Some Properties of \boldsymbol{m}-factor Set on Filippov Algebras

Aslan Doosti
Department of Mathematics, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
Email: doosti424@gmail.com

Received 18 July 2021
Accepted 29 July 2022

Communicated by S. Parvathi

AMS Mathematics Subject Classification(2020): 20M35, 68Q70, 94A45

Abstract

The notion of factor set in Lie algebras is defined by Moneyhun in 1994. It was developed by Eshrati et al. on n-Lie algebras. In this paper we present an m-factor set notion on Filippov algebras and obtain some results for finite dimensional m-stem Filippov algebras. Moreover, we show that if A and B are two finite dimensional m-stem Filippov algebras or have the same dimensions, then $A \sim_{m} B$ if and only if $A \cong B$.

Keywords: Lie algebra; Isoclinic; m-Isoclinism; n-Lie algebras.

1. Introduction and Preliminaries

The concept of n-Lie algebra was introduced by Filippov [6] in 1987. In this paper, we use Filippov algebra instead of n-Lie algebra. A Filippov algebra over a field Λ is a vector space A along with an anti-symmetric n-linear form $\left[x_{1}, \cdots, x_{n}\right]$ satisfying the Jacobi identity:

$$
\left[\left[x_{1}, \cdots, x_{n}\right], y_{2}, \cdots, y_{n}\right]=\sum_{i=1}^{n}\left[x_{1}, \cdots,\left[x_{i}, y_{2}, \cdots, y_{n}\right], \cdots, x_{n}\right]
$$

for all $x_{i}, y_{j} \in A, 1 \leq i \leq n$ and $2 \leq j \leq n$. Clearly when $n=2$, we have Jacobi identity in Lie algebra. A subspace B of an Filippov algebra A is called subalgebra of A if which is closed under the n-Lie product on A. Also, an n-Lie
subalgebra I of A is called n-Lie ideal if, $[I, \underbrace{A, \cdots, A}_{(n-1)-\text { time }}] \subseteq I$. The center of A is defined by

$$
Z(A)=\left\{x \in A,\left[x, y_{2}, \cdots, y_{n}\right]=0, \forall y_{i} \in A, 2 \leq i \leq n\right\}
$$

The lower and upper central series of A, are defined as follows

$$
\cdots \subseteq A^{m+1} \subseteq A^{m} \subseteq \cdots \subseteq A^{2} \subseteq A^{1}=A
$$

and

$$
(0) \subseteq Z(A)=Z_{1}(A) \subseteq Z_{2}(A) \subseteq \cdots \subseteq Z_{m}(A) \subseteq \cdots
$$

respectively, where $A^{m+1}=\left[A, \cdots, A, A^{m}\right]$. For $2 \leq n$ and $1 \leq m$, the subalgebra A^{m+1} is generated by elements of the form $\left[x_{1}, x_{2}, \cdots x_{(n-1)},\left[x_{n}, \cdots, x_{2(n-1)}\right.\right.$, $\left.\left.\left.\left[\cdots,\left[\cdots, x_{(m-1)(n-1)},\left[x_{(m-1)(n-1)+1}, \cdots, x_{m(n-1)+1}\right]\right] \cdots\right]\right]\right]\right]$. Thus for convenience, put $t=(n-1) m+1$ and use the form $\left[x_{1}, x_{2}, \cdots, x_{t}\right]$, where x_{1}, x_{2}, \ldots, $x_{(t-1)} \in A$ and $x_{t} \in A^{m}$. Also $Z_{m+1}(A) / Z_{m}(A)=Z\left(A / Z_{m}(A)\right)$. The map $\phi: A \rightarrow B$ is called homomorphism if ϕ is an n-linear map and

$$
\phi\left(\left[x_{1}, \cdots, x_{n}\right]\right)=\left[\phi\left(x_{1}\right), \cdots, \phi\left(x_{n}\right)\right] .
$$

In 1940 , the notion of m-isoclinism between two groups was presented by Bioch [1], and in 2010, introduced in Lie algebras by Salemkar and Mirzaei [13]. In [3] and [4], the authors defined the concept of m-isoclinism on Filippov algebras and studied some principle properties of m-isoclinism in the class of Filippov algebras. For further information on isoclinism (m-isoclinism) of Lie algebras and Filippov algebras, see [12, 2, 7, 8].

