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Abstract. In this paper, the notion of soft normal int-field over a field has been in-

troduced. We have established a correspondence, called Soft Galois correspondence,

between the soft intermediate int-fields of a finite Galois extension and the soft int-

groups of the Galois group corresponding to the field extension. We have generalized

some results of Galois theory in the environment of soft set theory.
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1. Introduction

Soft set theory was initiated by Molodtsov [21] in 1999 as a parameterized math-
ematical tool for modeling uncertainties. Theoretical development of soft set
theory and its applications in decision making problems [19, 22] both have been
done tremendously during last two decades.

Algebraic structure in soft set theory was first introduced by Aktas et al.
[2] in 2007 and they defined soft group as a parameterized family of subgroups.
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With the introduction of soft group, a new direction was revealed for researchers.
Hence the notions of soft semiring [9], soft ring [1], soft field [18], soft vector space
[23], soft module [25] etc. have been developed rapidly. Also, the notions of fuzzy
soft group [4], fuzzy soft ring [8, 10] etc. were studied simultaneously.

But many results of classical group theory, ring theory etc. could not be
verified properly in soft set theory using the above approach. That means de-
velopment of different algebraic structures from classical set theory to soft set
theory in this approach is not up to the mark. In 2012 Cagman et al. [6] devel-
oped the notion of group structure in soft set theory using inclusion operators
and hence the notion of soft int-group was established. Thereafter the notions
of soft int-ring [3, 7, 14], soft int-field [3], soft int-ideal [11, 12, 13] etc. have
been established. Although the study of field structure in soft set theory is not
sufficient. Recently, Ghosh et al. [15] has studied different properties of soft
int-field extension.

In this paper, section 3 introduces the notion of soft normal int-field over
a field and illustrates it with suitable example. In section 4, we define a Soft
Galois correspondence between the soft intermediate int-fields of a finite Galois
extension and the soft int-groups of the associated Galois group. Hence we
generalize some results of Galois theory in soft set setting using Soft Galois
correspondence.

2. Preliminaries

Some basic definitions and results of classical set theory and soft set theory
are collected here for use in the later sections. Throughout this paper, unless
otherwise stated, let U refer to an initial universe, E the set of parameters, P (U)
the power set of U,N the set of all natural numbers and A ⊆ E.

Definition 2.1. [21] A pair (F,A) is called a soft set of A over U, where F is a
mapping given by F : A → P (U). The soft set (F,A) is simply denoted by F,
when no confusions regarding the parameter set A and the universal set U arise.
The collection of all soft sets with parameter set A over U will be denoted by
S(A,U).

Definition 2.2. [6] Let F ∈ S(A,U) and K ⊆ U. Then the set FK = {x ∈ A :
F (x) ⊇ K} is called K-inclusion subset of the soft set F. Here, we denote the
set {x ∈ A : F (x) ⊃ K} by FK? .

Definition 2.3. Let F ∈ S(A,U). The image of F is denoted by Im(F ) and
defined by Im(F ) = {F (x) : x ∈ A}.

Definition 2.4. [24] Let A ⊆ E. The soft characteristic function of A over U,
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denoted by χA, is defined by the soft set χA : E → P (U), where

χA(x) =

{
U if x ∈ A,

∅ if x 6∈ A.

Definition 2.5. [6] Let F ∈ S(A,U) and f : A → A
′

be any mapping, where
A,A

′

are parameter sets. Then the image of F under f is denoted by f(F ) and
defined for all y ∈ A

′

by

f(F )(y) =





⋃
x∈f−1(y)

F (x) if f−1(y) 6= ∅,

∅ otherwise.

Theorem 2.6. [6] Let G be any group. A soft set H ∈ S(G,U) is a soft int-group
of G if and only if H(xy−1) ⊇ H(x) ∩H(y) for all x, y ∈ G.

Theorem 2.7. [6] Let G be a group. A soft set H ∈ S(G,U) is a soft int-group of
G if and only if HK is a subgroup of G for all K ⊆ H(e), where e is the identity
element of G.

Theorem 2.8. [6] Let G be a group and H ∈ S(G,U). Then H is a soft normal
int-group of G if and only if HL is a normal subgroup of G for all L ⊆ H(e),
where e is the identity element of G.

Definition 2.9. [6] Let H be a soft int-group of a group G over U and a ∈ G.
Then the soft set Ha of G, defined by Ha(x) = H(xa−1) for all x ∈ G, is called
the soft coset of H in G determined by a ∈ G.

