β).

Remark 2.10. [2] A mapping f = h + g, where h and g are given by (2),
belongs to the family T HUS∗(κ, β) if and only if the condition (12) is satisfied.
Moreover, if f ∈ T HUS∗(κ, β), then the coefficient inequalities

|an| ≤
1− β

n(κ+ 1)− (κ+ β)
, n ≥ 2 and |bn| ≤

1− β

n(κ+ 1) + (κ+ β)
, n ≥ 1

hold.

The following relations are an easy consequences of the definition of Wγ, δ
λ, µ,

which are useful in the proof of our main results.

Lemma 2.11. For all γ ≥ 0, λ ≥ 0 and µ ≥ 0, we have

(i)
∑∞

n=0
(γ)n+1

(δ)n+1

Γ(µ)
Γ(λ(n+1)+µ)

1
(n+1)! = W

γ, δ
λ, µ(1)− 1;

(ii)
∑∞

n=0
(γ)n+1

(δ)n+1

Γ(µ)
Γ(λ(n+1)+µ)

1
(n)! =

(

W
γ, δ
λ,µ

)′

(1)−W
γ, δ
λ, µ(1);

(iii)
∑∞

n=0
(γ)n+1

(δ)n+1

Γ(µ)
Γ(λ(n+1)+µ)

1
(n−1)! =

(

W
γ,δ
λ,µ

)′′

(1)−2
(

W
γ, δ
λ,µ

)′

(1)+2W γ,δ
λ,µ(1);

(iv)
∑∞

n=0
(γ)n+1

(δ)n+1

Γ(µ)
Γ(λ(n+1)+µ)

1
(n−2)! =

(

W
γ, δ
λ, µ

)′′′

(1)− 3
(

W
γ,δ
λ,µ

)′′

(1)

+ 6
(

W
γ, δ
λ, µ

)′

(1)− 6Wγ, δ
λ, µ(1).

Remark 2.12. The results of above lemma, generalize the results of Maharana
and Sahoo [11]. It is worthy to note that for γ = δ, our results correct the
corresponding results of [11].
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3. Main Results

In our first theorem, we obtain a sufficient condition for the inclusion relation
between the classes K0

H and GH(β).

Theorem 3.1. Let γ1, γ2, δ1, δ2 ≥ 0, µ1, µ2 > 0 and λ1, λ2 ≥ 0. If for some

β, 0 ≤ β < 1, the inequality

2
(

W
γ1,δ1
λ1,µ1

)′′

(1) + (3− β)
(

W
γ1,δ1
λ1,µ1

)′

(1)− (1 + β)
(

W
γ1,δ1
λ1,µ1

)

(1)

+2
(

W
γ2,δ2
λ2,µ2

)′′

(1) + (1 + β)
(

W
γ2,δ2
λ2,µ2

)′

(1)− (1 + β)
(

W
γ2,δ2
λ2,µ2

)

(1)

≤ 4(1− β),

is satisfied, then Ω(K0
H) ⊂ GH(β).

Proof. Let f = h + g ∈ K0
H where h and g are given by (1) with b1 = 0. Here

we need to prove that Ω(f) = H + G ∈ GH(β), for this it is sufficient to prove
that P1 ≤ 1− β, where

P1 =

∞
∑

n=2

(2n− 1− β)
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!
|an|

+

∞
∑

n=2

(2n+ 1 + β)
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!
|bn|.

(13)

Applying Lemma 2.1, we have

P1 ≤
1

2

{

∞
∑

n=2

(2n− 1− β)(n+ 1)
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=2

(2n+ 1 + β)(n− 1)
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

}

=
1

2

{

∞
∑

n=2

[2(n− 1)(n− 2) + (7 − β)(n− 1) + 2(1− β)]

×
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+
∞
∑

n=2

[2(n− 2) + 5 + β]
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

}

=
1

2

{

2

∞
∑

n=3

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 3)!

+

∞
∑

n=2

(7− β)
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 2)!
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+2(1− β)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+2

∞
∑

n=3

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 3)!

+(5 + β)
∞
∑

n=2

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

}

=
1

2

{

2

∞
∑

n=1

(γ1)n+1

(δ1)n+1

Γ(µ1)

Γ(λ1(n+ 1) + µ1)

1

(n− 1)!