Now we recall the definition of m-isoclinic between two Filippov algebras.

Definition 1.1. Let A and B be two Filippov algebras. Assume $\alpha: A / Z_{m}(A) \rightarrow$ $B / Z_{m}(B)$ and $\beta: A^{m+1} \rightarrow B^{m+1}$ are isomorphisms such that the following diagram is commutative:

$$
\begin{gathered}
\underbrace{\frac{A}{Z_{m}(A)} \times \cdots \times \frac{A}{Z_{m}(A)}}_{t-\text { times }} \\
\downarrow^{\alpha^{t}} \\
\underbrace{\frac{B}{Z_{m}(B)} \times \cdots \times \frac{B}{Z_{m}(B)}}_{t-\text { times }} \longrightarrow A^{m+1} \\
\longrightarrow B^{m+1}
\end{gathered}
$$

where the rule's of horizontal maps are $\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right) \longrightarrow\left[x_{1}, \ldots, x_{t}\right]$ when $x_{i} \in$ $A / Z_{m}(A)$ and Similarly for $\overline{y_{i}} \in B / Z_{m}(B)$. Also, $\beta\left(\left[x_{1}, \ldots, x_{t}\right]\right)=\left[y_{1}, \ldots, y_{t}\right]$, for all $0 \leqslant i \leqslant t$, $y_{i} \in \alpha\left(x_{i}+Z_{m}(A)\right)$ and $t=(n-1) m+1$. In this case the pair
(α, β) is called an m-isoclinism from A to B and they are called m - isoclinic, which is denoted by $A \sim_{m} B$.

In order to state our main results, we need the following lemmas, which their proofs are the same on Lie algebra (see [11, 9]).

Lemma 1.2. Let A be an Filippov algebra and B an abelian Filippov algebra. Then $A \sim_{m} A \oplus B$.

Lemma 1.3. Let I be an ideal of Filippov algebra A. Then
(i) if $I \cap A^{2}=0$, then $A \sim_{m} A / I$,
(ii) if A is of finite dimension and $A \sim_{m} A / I$, then $I \cap A^{2}=0$.

Lemma 1.4. Let A and B be m-isoclinisms Filippov algebras with the given pair (α, β). Then, for each $x \in A^{m+1}$,
(i) $\alpha\left(x+Z_{m}(A)\right)=\beta(x)+Z_{m}(B)$,
(ii) $\beta\left(\left[x, x_{2}, \cdots, x_{t}\right]=\left[\beta(x), y_{2}, \cdots, y_{t}\right]\right.$, for all $x_{i} \in A, y_{i} \in \alpha\left(x_{i}+\right.$ $\left.Z_{m}(A)\right), 2 \leq i \leq t$.

The concepts of stem Lie algebra, m-stem Lie algebra, and stem n-Lie algebra are defined and studied in [9], [6] and [5], respectively.

Definition 1.5. The Filippov algebra A is said to be m-stem Filippov algebra, when $Z(A) \subseteq A^{m+1}$ for $m \geq 1$.

In the next section, we obtain some results by using this notion.

Lemma 1.6. Let \mathfrak{C} be an isoclinism family of Filippov algebras. Then
(i) \mathfrak{C} contains an m-stem Filippov algebra;
(ii) each finite dimensional Filippov algebra T in \mathfrak{C} is m-stem if and only if T has minimal dimension in \mathfrak{C}.

2. \boldsymbol{m}-Factor Sets on Filippov Algebras

The notion of factor sets in Lie algebra is defined by Moneyhun [10] in 1994, and he showed that if L and M are two finite dimensional stem Lie algebras or they have the same dimensions, then $L \sim M$ if and only if $L \cong M$. The same notions for n-Lie algebras studied by Eshrati et al. in [5]. In this section, we give a more general definition of the concept of m-factor set in Filippov algebras, which includes the previous ones and gives some of its properties. We show that,
if A and B are two finite dimensional m-stem Filippov algebras or have the same dimensions, then $A \sim_{m} B$ if and only if $A \cong B$.