Theorem 2.10. [6] Let us denote the set {Ha : a ∈ G} by G/H. If H is a
soft normal int-group of G then G/H forms a group with respect to the binary
composition Ha ∗ Hb = Hab for all a, b ∈ G. Moreover, G/H is isomorphic to
G/HL, where L = H(e) and e is the identity element of G.

Here |G/H | is called the index of H in G and it is denoted by [G : H ].

Definition 2.11. [3] Let T be a field. A soft set F ∈ S(T, U) is called a soft
int-field of T if F (x − y) ⊇ F (x) ∩ F (y) and F (xy−1) ⊇ F (x) ∩ F (y), for all
x, y ∈ T, where y 6= 0 (the zero element of T ).

Proposition 2.12. Let T be a field and F a soft int-field of T. Then F (0) ⊇
F (1) ⊇ F (r) = F (−r) = F (r−1) for all r(6= 0) ∈ T, where 0 is the zero element
of T.
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Theorem 2.13. [15] A soft set F of a field T is a soft int-field of T if and only
if K-inclusion subsets FK are subfields of T for all K ⊆ F (0).

Theorem 2.14. [16] Let A/B be a field extension and G(A/B) be the collection
of all B−automorphism of A, i.e., G(A/B) = {α : A → Ais an isomorphism :
α(b) = b, for all b ∈ B}. Then G(A/B) forms a group w.r.t. the composition of
mappings.

The group G(A/B) is called the Galois group of A over B.

Theorem 2.15. [5, 16] Let A/B be a normal field extension. An intermediate
field C of A/B is normal over B if and only if α(C) = C for all α ∈ G(A/B).

Proposition 2.16. [16] Let A/B be a field extension. If P is a subgroup of
G(A/B) then the set AP = {a ∈ A : α(a) = a for all α ∈ P} is an intermediate
field of A/B. The field AP is called the fixed field of the subgroup P.

3. Soft Normal Int-field over a Field

Form this section, unless otherwise stated, all soft sets are to be considered over
U. We shall fix some notations which will be used thereafter.

Definition 3.1. Let A/B be a field extension. A soft int-field F of A is called
soft intermediate int-field of A/B if FK ⊇ B, for all K ∈ Im(F ).

Note 3.2. For a field extension A/B, (A/B)♣ denotes the collection of all soft
intermediate int-fields of A/B and G(A/B)F denotes the collection of all soft
int-groups of G(A/B).

Let α : A → A be an isomorphism and F be a soft int-field of A. Then
for each a ∈ A,α−1(a) contain exactly one element, say a

′ ∈ A. Then from
Definition 2.5, we have

α(F )(a) =
⋃

x∈α−1(a)

F (x) = F (a
′

), for all a ∈ A. (1)

Proposition 3.3. Let α : A → A be an isomorphism and F be a soft int-field of
A. Then α(F ) is a soft int-field of A.

Proof. From Eq. (1), it is clear that α(F ) is a soft subset of A. Let a, b ∈ A. Then
α(F )(a) = F (a

′

) where a
′ ∈ A such that α(a

′

) = a. Similarly, α(F )(b) = F (b
′

)
where b

′ ∈ A such that α(b
′

) = b. Also, α(F )(a − b) = F (r
′

) where r
′ ∈ A
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such that α(r
′

) = a − b. Since α is an isomorphism, we have α(r
′

) = a − b =
α(a

′

) − α(b
′

) = α(a
′ − b

′

) and hence r
′

= a
′ − b

′

. Therefore α(F )(a − b) =
F (r

′

) = F (a
′ − b

′

) ⊇ F (a
′

)∩F (b
′

) ⊇ α(F )(a)∩α(F )(b). Similarly, we can prove
that α(F )(cd−1) ⊇ α(F )(c)∩α(F )(d) for c, d(6= 0) ∈ A, Therefore α(F ) is a soft
int-field of A.

Proposition 3.4. Let α : A → A be an isomorphism and F be a soft int-field of A.
Then α(FK) = [α(F )]K for all K ⊆ U, where [α(F )]K denotes the K-inclusion
subset of α(F ).