+(7− β)

∞
∑

n=0

(γ1)n+1

(δ1)n+1

Γ(µ1)

Γ(λ1(n+ 1) + µ1)

1

n!

+2(1− β)
∞
∑

n=0

(γ1)n+1

(δ1)n+1

Γ(µ1)

Γ(λ1(n+ 1) + µ1)

1

(n+ 1)!

+2

∞
∑

n=1

(γ2)n+1

(δ2)n+1

Γ(µ2)

Γ(λ2(n+ 1) + µ2)

1

(n− 1)!

+(5 + β)

∞
∑

n=0

(γ2)n+1

(δ2)n+1

Γ(µ2)

Γ(λ2(n+ 1) + µ2)

1

(n)!

}

=
1

2

{

2
(

W
γ1,δ1
λ1,µ1

)′′

(1) + (3− β)
(

W
γ1,δ1
λ1,µ1

)′

(1)− (1 + β)
(

W
γ1,δ1
λ1,µ1

)

(1)

+2
(

W
γ2, δ2
λ2, µ2

)′′

(1) + (1 + β)
(

W
γ2, δ2
λ2, µ2

)′

(1)

−(1 + β)
(

W
γ2, δ2
λ2, µ2

)

(1)− 2(1− β)
}

≤ (1 − β)

by given hypothesis. This completes the proof.

If we put γ1 = δ1 and γ2 = δ2 in Theorem 3.1, then we obtain the following
result.

Corollary 3.2. Let λ1, λ2 ≥ 0 and µ1, µ2 > 0. If for some β, 0 ≤ β < 1 and the

inequality

2W′′
λ1, µ1

(1) + (3− β)W′
λ1, µ1

(1)− (1 + β)Wλ1, µ1
(1)

+2W′′
λ2, µ2

(1) + (1 + β)W′
λ2, µ2

(1)− (1 + β)Wλ2, µ2
(1)

≤ 4(1− β),

is satisfied, then the inclusion relation Ω(K0
H) ⊂ GH(β) holds.

Remark 3.3. It is worthy to note that the result of above corollary correct the
corresponding result of Maharana and Sahoo [11].
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Theorem 3.4. Let γ1, γ2, δ1, δ2, µ1, µ2 > 0 and λ1, λ2 ≥ 0. If for some β, 0 ≤
β < 1, the inequality

4
(

W
γ1, δ1
λ1, µ1

)′′′

(1) + (16− 2β)
(

W
γ1, δ1
λ1, µ1

)′′

(1) + (7 − 5β)
(

W
γ1, δ1
λ1, µ1

)′

(1)

−(1 + β)Wγ1, δ1
λ1, µ1

(1) + 4
(

W
γ2, δ2
λ2, µ2

)′′′

(1) + (8 + 2β)
(

W
γ2, δ2
λ2, µ2

)′′

(1)

−(1 + β)
(

W
γ2, δ2
λ2, µ2

)′

(1) + (1 + β)Wγ2, δ2
λ2, µ2

(1) ≤ 12(1− β),

is satisfied, then the inclusion relations Ω(C0
H) ⊂ GH(β) and Ω(S∗, 0

H ) ⊂ GH(β)
hold.

Proof. Let f = h+ g, where h and g are given by (1) with b1 = 0 and f ∈ C0
H or

f ∈ S∗, 0
H . To prove that Ω(f) = H +G ∈ GH(β), where H and G are defined by

(8) and (9), it is sufficient to prove that P1 ≤ 1− β, where P1 is given by (13).
Using Lemma 2.2, we have

P1 ≤
1

6

{

∞
∑

n=2

(2n− 1− β)(2n+ 1)(n+ 1)
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=2

(2n+ 1 + β)(2n− 1)(n− 1)
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

}

=
1

6

{

∞
∑

n=2

{4(n− 1)(n− 2)(n− 3) + (28− 2β)(n− 1)(n− 2)

+(39− 9β)(n− 1) + 6(1− β)}
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=2

{4(n− 2)(n− 3) + (20 + 2β)(n− 2) + (15 + 3β)}

×
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

}

=
1

6

{

4
∞
∑

n=4

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 4)!