Definition 2.1. Let A be a finite dimensional Filippov algebra over a field Λ. For each $1 \leq m$ and $t=(n-1) m+1$, the t-linear map

$$
f_{m}: \frac{A}{Z_{m}(A)} \times \cdots \times \frac{A}{Z_{m}(A)} \longrightarrow Z_{m}(A)
$$

is called an m-factor set if it satisfies the following conditions:
(i) $f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{i}, \ldots, \bar{x}_{j}, \ldots, \bar{x}_{t}\right)=0$, if $\bar{x}_{i}=\bar{x}_{j}$, for all $\bar{x}_{k}=x_{k}+Z_{m}(A) \in$ $A / Z_{m}(A)$.
(ii) $f_{m}\left(\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right)=\sum_{i=1}^{t} f_{m}\left(\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right)$, for all $\bar{x}_{i}, \bar{y}_{j} \in A / Z_{m}(A), 1 \leq i \leq t$ and $2 \leq j \leq t$.

The following lemmas are needed for the proofs of our main results.

Lemma 2.2. Let A be a Filippov algebra and f_{m} be an m-factor set on A. Then
(i) the set

$$
R=\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right)=\left\{(a, \bar{x}): a \in Z_{m}(A), \bar{x} \in \frac{A}{Z_{m}(A)}\right\}
$$

is a Filippov algebra under the following multiplication

$$
\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right]=\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right)
$$

(ii) $Z_{R}=\left\{(a, 0) \in R: a \in Z_{m}(A)\right\} \cong Z_{m}(A)$.

Proof. (i) Clearly, R is an algebra and so one only need to check the properties of Filippov algebra. Hence, if $\left(a_{i}, \bar{x}_{i}\right)=\left(a_{j}, \bar{x}_{j}\right)$, then

$$
\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{i}, \bar{x}_{i}\right), \ldots,\left(a_{j}, \bar{x}_{j}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right]=0
$$

for all $a_{k} \in Z_{m}(A), \bar{x}_{k} \in A / Z_{m}(A)$ and $1 \leq k \leq t$. Now we show the Jacobi identity,

$$
\begin{aligned}
& {\left[\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right],\left(b_{2}, \bar{y}_{2}\right), \ldots,\left(b_{t}, \bar{y}_{t}\right)\right] } \\
= & {\left[\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right),\left(b_{2}, \bar{y}_{2}\right), \ldots,\left(b_{t}, \bar{y}_{t}\right)\right] } \\
= & \left(f_{m}\left(\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right),\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right) \\
= & \left(\sum_{i=1}^{t} f_{m}\left(\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right), \sum_{i=1}^{t}\left[\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right]\right) \\
= & \sum_{i=1}^{n}\left(f_{m}\left(\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{t}\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(f_{m}\left(\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right),\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right] \\
& =\sum_{i=1}^{t}\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left[\left(a_{i}, \bar{x}_{i}\right),\left(b_{2}, \bar{y}_{2}\right), \ldots,\left(b_{t}, \bar{y}_{t}\right)\right], \ldots,\left(a_{t}, \bar{x}_{t}\right)\right]
\end{aligned}
$$

Hence, R is a Filippov algebra.
(ii) Define the map $\phi: Z_{m}(A) \rightarrow Z_{R}$, given by $\phi(z)=(z, 0)$, for all $z \in$ $Z_{m}(A)$. Clearly ϕ is an isomorphism and so $Z_{R} \cong Z_{m}(A)$.

The following lemma shows that every Filippov algebra has an m-factor set.

Lemma 2.3. Let A be a Filippov algebra. Then there exists an m-factor set f_{m} on A such that

$$
A \cong\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right)
$$

Proof. Put K to be a complement of $Z_{m}(A)$ in A, hence $A=K \oplus Z_{m}(A)$. Now define the map $T: A / Z_{m}(A) \longrightarrow A$, given by $T(\bar{x})=T\left(x+Z_{m}(A)\right)=$ $T\left(k+a+Z_{m}(A)\right)=k$, for all $x \in A, a \in Z_{m}(A)$ and $k \in K$. Clearly, $\overline{T(\bar{x})}=\bar{x}$ and

$$
\left[T\left(\bar{x}_{1}\right), T\left(\bar{x}_{2}\right), \ldots, T\left(\bar{x}_{t}\right)\right]-T\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right] \in Z_{m}(A)
$$

