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1. Introduction

The notion of derivation, introduced from analytic theory, is helpful to the re-
search of structure and property in algebraic system. Recently, analytic and
algebraic properties of lattice were widely researched [3, 5]. Several authors
[1, 4] have studied derivations in rings and near-rings after Posner [9] have given
the definition of the derivation in ring theory. Bresar [2] introduced the gen-
eralized derivation in rings and many mathematicians studied on this concept.
K.L. Xin et al. applied the notion of the derivation in ring theory to lattices
[10]. In [7], a partial multiplier on a commutative semigroup (A, .) has been
introduced as a function F from a nonvoid subset DF of A into A such that
F (x).y = x.F (y) for all x, y ∈ DF . Moreover, in [6] K.H. Kim introduced the
concept of multipliers in an almost distributive lattice. The concept of Almost
Semilattice (ASL) was introduced by G. Nanaji Rao and T.G. Beyene [8] as a
generalization of almost distributive lattice and a semilattice.

In this paper, we introduced the notion of multipliers in Almost Semilat-
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tice(ASL) and proved some related properties. Moreover, in an ASL L, we in-
troduced a congruence relation φa for a ∈ L and derived some useful properties
of φa.

2. Preliminaries

In this section, we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

Definition 2.1. Let (P,≤) be a poset and a ∈ P . Then

(1) a is called the least element of P if a ≤ x for all x ∈ P .

(2) a is called the greatest element of P if x ≤ a for all x ∈ P .

It can be easily observed that, if the least (greatest) element exists in a poset,
then it is unique.

Definition 2.2. Let (P,≤) be a poset and a ∈ P . Then

(1) a is called a minimal element, if x ∈ P and x ≤ a, then x = a.

(2) a is called maximal element, if x ∈ P and a ≤ x, then a = x.

It can be easily verified that the least (greatest) element (if exists), then it is
minimal (maximal), but the converse need not be true.

Definition 2.3. Let (P,≤) be a poset and S be a non empty subset of P . Then

(1) An element a in P is called a lower bound of S if a ≤ x for all x ∈ S.

(2) An element a in P is called an upper bound of S if x ≤ a for all x ∈ S.

(3) An element a in P is called the greatest lower bound (g.l.b or infimum) of
S if a is a lower bound of S and b ∈ P such that b is a lower bound of S,
then b ≤ a.

(4) An element a in P ia called the least upper bound (l.u.b or supremum) of
S if a is an upper bound of S and b ∈ P such that b is an upper bound of
S, then a ≤ b.

Definition 2.4. A Semilattice L is an algebra (L, ?) of type (2) satisfies the
following conditions:

(1) (x ? y) ? z = x ? (y ? z) (Associative Law)

(2) x ? y = y ? x (Commutative Law)

(3) x ? x = x, for all x, y, z ∈ L. (Idempotent)

Definition 2.5. An Almost Semilattice(ASL) is an algebra (L, ◦) of type (2)
satisfies the following conditions:
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(1) (x ◦ y) ◦ z = x ◦ (y ◦ z) (Associative Law)

(2) (x ◦ y) ◦ z = (y ◦ x) ◦ z (Almost Commutative Law)

(3) x ◦ x = x, for all x, y, z ∈ L. (Idempotent)

Definition 2.6. Let L be an ASL. Then for any a, b ∈ L, we say that a is less
or equal to b and write a ≤ b, if a ◦ b = a.

Lemma 2.7. Let L be an ASL. Then for any a, b ∈ L, we have:

(1) a ◦ (a ◦ b) = a ◦ b

(2) (a ◦ b) ◦ b = a ◦ b

(3) b ◦ (a ◦ b) = a ◦ b.

Corollary 2.8. Let L be an ASL. Then for any a, b ∈ L, a ◦ b ≤ b.

Corollary 2.9. Let L be an ASL. Then for any a, b ∈ L, a ◦ b = b ◦ a whenever
a ≤ b.

Theorem 2.10. Let L be an ASL. Then the relation ≤ is a partial ordering on
L.