+(28− 2β)

∞
∑

n=3

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 3)!

+(39− 9β)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 2)!

+6(1− β)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+4

∞
∑

n=4

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 4)!
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+(20 + 2β)

∞
∑

n=3

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 3)!

+(15 + 3β)

∞
∑

n=2

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

}

=
1

6

{

4
(

W
γ1,δ1
λ1,µ1

)′′′

(1) + (16− 2β)
(

W
γ1,δ1
λ1,µ1

)′′

(1) + (7− 5β)
(

W
γ1,δ1
λ1,µ1

)′

(1)

−(1 + β)Wγ1, δ1
λ1, µ1

(1)− 6(1− β) + 4
(

W
γ2, δ2
λ2, µ2

)′′′

(1)

+(8 + 2β)
(

W
γ2, δ2
λ2, µ2

)′′

(1)

−(1 + β)
(

W
γ2, δ2
λ2, µ2

)′

(1) + (1 + β)Wγ2, δ2
λ2, µ2

(1)

}

≤ (1− β),

by given hypothesis. Thus the proof is established.

Remark 3.5. It is worthy to note that for γ1 = δ1 and γ2 = δ2 the result of
Theorem 3.4 correct the corresponding result of Maharana and Sahoo [11].

Theorem 3.6. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2 > 0, µ1, µ2 > 0. If the inequality

W
γ1, δ1
λ1, µ1

(1) +W
γ2, δ2
λ2, µ2

(1) ≤ 2. (14)

is satisfied, then for β, 0 ≤ β < 1, we have Ω(T GH(β) ⊂ GH(β)).

Proof. Let f = h + g ∈ T GH(β), where h and g are given by (2). To prove
Ω(f) ∈ GH(β), it is sufficient to prove that P2 ≤ 1− β, where

P2 =

∞
∑

n=2

(2n− 1− β)
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!
|an|

+
∞
∑

n=1

(2n+ 1 + β)
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!
|bn|.

(15)

Using Remark 2.4, we have

P2 ≤(1− β)

{

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=1

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

}

=(1− β)

{

∞
∑

n=1

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n+ 1)!
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+
∞
∑

n=0

(γ2)n
(δ2)n

Γ(µ2)

Γ(λ2n+ µ2)

1

n!

}

=(1− β)
{

W
γ1, δ1
λ1, µ1

(1)− 1 +W
γ2, δ2
λ2, µ2

(1)
}

≤(1− β),

by given hypothesis. This completes the proof.

Lemma 3.7. For all λ ≥ 0 and µ > λ, γ, δ > 1, we have

∞
∑

n=0

(γ)n
(δ)n

Γ(µ)

Γ(λn+ µ)

1

(n+ 1)!
=

(

δ − 1

γ − 1

)

Γ(µ)

Γ(µ− λ)

[

W
γ−1, δ−1
λ, µ−λ (1)− 1

]

.

Proof.

∞
∑

n=0

(γ)n
(δ)n

Γ(µ)

Γ(λn+ µ)

1

(n+ 1)!

=

(

δ − 1

γ − 1

)

Γ(µ)

Γ(µ− λ)

∞
∑

n=0

(γ − 1)n+1

(δ − 1)n+1

Γ(µ− λ)

Γ(λ(n+ 1) + µ− λ)

1

(n+ 1)!

=

(

δ − 1

γ − 1

)

Γ(µ)

Γ(µ− λ)

[

W
γ−1, δ−1
λ, µ−λ (1)− 1

]

.

Theorem 3.8. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2 > 1, µ1 > λ1, µ2 > λ2. If for

some β, 0 ≤ β < 1, the inequality

2Wγ1,δ1
λ1,µ1

(1)+2Wγ2,δ2
λ2,µ2

(1)−(1 + β)

{(

δ1 − 1

γ1 − 1

)

Γ(µ1)

Γ(µ1 − λ1)

[

W
(γ1−1,δ1−1)
(λ1,µ1−λ1)

(1)− 1
]

−

(

δ2 − 1

γ2 − 1

)

Γ(µ2)

Γ(µ2 − λ2)

[

W
(γ2−1,δ2−1)
(λ2,µ2−λ2)

(1)− 1
]

}

≤ 2− β

is satisfied, then Ω(T NH(β)) ⊂ GH(β).