Proof. Suppose that K ⊆ F (0). Then a ∈ α(FK) ⇔ ∃b ∈ FK such that α(b) =
a ⇔ F (b) ⊇ K such that α(b) = a ⇔ α(F )(a) ⊇ K ⇔ a ∈ [α(F )]K . Hence
α(FK) = [α(F )]K for all K ⊆ F (0). Now, let F (0) ⊂ K ⊆ U. Since F (0) ⊇ F (a)
for all a ∈ A, so FK = {a ∈ A : F (a) ⊇ K} = ∅ and hence α(FK) = ∅. Similarly,
[α(F )]K = ∅. Therefore α(FK) = [α(F )]K for all K ⊆ U.

We consider the definition of soft normal int-field over a field as follows:

Definition 3.5. Let A/B be a normal field extension and F ∈ (A/B)♣. Then F
is said to be soft normal over B if α(F )⊆̃F, for all α ∈ G(A/B).

Theorem 3.6. Let A/B be a normal field extension and F ∈ (A/B)♣. Then F
is soft normal over B if and only if FK is normal field extension of B for all
K ∈ Im(F ).

Proof. Since F ∈ (A/B)♣, F is soft int-field of A such that FK ⊇ B, for all K ∈
Im(F ). Hence by Theorem 2.13, FK is field extension of B for all K ∈ Im(F ).
Then

F is soft normal over B

⇔ α(F )⊆̃F, for all α ∈ G(A/B), (by Definition 3.5)

⇔ [α(F )]K ⊆ FK for all K ∈ Im(F ), for all α ∈ G(A/B)

⇔ α(FK) ⊆ FK for all K ∈ Im(F ), α ∈ G(A/B), (by Proposition 3.4)

⇔ FK is normal field extension of B, ∀K ∈ Im(F ), (by Theorem 2.15).

Example 3.7. Let U = S3, the set of all permutations on the set {1, 2, 3}, be the
universal set. Let B = Q, the field of rational numbers and A be the splitting
field of the irreducible polynomial x3 − 2 over B. Hence A = Q( 3

√
2,
√
3i) and

A/B is a finite normal extension (see [20]). Intermediate fields of A/B are

Q( 3
√
2),Q(

√
3i),Q(

3
√
2

2
(−1+

√
3i)),Q(

3
√
2

2
(−1−

√
3i)). We consider the chain of

subfields of A as B = Q ⊂ Q(
√
3i) ⊂ Q( 3

√
2,
√
3i) = A.
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Define a soft set F of A over S3 as

F (a) =





S3 if a ∈ Q,

A3 if a ∈ Q(
√
3i) \Q,

I if a ∈ Q( 3
√
2,
√
3i) \Q(

√
3i),

where A3 is the set of all even permutations on {1, 2, 3} and I is set containing
only identity permutation on {1, 2, 3}. Then I ⊂ A3 ⊂ S3. Here FS3 = Q, FA3 =
Q(

√
3i), FI = Q( 3

√
2,
√
3i). Then FS3 , FA3 , FI are subfields of A and FK ⊇ B,

for all K ∈ Im(F ). Hence F ∈ (A/B)♣.

Again, FS3 , FA3 , FI are normal field extensions of B. Therefore by Theo-
rem 3.6, F is soft normal over B. We consider the chain of subfields of A as
B = Q ⊂ Q( 3

√
2) ⊂ Q( 3

√
2,
√
3i) = A.

Define a soft set H of A over S3 as

H(a) =






A3 if a ∈ Q,

I if a ∈ Q( 3
√
2) \Q,

∅ if a ∈ Q( 3
√
2,
√
3i) \Q( 3

√
2).

Hence HA3 = Q, HI = Q( 3
√
2), H∅ = Q( 3

√
2,
√
3i). Therefore H is a soft int-field

of A. Here HI = Q( 3
√
2) is not normal extension of Q. Hence by Theorem 3.6,

H is not soft normal over B.

4. Soft Galois Correspondence

Definition 4.1. Let A/B be a field extension. Let a ∈ A and α ∈ G(A/B). Then
the sets G(A/B)a and Aα are defined by

G(A/B)a = {α ∈ G(A/B) : α(a) 6= a},
Aα = {a ∈ A : α(a) 6= a}.

Proposition 4.2. Let A/B be a field extension. Let a, b ∈ A and α, β ∈ G(A/B).
Then the following properties hold:

(i) G(A/B)a−b ⊆ G(A/B)a ∪G(A/B)b.

(ii) G(A/B)ab
−1 ⊆ G(A/B)a ∪G(A/B)b, if b 6= 0, where 0 is the zero element

of A.