Definition 2.11. Let L be an ASL. An element a ∈ L is said to be minimal
(maximal) element if for any x ∈ L, x ≤ a(a ≤ x), then x = a(a = x).

Theorem 2.12. Let L be an ASL. Then for any a, b ∈ L with a ≤ b. Then
a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b for all c ∈ L.

Theorem 2.13. Let L be an ASL. Then for any a, b, c ∈ L, we have the following
statements:

(1) a ≤ b and c ≤ d =⇒ a ◦ c ≤ b ◦ d.

(2) a, b ≤ c =⇒ a ◦ b, b ◦ a ≤ c

(3) a ≤ b, c =⇒ a ≤ b ◦ c, c ◦ b.

Definition 2.14. Let L be an ASL. An element 0 ∈ L is called a zero element of
L if 0 ◦ a = 0 for all a ∈ L.

It can be easily seen that an ASL can have at most one zero element and it
will be the least element of the poset (L,≤). We always denote the zero element
of L, if it exists, by ’0’. If L has an element 0 and satisfies the property 0◦x = 0
for all x ∈ L along with Definition 2.5, then L is called an ASL with ’0’.

Lemma 2.15. Let L be an ASL with 0. Then for any a ∈ L, a ◦ 0 = 0.



154 T.G. Beyene and H.T. Alemu

Lemma 2.16. Let L be an ASL with 0. Then for any a, b ∈ L, a ◦ b = 0 if and
only if b ◦ a = 0.

Corollary 2.17. Let L be an ASL with 0. Then for any a, b ∈ L, a ◦ b = b ◦ a

whenever a ◦ b = 0.

3. Multipliers in Almost Semilattices

In this section, we introduce the concept of multipliers in Almost Semilat-
tice(ASL) and give some examples of it. We also, prove some related properties
of multipliers in Almost semilattices. Moreover, in Almost semilattices, we es-
tablish a congruence relation φa for a ∈ L and derive some useful properties
of φa in L. In what follows, L denotes an Almost semilattice, unless otherwise
specified.

Definition 3.1. Let L be an ASL. A function f : L −→ L is called a multiplier
of L if f(x ◦ y) = f(x) ◦ y for all x, y ∈ L.

Example 3.2. Let L = {a, b, c}. Define a binary operation ◦ on L as follows:

◦ a b c
a a a a
b a b b
c a b c

Then clearly (L, ◦) is an ASL. Now, define f : L −→ L by

f(x) =

{

a if x = a,

b if x = b, c.

Then f is a multiplier on L.

Lemma 3.3. Let L be an ASL. Then the identity map on L is a multiplier on L.
This multiplier is called identity multiplier.

Proof. Let f be the identity map on L. Then for any x, y ∈ L, f(x◦ y) = x◦ y =
f(x) ◦ y. Therefore f is a multiplier on L.

Theorem 3.4. Every multiplier in a discrete ASL is an identity multiplier.

Proof. Let L be a discrete ASL and f be a multiplier of L. Then for any a ∈ L,
f(a) = f(a ◦ a) = f(a) ◦ a = a (since L is discrete ASL). Therefore f is an
identity multiplier.
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Example 3.5. Let L be a ASL with 0. Then a function f : L −→ L defined by
f(x) = 0 for any x ∈ L is a multiplier on L which is called a zero multiplier.

Example 3.6. Let L = {0, a, b, c}. Define a binary operation ◦ on L as follows:

◦ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then clearly (L, ◦, 0) is an ASL with 0. Now, define f : L −→ L by

f(x) =

{

0 if x = 0, c,

a if x = a, b.

Then f is a multiplier on L.

Remark 3.7. In an almost semilattice, every function may not be a multiplier.

Example 3.8. In a discrete ASL L = {0, a, b}, if we define f : L −→ L by
f(0) = 0, f(a) = b and f(b) = a. Then f is not a multiplier on L since
f(a ◦ b) = f(b) = a 6= b = f(a) ◦ b.