Consider the map

$$
f_{m}: \underbrace{\frac{A}{Z_{m}(A)} \times \cdots \times \frac{A}{Z_{m}(A)}}_{t-\text { time }} \longrightarrow Z_{m}(A)
$$

defined by

$$
f_{m}\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{t}\right)=\left[T\left(\bar{x}_{1}\right), T\left(\bar{x}_{2}\right), \cdots, T\left(\bar{x}_{t}\right)\right]-T\left[\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{t}\right]
$$

so that f_{m} is an m-factor set. Part (i) of Definition 2.1 is clear. So for part (ii) we check Jacobi identity. Hence

$$
\begin{aligned}
& f_{m}\left(\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right) \\
= & {\left[T\left(\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right]\right), T\left(\bar{y}_{2}\right), \ldots, T\left(\bar{y}_{t}\right)\right]-T\left(\left[\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right) } \\
= & {\left[\left[T\left(\bar{x}_{1}\right), T\left(\bar{x}_{2}\right), \ldots, T\left(\bar{x}_{t}\right)\right], T\left(\bar{y}_{2}\right), \ldots, T\left(\bar{y}_{t}\right)\right]-T\left(\left[\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{t}\right], \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right) } \\
= & \sum_{i=1}^{t}\left[T\left(\bar{x}_{1}\right), \ldots,\left[T\left(\bar{x}_{i}\right), T\left(\bar{y}_{2}\right), \ldots, T\left(\bar{y}_{t}\right)\right], \ldots, T\left(\bar{x}_{t}\right)\right] \\
& -T\left(\sum_{i=1}^{t}\left[\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{t}\left[T\left(\bar{x}_{1}\right), \ldots, T\left(\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right), \ldots, T\left(\bar{x}_{t}\right)\right] \\
& -\sum_{i=1}^{t} T\left(\left[\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right]\right) \\
= & \sum_{i=1}^{t}\left(\left[T\left(\bar{x}_{1}\right), \ldots, T\left(\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right]\right), \ldots, T\left(\bar{x}_{t}\right)\right]\right) \\
& -T\left(\left[\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right]\right) \\
= & \sum_{i=1}^{t} f_{m}\left(\bar{x}_{1}, \ldots,\left[\bar{x}_{i}, \bar{y}_{2}, \ldots, \bar{y}_{t}\right], \ldots, \bar{x}_{t}\right)
\end{aligned}
$$

Now, define the map $\phi:\left(Z_{m}(A), A / Z_{m}(A), f_{m}\right) \longrightarrow A$ given by $\phi(a, \bar{x})=a+$ $T(\bar{x})$, for all $a \in Z_{m}(A)$ and $\bar{x}=x+Z_{m}(A)=k+Z_{m}(A) \in A / Z_{m}(A)$. Clearly, ϕ is a well-defined map and it is isomorphism.

The relationship between the two m-stem Filippov algebras is shown in the following lemma.

Lemma 2.4. Let A be an m-stem Filippov algebra in m-isoclinism family of Filippov algebras \mathfrak{C}. Then for any m-stem Filippov algebra B of \mathfrak{C}, there exists an m-factor set f_{m} on A, such that:

$$
B \cong\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right)
$$

Proof. Let (α, β) be a pair of m-isoclinism between Filippov algebras A and B. Then by Lemma 1.2, $\beta\left(Z_{m}(A)\right)=Z_{m}(B)$. According to Lemma 2.3, there exists an m-factor set g_{m} such that

$$
B \cong\left(Z_{m}(B), \frac{B}{Z_{m}(B)}, g_{m}\right)
$$

Now, define the m-factor set

$$
f_{m}: \underbrace{\frac{A}{Z_{m}(A)} \times \cdots \times \frac{A}{Z_{m}(A)}}_{t-\text { time }} \longrightarrow Z_{m}(A)
$$

given by

$$
\left.f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)=\beta^{-1}\left(g_{m}\left(\alpha\left(\bar{x}_{1}\right)\right), \ldots, \alpha\left(\bar{x}_{t}\right)\right)\right)
$$

for all $\bar{x}_{1}, \ldots, \bar{x}_{t} \in A / Z_{m}(A)$. Let

$$
\varphi:\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right) \longrightarrow\left(Z_{m}(B), \frac{B}{Z_{m}(B)}, g_{m}\right)
$$

be given by $\varphi(a, \bar{x})=(\beta(a), \alpha(\bar{x}))$, for all $a \in Z_{m}(A)$ and $\bar{x} \in A / Z_{m}(A)$. It is easy to see that the map φ is a well-defined bijection and also we have