(iii) Aαβ−1 ⊆ Aα ∪ Aβ .

(iv) Aα = ∅ if α : A → A is an identity mapping.

(v) G(A/B)b = ∅, for all b ∈ B.

Proof. (i) Let α 6∈ G(A/B)a ∪ G(A/B)b. This implies α 6∈ G(A/B)a and
α 6∈ G(A/B)b. Then by Definition 4.1, α(a) = a and α(b) = b. Since α is homo-
morphism, α(a − b) = α(a) − α(b) = a − b. This shows that α 6∈ G(A/B)a−b.
Therefore G(A/B)a−b ⊆ G(A/B)a ∪G(A/B)b.
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We omit the proofs of (ii)–(v), as proofs are similar.

Definition 4.3. Let A/B be a field extension and F ∈ (A/B)♣. Define a soft
subset F

′

of G(A/B) induced by F as follows:

F
′

(α) = U \
⋃

a∈Aα

F (a), for all α ∈ G(A/B).

Theorem 4.4. Let A/B be a field extension. If F ∈ (A/B)♣ then F
′ ∈ G(A/B)F,

where F
′

is defined in Definition 4.3.

Proof. Let α, β ∈ G(A/B) and β−1 be the inverse of β in G(A/B). Using part
(iii) of Proposition 4.2, we have

F
′

(αβ−1) = U \
⋃

a∈Aαβ−1

F (a) ⊇ U \
⋃

a∈Aα∪Aβ

F (a)

= U \



[

⋃

a∈Aα

F (a)

]
⋃




⋃

a∈Aβ

F (a)






=

[
U \

⋃

a∈Aα

F (a)

]
⋂



U \
⋃

a∈Aβ

F (a)



 = F
′

(α) ∩ F
′

(β).

Hence by Theorem 2.6, F
′

is a soft int-group of G(A/B). Therefore F
′ ∈

G(A/B)F.

Definition 4.5. Let A/B be a field extension and H ∈ G(A/B)F. Define a soft
subset H

′′

of A induced by H as follows:

H
′′

(a) = U \
⋃

α∈G(A/B)a

H(α), for all a ∈ A.

Theorem 4.6. Let A/B be a field extension. If H ∈ G(A/B)F then H
′′ ∈

(A/B)♣, where H
′′

is defined in Definition 4.5.

Proof. Let a, b ∈ A. Now, we have

H
′′

(a− b) = U \
⋃

α∈G(A/B)a−b

H(α)

⊇ U \
⋃

α∈G(A/B)a∪G(A/B)b

H(α) (by Proposition 4.2))

= U \








⋃

α∈G(A/B)a

H(α)




⋃




⋃

α∈G(A/B)b

H(α)
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=



U \
⋃

α∈G(A/B)a

H(α)




⋂



U \
⋃

α∈G(A/B)b

H(α)





= H
′′

(a) ∩H
′′

(b).

Similarly, we shall get H
′′

(ab−1) ⊇ H
′′

(a) ∩H
′′

(b) for a, b(6= 0) ∈ A, where 0 is
the zero element of A. Hence by Definition 2.11, H

′′

is a soft int-field of A.

Now, we shall prove that H
′′

K ⊇ B for all K ∈ Im(H
′′

).

Let b ∈ B. Then α(b) = b, for all α ∈ G(A/B). So, G(A/B)b = ∅. Then by
Definition 4.5, we have H

′′

(b) = U \⋃α∈G(A/B)b H(α) = U \ ∅ = U. Then

b ∈ B ⇒ H
′′

(b) = U ⊇ K, for all K ∈ Im(H
′′

)

⇒ b ∈ H
′′

K , for all K ∈ Im(H
′′

).

Hence H
′′

K ⊇ B for all K ∈ Im(H
′′

). Therefore H
′′ ∈ (A/B)♣.

Proposition 4.7. Let A/B be a field extension. Then for all F1, F2 ∈ (A/B)♣

and H1, H2 ∈ G(A/B)F, the following properties hold:

(i) F1⊆̃F2 ⇒ F
′

1⊇̃F
′

2.

(ii) H1⊆̃H2 ⇒ H
′′

1 ⊇̃H
′′

2 .

(iii) (F
′

1)
′′⊇̃F1.

(iv) (H
′′

1 )
′⊇̃H1.