Lemma 3.9. Let f be a multiplier on an ASL L. Then the following conditions
hold:

(1) f(x) ≤ x for all x ∈ L.

(2) f(x) ◦ f(y) ≤ f(x ◦ y) for all x, y ∈ L.

(3) If L has 0, then f(0) = 0.

(4) f2(x) = f(f(x)) = f(x) for all x ∈ L.

(5) If I is an ideal of L, then f(I) ⊆ I.

Proof. (1) Let x ∈ L. Then f(x) = f(x ◦ x) = f(x) ◦ x. Therefore f(x) ≤ x for
all x ∈ L.

(2) Let x, y ∈ L. Then f(x ◦ y) = f(x) ◦ y. Now, by (1) f(x) ◦ f(y) ≤
f(x) ◦ y = f(x ◦ y). Therefore f(x) ◦ f(y) ≤ f(x ◦ y) for all x, y ∈ L.

(3) By (1), f(0) ≤ 0. Thus 0 ≤ f(0) ≤ 0 and hence f(0) = 0.

(4) For any x ∈ L, by (1), we have f(x) = f(x) ◦ x = x ◦ f(x). Hence
f2(x) = f(f(x)) = f(x ◦ f(x)) = f(x) ◦ f(x) = f(x), (since f : L → L is a
multiplier of L and using (1) again).

(5) Let I be an ideal of L and a ∈ I. Then by (1) again, f(a) ≤ a and since
I is an initial segment f(a) ∈ I. Therefore f(I) ⊆ I.
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Lemma 3.10. Let L be an ASL and a ∈ L. Define a function fa : L −→ L by
fa(x) = a ◦ x for all x ∈ L. Then fa is a multiplier on L. Such a multiplier of
L is called a principal multiplier of L.

Proof. Let x, y ∈ L. Then fa(x ◦ y) = a ◦ (x ◦ y) = (a ◦ x) ◦ y = fa(x) ◦ y for all
x, y ∈ L. Therefore fa a multiplier on L.

Definition 3.11. A multiplier f in an ASL L is called an isotone multiplier if
x ≤ y implies f(x) ≤ f(y) for all x, y ∈ L.

Lemma 3.12. Let L be an ASL and f be a multiplier of L. If x ≤ y and f(y) = y,
then f(x) = x.

Proof. Let x ≤ y and f(y) = y. Then f(x) = f(x ◦ y) = f(y ◦ x) = f(y) ◦ x =
y ◦ x = x ◦ y = x.

Theorem 3.13. Let L be an ASL and f be a multiplier of L. Then f is an isotone
multiplier.

Proof. Let x, y ∈ L such that x ≤ y. Then f(x) = f(x◦y) = f(y◦x) = f(y)◦x ≤
f(y) ◦ y = f(y) (since by Lemma 3.9). Hence f(x) ≤ f(y). Therefore f is an
isotone multiplier.

Corollary 3.14. Let L be an ASL. Then every principal multiplier on L is an
isotone multiplier on L.

Proof. Let x, y ∈ L such that x ≤ y. Then fa(x) = fa(x ◦ y) = a ◦ x ◦ y =
a ◦ x ◦ a ◦ y = fa(x) ◦ fa(y). Hence fa(x) ≤ fa(y). Therefore fa is an isotone
multiplier of L.

Proposition 3.15. Let L be an ASL and f1 and f2 be two multipliers of L. Then
the composition map of f1 and f2, f1 ◦ f2 is a multiplier of L.

Proof. Let x, y ∈ L. Then (f1 ◦ f2)(x ◦ y) = f1(f2(x ◦ y)) = f1(f2(x) ◦ y) =
f1(f2(x)) ◦ y = (f1 ◦ f2)(x) ◦ y. Therefore f1 ◦ f2 is a multiplier of L.

Proposition 3.16. Let L1 and L2 be two ASLs with 0. Define f : L1 × L2 −→
L1 × L2 by f(x, y) = (0, y) for all (x, y) ∈ L1 × L2. Then f is a multiplier of
L1 × L2 with respect to pointwise operation.