Proof. Let f = h+ g with h and g are given by (2) and f ∈ T NH(β). To prove
Ω(f) ∈ GH(β), it is sufficient to prove that P2 ≤ 1 − β, where P2 is given by
(15). Using Remark 2.6 in the definition of P2, we have

P2 ≤(1− β)

[

∞
∑

n=2

(

2−
1 + β

n

)

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=1

(

2 +
1 + β

n

)

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

]

=(1− β)

[

2

∞
∑

n=0

(γ1)n+1

(δ1)n+1

Γ(µ1)

Γ(λ1(n+ 1) + µ1)

1

(n+ 1)!



830 S. Porwal and N. Magesh

−(1 + β)

∞
∑

n=1

(γ1)n
(δ1)n

Γ(µ1)

Γ(λ1(n) + µ1)

1

(n+ 1)!

+2

∞
∑

n=0

(γ2)n
(δ2)n

Γ(µ2)

Γ(λ2(n) + µ2)

1

n!

+(1 + β)
∞
∑

n=0

(γ2)n
(δ2)n

Γ(µ2)

Γ(λ2(n) + µ2)

1

(n+ 1)!

]

=(1−β)

[

2
(

W
γ1,δ1
λ1,µ1

(1)−1
)

−(1+β)

(

∞
∑

n=0

(γ1)n
(δ1)n

Γ(µ1)

Γ(λ1(n)+µ1)

1

(n+ 1)!
−1

)

+2Wγ2, δ2
λ2, µ2

(1) + (1 + β)
δ2 − 1

γ2 − 1

Γ(µ2)

Γ(µ2 − λ2)

[

W
γ2−1,δ2−1
λ2,µ2−λ2

(1)− 1
]

]

=(1− β)
[

2Wγ1, δ1
λ1, µ1

(1) + 2Wγ2, δ2
λ2, µ2

(1)

−(1 + β)

{

δ1 − 1

γ1 − 1

Γ(µ1)

Γ(µ1 − λ1)

[

W
γ1−1,δ1−1
λ1,µ1−λ1

(1)− 1
]

}

−
δ2 − 1

γ2 − 1

Γ(µ2)

Γ(µ2 − λ2)

[

W
γ2−1,δ2−1
λ2,µ2−λ2

(1)− 1
]

− (1− β)

]

≤1− β,

by given hypothesis. Thus, the proof is established.

Remark 3.9. If we put γ1 = γ2, δ1 = δ2 in Theorems 3.6 and 3.8, then we
obtain the corresponding result of Maharana and Sahoo [11].

Theorem 3.10. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2, µ1, µ2 > 0. If for some κ,

0 < κ < ∞ and β, 0 ≤ β < 1, the inequality

(κ+ 1)
(

W
γ1, δ1
λ1, µ1

)′′′

(1) + (1− β)
(

W
γ1, δ1
λ1, µ1

)′′

(1) + (κ+ 1)
(

W
γ2, δ2
λ2, µ2

)′′′

(1)

− (1− β)
(

W
γ2, δ2
λ2, µ2

)′′

(1) + 2(1− β)
(

W
γ2, δ2
λ2, µ2

)′

(1)− 2(1− β)Wγ2, δ2
λ2, µ2

(1)

≤2(1− β),

is satisfied, then Ω(K0
H) ⊂ HUK(κ, β).

Proof. Let f = h + g ∈ K0
H, where h and g are given by (1) with b1 = 0. Here

we need to show that Ω(f) ∈ H ∪ K(κ, β), for this it is sufficient to prove that
P3 ≤ 1− β, where

P3 =

∞
∑

n=2

n {n(κ+ 1)−(κ+β)}
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n−1)+µ1)

1

(n−1)!
|an|

+

∞
∑

n=1

n {n(κ+ 1)+(κ+β)}
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n−1)+µ2)

1

(n−1)!
|bn|.