(v) [(F
′

1)
′′

]
′

= F
′

1.

(vi) [(H
′′

1 )
′

]
′′

= H
′′

1 .

Proof. (i) From Theorem 4.4, we have F
′

1, F
′

2 ∈ G(A/B)F. Let α ∈ G(A/B).
Then

F1⊆̃F2 ⇒
⋃

a∈Aα

F1(a) ⊆
⋃

a∈Aα

F2(a)

⇒ U \
⋃

a∈Aα

F1(a) ⊇ U \
⋃

a∈Aα

F2(a)

⇒ F
′

1(α) ⊇ F
′

2(α)

⇒ F
′

1⊇̃F
′

2[sinceα ∈ G(A/B)is arbitrary].

(ii) Proof is similar to that of (i)

(iii) By Theorems 4.4 and 4.6, we have F1 ∈ (A/B)♣ ⇒ F
′

1 ∈ G(A/B)F ⇒
(F

′

1)
′′ ∈ (A/B)♣.
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Now, for a ∈ A, we have

(F
′

1)
′′

(a) = U \
⋃

α∈G(A/B)a

F
′

1(α)

= U \
⋃

α∈G(A/B)a

[U \
⋃

b∈Aα

F1(b)]

=
⋂

α∈G(A/B)a

[
⋃

b∈Aα

F1(b)].

If G(A/B)a = ∅ then (F
′

1)
′′

(a) = U ⊇ F1(a). If G(A/B)a 6= ∅ then a ∈ Aα

for α ∈ G(A/B)a. Hence, in this case, we have

(F
′

1)
′′

(a) =
⋂

α∈G(A/B)a

[
⋃

b∈Aα

F1(b)]

⊇
⋂

α∈G(A/B)a

F1(a) = F1(a).

Since a ∈ A is arbitrary, (F
′

1)
′′ ⊇̃F1.

(iv) Proof is similar to that of (iii).

(v) Since F1 ∈ (A/B)♣, by Theorem 4.4, F
′

1 ∈ G(A/B)F. Hence by part (iv),
we have [(F

′

1)
′′

]
′⊇̃F

′

1. Again by part (iii), F1⊆̃(F
′

1)
′′

. Then by using part (i), we
have [(F

′

1)
′′

]
′⊆̃F

′

1. Therefore [(F
′

1)
′′

]
′

= F
′

1.

(vi) Proof is similar to that of (v).

Theorem 4.8. Let A/B be a finite field extension and F ∈ (A/B)♣. Let Im(F ) =
{K1,K2, · · · ,Kn} such that ∅ ⊆ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊆ U, where n ∈ N. Then
the soft subset F

′

of G(A/B), as defined in Definition 4.3, is given by

F
′

(α) =






U if α ∈ G(A/FK1),

U \Ki if α ∈ G(A/FKi+1) \G(A/FKi
), i = 1, 2, · · · , n− 1,

U \Kn if α ∈ G(A/B) \G(A/FKn
).

Proof. Since F ∈ (A/B)♣, F is a soft int-field of A such that FK ⊇ B, for all
K ∈ Im(F ). Since K1 ⊂ K2 ⊂ · · · ⊂ Kn, A = FK1 ⊃ FK2 ⊃ · · · ⊃ FKn

⊇ B,
where FKi

(1 ≤ i ≤ n, n ∈ N) are inclusion subsets of F. Hence by crisp concept,
G(A/FK1) ⊂ G(A/FK2) ⊂ · · · ⊂ G(A/FKn

) ⊆ G(A/B).

Now G(A/FK1) = G(A/A) = {σ ∈ G(A/B) : σ(a) = a, for all a ∈ A} =
{id : A → Aan identity map}. If α ∈ G(A/FK1) then α = id (an identity map
from A to A). Then by Definition 4.3, F

′

(α) = F
′

(id) = U \⋃a∈Aid F (a), where

Aid = {a ∈ A : id(a) 6= a} = ∅. Then by Definition 4.3,
⋃

a∈Aid F (a) = ∅. Hence
for α ∈ G(A/FK1), F

′

(α) = U.

If α ∈ G(A/FK2) \G(A/FK1) then α ∈ G(A/FK2) but α 6∈ G(A/FK1). Now,
α ∈ G(A/FK2) ⇒ α(a) = a, for all a ∈ FK2 ⇒ a 6∈ Aα, for all a ∈ FK2 .
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Again, we have

α 6∈ G(A/FK1) ⇒ ∃b ∈ FK1 such that α(b) 6= b

⇒ ∃b ∈ FK1 such that b ∈ Aα.