$$
\begin{aligned}
\varphi\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right] & =\varphi\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right) \\
& =\left(\beta\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)\right), \alpha\left(\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right)\right) \\
& =\left(g_{m}\left(\alpha\left(\bar{x}_{1}\right), \ldots, \alpha\left(\bar{x}_{t}\right)\right), \alpha\left(\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right)\right) \\
& =\left[\left(\beta\left(a_{1}\right), \alpha\left(\bar{x}_{1}\right)\right), \ldots,\left(\beta\left(a_{t}\right), \alpha\left(\bar{x}_{t}\right)\right)\right] \\
& =\left[\varphi\left(a_{1}, \bar{x}_{1}\right), \ldots, \varphi\left(a_{t}, \bar{x}_{t}\right)\right]
\end{aligned}
$$

So φ is an isomorphism of Filippov algebras and the proof is completed.

Lemma 2.5. Let A be a Filippov algebra and f_{m} and g_{m} be two m-factor sets on A. Assume that

$$
\begin{aligned}
R & =\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right), \quad Z_{R}
\end{aligned}=\left\{(a, 0) \in R: a \in Z_{m}(A)\right\}, ~ 子, ~ Z_{S}=\left\{(a, 0) \in S: a \in Z_{m}(A)\right\} .
$$

If λ is an isomorphism from R onto S satisfying $\lambda\left(Z_{R}\right)=Z_{S}$, then the restriction of λ on $A / Z_{m}(A)$ and $Z_{m}(A)$ define the automorphisms $\alpha \in A u t\left(A / Z_{m}(A)\right)$ and $\beta \in \operatorname{Aut}\left(Z_{m}(A)\right)$, respectively.

Proof. See [5, Lemma 2.7] for the proof.

Lemma 2.6. Let A be a Filippov algebra, R, S, Z_{R}, and Z_{S} be as in the previous lemma. Then the following statements hold:
(i) If $\lambda: R \rightarrow S$ is a Filippov isomorphism such that $\lambda\left(Z_{R}\right)=Z_{S}$ and α, β are the corresponding automorphisms induced by λ on $A / Z_{m}(A)$ and $Z_{m}(A)$, respectively. Then there exists a linear map $\gamma: A / Z_{m}(A) \longrightarrow Z_{m}(A)$ such that

$$
\beta\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)\right)+\gamma\left(\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right)=g_{m}\left(\alpha\left(\bar{x}_{1}\right), \ldots, \alpha\left(\bar{x}_{t}\right)\right) .
$$

(ii) If $\alpha \in \operatorname{Aut}\left(A / Z_{m}(A)\right), \beta \in \operatorname{Aut}\left(Z_{m}(A)\right)$, and $\delta: A / Z_{m}(A) \longrightarrow Z_{m}(A)$ are linear maps satisfying

$$
\beta\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)\right)+\delta\left(\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right)=g_{m}\left(\alpha\left(\bar{x}_{1}\right), \ldots, \alpha\left(\bar{x}_{t}\right)\right),
$$

then $R \cong S$ via the isomorphism λ induced by α and β satisfying $\lambda\left(Z_{R}\right)=$ Z_{S}.

Proof. The proof is similar to Lemma 2.6 in [5].

Now we are in a position to state and prove our main results.

Theorem 2.7. Let A and B be two finite dimensional m-stem Filippov algebras. Then $A \sim_{m} B$ if and only if $A \cong B$.

Proof. The proof of sufficient condition is obvious. To prove the other side assume that $A \sim_{m} B$. According to Lemma 2.4, there exist m-factor sets f_{m} and g_{m} such that

$$
A \cong\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, f_{m}\right)=R \quad \text { and } \quad B \cong\left(Z_{m}(A), \frac{A}{Z_{m}(A)}, g_{m}\right)=S
$$