Proof. Let L1 and L2 be two ASLs with 0. Then clearly, (L1×L2, ◦, (0, 0)) is an
ASL with zero under the pointwise operation, where (x1, y1) ◦ (x2, y2) = (x1 ◦
y1, x2◦y2) for any (x1, y1), (x2, y2) ∈ L1×L2. Now, f((x1, y1)◦(x2, y2)) = f(x1◦
x2, y1 ◦y2) = (0, y1 ◦y2) = (0◦x2, y1 ◦y2) = (0, y1)◦(x2, y2) = f(x1, y1)◦(x2, y2).
Therefore f is a multiplier of L1 × L2.
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Lemma 3.17. Let L be an ASL and f be a multiplier of L. Define Fixf (L) =
{x ∈ L | f(x) = x}. Then for any x ∈ Fixf (L) and y ∈ L, x ◦ y ∈ Fixf (L).

Proof. Let x ∈ Fixf (L) and y ∈ L. Now, consider f(x ◦ y) = f(x) ◦ y = x ◦ y.
Therefore x ◦ y ∈ Fixf (L).

Corollary 3.18. Let L be an ASL with zero and f be a multiplier of L. Then
Fixf (L) = {x ∈ L | f(x) = x} is an ideal of L.

Proof. Since f(0) = 0, Fixf (L)(6= ∅) ⊆ L. Then by Lemma 3.17, it is obvious
that Fixf (L) is an ideal of L.

Theorem 3.19. Let L be an ASL and f1 and f2 be multipliers of L. Then f1 = f2
if and only if Fixf1(L) = Fixf2(L).

Proof. Suppose f1 = f2. Then f1(x) = f2(x) for all x ∈ L. It follows that,
Fixf1(L) = Fixf2(L). Conversely, suppose Fixf1(L) = Fixf2(L). Then for
any x ∈ L, f1(f1(x)) = f1(x). Hence f1(x) ∈ Fixf1(L) = Fixf2(L). Thus
f2(f1(x)) = f1(x). Hence f2f1 = f1. Similarly, we can show that f1f2 = f2.
Now, since f1 and f2 are isotone and f1(x) ≤ x, we get f2(f1(x)) ≤ f2(x). Then
f2f1 ≤ f2 and hence f1 ≤ f2. Similarly, we can prove that f2 ≤ f1. Therefore
f1 = f2.

Theorem 3.20. Let L be an ASL and M(L) be the set of all multipliers of L. For
any f1, f2 ∈ M(L) if we define, (f1 ◦ f2)(x) = f1(x) ◦ f2(x) for all x ∈ L, then
(M(L), ◦) is an ASL.

Proof. Let f1, f2 ∈ M(L) and x, y ∈ L. Then (f1◦f2)(x◦y) = f1(x◦y)◦f2(x◦y) =
(f1(x)◦ y)◦ (f2(x)◦ y) = (f1(x)◦ f2(x))◦ y = (f1 ◦ f2)(x)◦ y. Therefore f1 ◦ f2 is
a multiplier on L and hence M(L) is closed under the induced operation ◦ on L,
and clearly, M(L) satisfies all the conditions of an ASL L. Therefore (M(L), ◦)
is an ASL.

Theorem 3.21. Let L be an ASL and F = {Fixf (L) | f ∈ M(L)}. For any
f1, f2 ∈ M(L), if we define, Fixf1(L) ◦ Fixf2(L) = Fixf1◦f2(L), then (F , ◦) is
an ASL and F ∼= M(L).