Then ∃b ∈ FK1 \ FK2 such that b ∈ Aα. Hence for b ∈ Aα, we have K2 ⊃
F (b) ⊇ K1. Since Im(F ) = {K1,K2, · · ·Kn}, F (b) = K1 for b ∈ Aα. Hence for
α ∈ G(A/FK2) \G(A/FK1),

F
′

(α) = U \
⋃

a∈Aα

F (a) = U \K1.

Proceeding in this way, we have F
′

(α) = U \ Ki for all α ∈ G(A/FKi+1) \
G(A/FKi

), where 1 ≤ i ≤ n − 1, n ∈ N. If α ∈ G(A/B) \ G(A/FKn
) then

α ∈ G(A/B) but α 6∈ G(A/FKn
). Now, we have

α ∈ G(A/B) ⇒ α(a) = a ⇒ a 6∈ Aα,

for all a ∈ B.

Again, we have

α 6∈ G(A/FKn
) ⇒ ∃c ∈ FKn

such that α(c) 6= c

⇒ ∃c ∈ FKn
such that c ∈ Aα.

Then there exists c ∈ FKn
\ B such that c ∈ Aα. Hence for c ∈ Aα, we have

F (c) ⊇ Kn. This implies F (c) = Kn. Therefore

F
′

(α) = U \
⋃

a∈Aα

F (a) = U \Kn.

Theorem 4.9. Let A/B be a finite field extension and H ∈ G(A/B)F. Let
Im(H) = {L1, L2, · · · , Lm} such that ∅ ⊆ L1 ⊂ L2 ⊂ · · · ⊂ Lm ⊆ U, where
m ∈ N. Then the soft subset H

′′

of A, as defined in Definition 4.5, is given by

H
′′

(a) =





U if a ∈ AHL1 ,

U \ Lj if a ∈ AHLj+1 \AHLj , j = 1, 2, · · · ,m− 1,

U \ Lm if a ∈ A \AHLm .

Proof. Since H ∈ G(A/B)F, H is a soft int-group of G(A/B). Since L1 ⊂ L2 ⊂
· · · ⊂ Lm, G(A/B) = HL1 ⊃ HL2 ⊃ · · · ⊃ HLm

, where HLj
(1 ≤ j ≤ m,m ∈ N)

are inclusion subsets of H. Also, each HLj
are subgroups of G(A/B). Hence

by Proposition 2.16, AHL1 ⊂ AHL2 ⊂ · · · ⊂ AHLm ⊆ A. If a ∈ AHL1 then
α(a) = a for all α ∈ HL1 = G(A/B). Hence by Definition 4.5, H

′′

(a) = U \⋃
α∈G(A/B)a H(α), where G(A/B)a = {α ∈ G(A/B) : α(a) 6= a} = ∅. Hence

⋃
α∈G(A/B)a H(α) = ∅. Therefore H

′′

(a) = U \ ∅ = U.
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If a ∈ AHL2 \AHL1 then a ∈ AHL2 but a 6∈ AHL1 . Now, we have

a ∈ AHL2 ⇒ α(a) = a, for all α ∈ HL2

⇒ α 6∈ G(A/B)a, for all α ∈ HL2 .

Also, we have

a 6∈ AHL1 ⇒ ∃δ ∈ HL1 such that δ(a) 6= a

⇒ ∃δ ∈ HL1 such that δ ∈ G(A/B)a.

Then there exists δ ∈ HL1\HL2 such that δ ∈ G(A/B)a. Hence for δ ∈ G(A/B)a,
we have L2 ⊃ H(δ) ⊇ L1. Since Im(H) = {L1, L2, · · · , Lm}, H(δ) = L1 for
δ ∈ G(A/B)a. Therefore H

′′

(a) = U \⋃α∈G(A/B)a H(α) = U \ L1.

Proceeding in this way, we have H
′′

(a) = U \ Lj for all a ∈ AHLj+1 \AHLj ,
where 1 ≤ j ≤ m− 1,m ∈ N.

If a ∈ A \AHLm then a ∈ A but a 6∈ AHLm . Now, we have

a 6∈ AHLm ⇒ ∃γ ∈ HLm
such that γ(a) 6= a

⇒ ∃γ ∈ HLm
such that γ ∈ G(A/B)a

⇒ ∃γ ∈ G(A/B)withH(γ) = Lm such that γ ∈ G(A/B)a.