(16)
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Now, applying Lemma 2.1, we have

p3 ≤
1

2

[

∞
∑

n=2

n(n+ 1) {n(κ+ 1)− (κ+ β)}
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+

∞
∑

n=1

n {n(κ+ 1) + (κ+ β)}
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

]

=
1

2

[

∞
∑

n=2

((κ+ 1)(n− 1)(n− 2)(n− 3) + (3κ+ 4− β)(n− 1)(n− 2))

+2(1− β)×
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+
∞
∑

n=1

((κ+ 1)(n− 2)(n− 3) + (3κ+ 2 + β)(n− 2))

×
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

]

=
1

2

[

(κ+ 1)

∞
∑

n=4

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 4)!

+(3κ+ 4− β)

∞
∑

n=3

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 3)!

+2(1− β)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 2)!

+(κ+ 1)
∞
∑

n=4

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 4)!

+(3κ+ 2 + β)

∞
∑

n=3

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 3)!

]

=
1

2

[

(κ+ 1)
(

W
γ1, δ1
λ1, µ1

)′′′

(1) + (1− β)
(

W
γ1, δ1
λ1, µ1

)′′

(1)

+(κ+ 1)
(

W
γ2, δ2
λ2, µ2

)′′′

(1)− (1− β)
(

W
γ2, δ2
λ2, µ2

)′′

(1)

+2(1− β)
(

W
γ2, δ2
λ2, µ2

)′

(1)− 2(1− β)
(

W
γ2, δ2
λ2, µ2

)

(1)

]

≤(1− β),

by given hypothesis. Thus the proof is established.

In our next theorem, we obtain an inclusion relation between ΩNH(β) and
HUK(κ, β).
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Theorem 3.11. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2, µ1, µ2 > 0. If for some κ,

0 ≤ κ < ∞ and β, 0 ≤ β < 1, the inequality

(κ+ 1)

{

(

W
γ1, δ1
λ1, µ1

)′

(1) +
(

W
γ2, δ2
λ2, µ2

)′

(1)

}

− (κ+ β)
{

W
γ1, δ1
λ1, µ1

(1)−W
γ2, δ2
λ2, µ2

(1)
}

≤ 2− β,

is satisfied, then Ω(T NH(β) ⊂ HUK(κ, β).

Proof. Let f = h + g ∈ T NH(β), where h and g are given by (2). To prove
Ω(f) ∈ HUK(κ, β) it is sufficient to prove that P4 ≤ 1− β, where

P4 =

∞
∑

n=2

n {n(κ+ 1)−(κ+β)}
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n−1)+µ1)

1

(n− 1)!
|an|

+

∞
∑

n=1

n {n(κ+ 1)+(κ+β)}
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n−1)+µ2)

1

(n− 1)!
|bn|.

(17)

Using Remark 2.6, we have

P4 ≤(1−β)

[

∞
∑

n=2

{(κ+ 1)(n−1)+(1−β)}
(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n−1)+µ1)

1

(n− 1)!

+
∞
∑

n=1

{(κ+ 1)(n−1)+(2κ+β+1)}
(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n−1)+µ2)

1

(n− 1)!

]

=(1 − β)

[

(κ+ 1)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 2)!

+(1− β)

∞
∑

n=2

(γ1)n−1

(δ1)n−1

Γ(µ1)

Γ(λ1(n− 1) + µ1)

1

(n− 1)!

+(κ+ 1)

∞
∑

n=2

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 2)!

+(2κ+ β + 1)

∞
∑

n=1

(γ2)n−1

(δ2)n−1

Γ(µ2)

Γ(λ2(n− 1) + µ2)

1

(n− 1)!

]

=(1 − β)

[

(κ+ 1)
(

W
γ1, δ1
λ1, µ1

)′

(1)− (κ+ β)Wγ1, δ1
λ1, µ1

(1)

+(κ+ 1)
(

W
γ2, δ2
λ2, µ2

)′

(1) + (κ+ β)Wγ2, δ2
λ2, µ2

(1)− (1− β)

]

≤1− β,

by given hypothesis. Thus the proof is established.

Theorem 3.12. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2, µ1, µ2 > 0. If for some κ,
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0 ≤ κ < ∞ and β, 0 ≤ β < 1, the inequality (14) holds, then Ω(T HUK(κ, β) ⊂
HUK(κ, β)).