.Now suppose the pair (ω, τ) is an m-isoclinic between two Filippov algebras R and S. Then $Z_{m}(R) \cong Z_{m}(A) \cong Z_{R}$ and $Z_{m}(S) \cong Z_{m}(B) \cong Z_{S}$. As $Z_{R} \subseteq Z_{m}(R)$, we have $Z_{m}(R)=Z_{R}$. Now, let $\alpha \in A u t\left(A / Z_{m}(A)\right)$ be a map defined by

$$
\omega\left((0, \bar{x})+Z_{R}\right)=(0, \alpha(\bar{x}))+Z_{S},
$$

for all $\bar{x} \in A / Z_{m}(A)$. Also suppose $\beta \in \operatorname{Aut}\left(Z_{m}(A)\right)$ defined by $\tau(a, 0)=$ $(\beta(a), 0)$. Consider the following commutative diagram:

where

$$
\begin{aligned}
\rho\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right) & =\left(\left(0, \bar{x}_{1}\right)+Z_{R}, \ldots,\left(0, \bar{x}_{t}\right)+Z_{R}\right), \\
\sigma\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right) & =\left(\left(0, \bar{x}_{1}\right)+Z_{S}, \ldots,\left(0, \bar{x}_{t}\right)+Z_{S}\right), \\
\theta\left(\left(a_{1}, \bar{x}_{1}\right)+Z_{R}, \ldots,\left(a_{t}, \bar{x}_{t}\right)+Z_{R}\right) & =\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right] \\
& =\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right],\right. \\
\xi\left(\left(a_{1}, \bar{x}_{1}\right)+Z_{S}, \ldots,\left(a_{t}, \bar{x}_{t}\right)+Z_{S}\right) & =\left[\left(a_{1}, \bar{x}_{1}\right), \ldots,\left(a_{t}, \bar{x}_{t}\right)\right] \\
& =\left(g_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right] .\right.
\end{aligned}
$$

Using the right hand side of the above diagram and the property $R \sim_{m} S$, we have

$$
\begin{align*}
\tau\left[\left(0, \bar{x}_{1}\right), \ldots,\left(0, \bar{x}_{t}\right)\right] & =\left[\left(0, .\left(\bar{x}_{1}\right)\right), \ldots,\left(0, .\left(\bar{x}_{t}\right)\right)\right] \\
& =\left(g_{m}\left(.\left(\bar{x}_{1}\right), \ldots, .\left(\bar{x}_{t}\right)\right),\left[.\left(\bar{x}_{1}\right), \ldots, .\left(\bar{x}_{t}\right)\right]\right) \tag{1}
\end{align*}
$$

On the other hand, by assuming $\delta: A^{m+1} / Z_{m}(A) \longrightarrow Z_{m}(A)$ given by

$$
\begin{align*}
\tau\left[\left(0, \bar{x}_{1}\right), \ldots,\left(0, \bar{x}_{t}\right)\right] & =\tau\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right),\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right) \\
& =\tau\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right), 0\right)+\tau\left(0,\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right]\right) \\
& =\left(\beta\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)\right), 0\right)+\left(\delta\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right], *\right) \\
& =\left(\beta\left(f_{m}\left(\bar{x}_{1}, \ldots, \bar{x}_{t}\right)\right)+\delta\left[\bar{x}_{1}, \ldots, \bar{x}_{t}\right], *\right) \tag{2}
\end{align*}
$$

where $*$ is element of $A / Z_{m}(A)$. The Eqs. (1) and (2) give the following equation

$$
\beta\left(f_{m}\left(\bar{x}_{1}, \cdots, \bar{x}_{t}\right)\right)+\delta\left[\bar{x}_{1}, \cdots, \bar{x}_{t}\right]=g_{m}\left(\alpha\left(\bar{x}_{1}\right), \cdots, \alpha\left(\bar{x}_{t}\right)\right) .
$$

Now we extend the linear map δ on $A / Z_{m}(A)$ to obtain the conditions of Lemma 2.6 (ii). Assume that it is a pure subalgebra in the complement of $A^{m+1} / Z_{m}(A)$ in $A / Z_{m}(A)$. Then we obtain $R \cong S$.

Theorem 2.8. Let \mathfrak{C} be an m-isoclinism family of Filippov algebras of finite dimension. Then \mathfrak{C} possesses a stem Filippov algebra T. Also any Filippov algebra A in \mathfrak{C} can be expressed as the direct sum of T with some finite dimensional abelian Filippov algebra.