Proof. By Theorem 3.20, F is closed under the operation ◦. Since F ⊆ L, we can
clearly observe that, (F , ◦) is an ASL. Now, define a mapping φ : M(L) −→ F by
φ(f) = Fixf (L). We know that for any f1, f2 ∈ M(L), F ixf1(L) = Fixf2(L)
if and only if f1 = f2. this implies, φ(f1) = φ(f2) if and only if f1 = f2.
Therefore φ is well-defined and one-one. Now, for any Fixf (L) ∈ F , there
exists f ∈ M(L) such that φ(f) = Fixf (L). Therefore φ is onto. Also, for any
f1, f2 ∈ M(L), φ(f1 ◦ f2) = Fixf1◦f2(L) = Fixf1(L) ◦Fixf2(L) = φ(f1) ◦φ(f2).
Therefore φ is a homomorphism and hence F ∼= M(L).
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Theorem 3.22. Let f and g be two idempotent multipliers of an ASL L and their
composition is commutative, i.e. fg = gf . Then the following are equivalent:

(1) f = g.

(2) f(L) = g(L).

(3) Fixf (L) = Fixg(L).

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) Suppose f(L) = g(L). Let x ∈ Fixf (L). Then x = f(x) ∈ f(L) =
g(L). Hence x = g(y) for some y ∈ L. Now, g(x) = g(g(y)) = g2(y) = g(y) = x.
Hence x ∈ Fixg(L). Therefore Fixf (L) ⊆ Fixg(L). Similarly we can show that
Fixg(L) ⊆ Fixf (L). Therefore Fixf (L) = Fixg(L).

(3) ⇒ (1) Suppose Fixf (L) = Fixg(L). Let x ∈ L. Now, since f(f(x)) =
f(x), we have f(x) ∈ Fixf (L) = Fixg(L). Hence g(f(x)) = f(x). Also, g(x) ∈
Fixg(L) = Fixf (L) and hence f(g(x)) = g(x). Therefore f(x) = g(f(x)) =
(gf)(x) = (fg)(x) = f(g(x)) = g(x). Thus f = g.

Proposition 3.23. Let L be an ASL. Then for any a ∈ L, define φa = {(x, y) ∈
L × L | fa(x) = fa(y)} where fa is a principal multiplier of L. Then φa is a
congruence relation on L.

Proof. For any x ∈ L, it is clear that (x, x) ∈ φa and hence φa is reflexive on L.
Now, let x, y ∈ L such that (x, y) ∈ φa. Then fa(x) = fa(y) which also implies
that, a ◦ x = a ◦ y. Hence a ◦ y = a ◦ x. It follows that, fa(y) = fa(x). Therefore
(y, x) ∈ φa. Thus φa is symmetric on L. Clearly φa is transitive relation on
L. Therefore φa is an equivalence relation on L. It remains to prove that, φa

satisfies the compatibility property. Let (x, y), (p, q) ∈ φa. Then a ◦ x = a ◦ y
and a◦p = a◦q. Consider, a◦x◦p = a◦a◦x◦p = a◦x◦a◦p = a◦y◦a◦q = a◦y◦q.
Hence (x ◦ p, y ◦ q) ∈ φa. Therefore φa is a congruence relation on L.

Note that, from the definition of an Almost semilattice L, for any a, b, x ∈ L,
a◦b◦x = b◦a◦x. This implies that, φa◦b = φb◦a. Based on this concept, we prove
that the set of all principal multipliers in an almost semilattice is a semilattice.

Theorem 3.24. Let L be an ASL and M(L) be the set of all multipliers of L. Then
the set ρ(L) = {fa | a ∈ L}, of all principal multipliers of L, is a semilattice,
where fa ◦ fb = fa◦b for all a, b ∈ L.

Proof. Let a, b ∈ L. Then (fa ◦ fb)(x) = fa(x) ◦ fb(x) = (a ◦ x) ◦ (b ◦ x) =
(a◦b)◦x = fa◦b(x). Therefore fa◦fb = fa◦b ∈ ρ(L) and hence ρ(L) is closed under
the operation ◦. Thus ρ(L) is a sub-ASL of L. Now, for any x ∈ L, fa◦b(x) =
(a◦b)◦x = (b◦a)◦x = fb◦a(x). Therefore fa◦b = fb◦a and hence fa◦fb = fb◦fa.
Therefore (ρ(L), ◦) is a semilattice.
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