Proof. The proof of the above theorem is much akin to that of Theorem 3.11.
Therefore we omit the details involved.

Remark 3.13. If we put γ1 = γ2, δ1 = δ2 in Theorem 3.12, then we obtain the
corresponding result of Maharana and Sahoo [11].

Theorem 3.14. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2, µ1, µ2 > 0. If for some κ,

0 ≤ κ < ∞ and β, 0 ≤ β < 1, the inequality

(κ+ 1)
(

W
γ1, δ1
λ1, µ1

)′′

(1)− (κ+ β)
(

W
γ1, δ1
λ1, µ1

)′

(1) + (κ+ 1)
(

W
γ2, δ2
λ2, µ2

)′′

(1)

+ (κ+ β)
(

W
γ2, δ2
λ2, µ2

)′

(1)− (κ+ β)
(

W
γ2, δ2
λ2, µ2

)

(1) + (κ+ β) ≤ 2(1− β)
(18)

is satisfied, then Ω(K0
H) ⊂ HUS∗(κ, β).

Proof. The proof is much akin to that of Theorem 3.10. Hence we omit the
details.

Theorem 3.15. Let λ1, λ2 ≥ 0 and γ1, γ2, δ1, δ2, µ1, µ2 > 0. If for some κ,

0 ≤ κ < ∞ and β, 0 ≤ β < 1, the inequality

2(κ+ 1)
(

W
γ1,δ1
λ1,µ1

)′′′

(1)+(κ+3−2β)
(

W
γ1,δ1
λ1,µ1

)′′

(1)−(κ+ β)
(

W
γ1,δ1
λ1,µ1

)′

(1)

+ 2(κ+ 1)
(

W
γ2, δ2
λ2, µ2

)′′′

(1)− (κ+ 3− 2β)
(

W
γ2, δ2
λ2, µ2

)′′

(1)

+ (κ+ 6− 5β)

(

(

W
γ2, δ2
λ2, µ2

)′

(1)−
(

W
γ2, δ2
λ2, µ2

)

(1)

)

+ (κ+ β) ≤ 6(1− β)

(19)

is satisfied, then Ω(C0
H) ⊂ HUS∗(κ, β) or Ω(S∗, 0

H ) ⊂ HUS∗(κ, β).

Remark 3.16. If we let γ1 = δ1 and γ2 = δ2 in the results of Theorems 3.11,
3.12, 3.14 and 3.15, then we correct the corresponding results of Maharana and
Sahoo [11].

Acknowledgement. The authors would like thank the referee for their insightful
suggestions to improve the paper in the present form.

References

[1] O.P. Ahuja, Connections between various subclasses of planar harmonic mappings
involving hypergeometric functions, Appl. Math. Comput. 198 (1) (2008) 305–316.



834 S. Porwal and N. Magesh

[2] O.P. Ahuja, R. Aghalary, S.B. Josh, Harmonic univalent functions associated with
k-uniformly starlike functions, Math. Sci. Res. J. 9 (1) (2005) 9–17.

[3] O.P. Ahuja and J.M. Jahangiri, Noshiro-type harmonic univalent functions, Sci.
Math. Jpn. 56 (2)(2002) 293–299.

[4] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae
Curie-Sklodowska Sect. A 44 (1990) 1–7.

[5] J. Clunie and T. Sheil-Smal, Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Ser. AI Math. 9 (1984) 3–25.

[6] K.K. Dixit and S. Porwal, On a subclass of harmonic univalent functions, J.
Inequal. Pure Appl. Math. 10 (1), Art. 27, 18 pages.

[7] P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.

[8] M. El-Shahed and A. Salem, An extension Wright function and its properties, J.
Math. (2015), Art. ID 950728, 11 pages.

[9] J.M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl.
235 (1999) 470–477.

[10] Y.C. Kim, J.M. Jahangiri, J.H. Chai, Certain convex harmonic functions, Int. J.
Math. Sci. 29 (8) (2002) 459–465.

[11] S. Maharana and S.K. Sahoo, Inclusion properties of planar harmonic mappings
associated with theWright function, Complex Variable Elliptic Eqn. 66 (10) (2021)
1619–1641. https://doi.org/10.1080/17476933.2020.1772765.
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