Proof. By Lemma 1.6, \mathfrak{C} contains an m-stem Filippov algebra T. By Lemma 1.2, $T \sim_{m} T \oplus A$, for any abelian Filippov algebra A, and so $T \oplus A$ is in \mathfrak{C}. Let A be arbitrary Filippov algebra in \mathfrak{C} and S be the complement of $Z_{m}(A) \cap A^{m+1}$ in $Z_{m}(A)$, that is,

$$
S \oplus\left(Z_{m}(A) \cap A^{m+1}\right)=Z_{m}(A)
$$

As $S \subseteq Z_{m}(A)$, we have $[S, A, \cdots, A] \subseteq\left[Z_{m}(A), A, \cdots, A\right]$ and so S is an ideal of A. Assume $T=A / S$. Then $S \cap\left(Z_{m}(A) \cap A^{m+1}\right)=S \cap A^{m+1}=0$ and by Lemma 1.3, $A / S \sim_{m} A$. Also,

$$
Z_{m}(T)=Z_{m}\left(\frac{A}{S}\right)=\frac{Z_{m}(A)}{S} \subseteq \frac{A^{m+1}+S}{S} \cong\left(\frac{A}{S}\right)^{m+1}=T^{m+1}
$$

Therefore T is m-stem Filippov algebra.
Now, there exists a subspace K of A such that $A^{m+1} \subseteq K, k \cap s=0$ and $K \oplus S=A$. Hence $[K, A, \cdots, A] \subseteq[A, A, \ldots, A]=A^{m+1} \subseteq K$ and consequently $K \triangleleft A$. Also, $A \sim_{m} A / S \cong(K \oplus S) / S \cong K$, and so K is a finite dimensional m-stem Filippov algebra. Clearly $T \sim_{m} A \sim_{m} K$, which gives $T \sim_{m} K$ and hence $T \cong K$. In particular, $A=K \oplus S \cong T \oplus S$.

Theorem 2.9. Let A and B be two Filippov algebras with the same dimensions. Then $A \sim_{m} B$ if and only if $A \cong B$.

Proof. Suppose that $A \sim_{m} B$. Then $A=T \oplus S_{1}$ and $B=T^{\prime} \oplus S_{2}$, where T and T^{\prime} are m-stem Filippov algebras. By Theorem $2.7, T \cong T^{\prime}$. Now, since $S_{1} \cong S_{2}$, it follows that $T \oplus S_{1} \cong T^{\prime} \oplus S_{2}$. Therefore $A \cong B$.

Acknowledgement. The author thanks the referee for his/her valuable comments and suggestions.

References

[1] J.C. Bioch, n-Isoclinism groups, Indagationes Mathematicae 38 (1976) 400-407.
[2] H. Darabi, F. Saeedi, On the Schur multiplier of n-Lie algebras, Journal of Lie Theory 27 (2017) 271-281.
[3] A. Doosti, F. Saeedi, S. Tajnia, Some properties of m-isoclinism and $I D^{*}$ derivations in Filippov algebras, Cogent Mathematics 4 (2017), 1309740, 7 pages.
[4] A. Doosti, F. Saeedi, S. Tajnia, Some properties of m-isoclinism in Filippov algebras, Advances and Applications in Mathematical Sciences 17 (2018) 723-730.
[5] M. Eshrati, M.R.R. Moghaddam, F. Saeedi, Some properties of isoclinism in n-Lie algebras. Comm. Algebra 44 (7) (2016) 3005-3019.
[6] V.T. Filippov, n-Lie algebras, Siberian Mathematical Journal 26 (1985) 126-140.
[7] N.S. Hekster, On the structure of n-isoclinism classes of groups, Journal of Pure and Applied Algebra 40 (1986) 63-85.
[8] S.M. Kasymov, On a theory of n-Lie algebras, Algebra Logika 26 (1987) 277-297.
[9] M.R.R. Moghaddam and F. Parvaneh, On the isoclinism of a pair of Lie algebras and factor sets, Asian-Eur. J. Math. 2 (2) (2009) 213-225.
[10] K. Moneyhun, Isoclinisms in Lie algebras, Algebras, Groups, and Geometries 11 (1994) 9-22.
[11] F. Saeedi and B. Veisi, Schurs theorem and its converses for n-Lie algebras, Linear and Multilinear Algebra 62 (2014) 1139-1145.
[12] A.R. Salemkar, H. Bigdely, V. Alamian, Some properties on isoclinism of Lie algebras and covers, Journal of Algebra \& its Applications 7 (4) (2008) 507-516.
[13] A.R. Salemkar, F. Mirzaie, Characterizing n-isoclinism classes of Lie algebras, Communications in Algebra 38 (2010) 3392-3403.