Therefore H
′′

(a) = U \⋃α∈G(A/B)a H(α) = U \ Lm.

Example 4.10. Let B = Q, the field of rational numbers and A = Q(
√
3,
√
5).

Then A/B is a Galois extension and corresponding Galois group G(A/B) is the
Klein’s 4−group of elements {id, α, β, γ}, where id, α, β, γ areB−automorphisms
of A such that

id : A → A is the identity automorphism;

α(
√
3) =

√
3, α(

√
5) = −

√
5;

β(
√
3) = −

√
3, β(

√
5) = −

√
5;

γ(
√
3) = −

√
3, γ(

√
5) =

√
5.

Subgroups of G(A/B) are {id}, {id, α}, {id, β}, {id, γ}, G(A/B).We consider the
chain of subgroups {id} ⊂ {id, α} ⊂ G(A/B).

Define a soft int-group H of G(A/B) over U as

H(σ) =





U if σ = id,

L1 if σ ∈ {id, α} \ {id},
L2 if σ ∈ G(A/B) \ {id, α},

where L2 ⊂ L1 ⊂ U.. Therefore HU ⊂ HL1 ⊂ HL2 is the chain of inclusion
subgroups of H, where HU = {id}, HL1 = {id, α}, HL2 = G(A/B). Hence cor-
responding chain of fixed fields is AHU ⊃ AHL1 ⊃ AHL2 , where AHU = {a ∈
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A : α(a) = a, for all α ∈ HU} = A = Q(
√
3,
√
5), AHL1 = {a ∈ A : α(a) = a,

for all α ∈ HL1} = Q(
√
3) (see [16]), AHL2 = {a ∈ A : α(a) = a, for all

α ∈ HL2} = B = Q.

Hence from Theorem 4.9, the soft int-field H
′′ ∈ (A/B)♣ corresponding to

H is as follows:

H
′′

(a) =





U if a ∈ AHL2 = Q,

U \ L2 if a ∈ AHL1 \AHL2 = Q(
√
3) \Q,

U \ L1 if a ∈ AHU \AHL1 = Q(
√
3,
√
5) \Q(

√
3).

Therefore the inclusion subfields of H
′′

are H
′′

U = Q, H
′′

U\L2
= Q(

√
3), H

′′

U\L1
=

Q(
√
3,
√
5) and the chain of inclusion subfields of H

′′

is H
′′

U ⊂ H
′′

U\L2
⊂ H

′′

U\L1
.

Then by crisp concept, we get G(A/H
′′

U ) = {σ ∈ G(A/B) : σ(a) = a, for all

a ∈ H
′′

U = Q} = {id, α, β, γ} = G(A/B).

Similarly, G(A/H
′′

U\L2
) = G(A/Q(

√
3)) = {id, α} and G(A/H

′′

U\L1
) =

G(A/Q(
√
3,
√
5)) = {id}. Therefore G(A/H

′′

U\L1
) ⊂ G(A/H

′′

U\L2
) ⊂ G(A/H

′′

U ).

Hence from Theorem 4.8, the soft int-group (H
′′

)
′

of G(A/B) is as follows:

(H
′′

)
′

(σ) =





U if σ ∈ G(A/H
′′

U\L1
),

U \ (U \ L1) = L1 if σ ∈ G(A/H
′′

U\L2
) \G(A/H

′′

U\L1
),

U \ (U \ L2) = L2 if σ ∈ G(A/H
′′

U ) \G(A/H
′′

U\L2
).

Therefore (H
′′

)
′

= H.

Proposition 4.11. Let A/B be a field extension, F ∈ (A/B)♣ and H ∈ G(A/B)F.
Then

(i) F
′

U\K = G(A/FK?),

(ii) H
′′

U\L = AHL? ,

(iii) F
′

(U\K)? = G(A/FK),

(iv) H
′′

(U\L)? = AHL ,

where K,L ⊆ U, FK? = {a ∈ A : F (a) ⊃ K}, HL? = {α ∈ G(A/B) : H(α) ⊃ L},
F

′

(U\K)? = {α ∈ G(A/B) : F
′

(α) ⊃ U \K} and H
′′

(U\L)? = {a ∈ A : H
′′

(a) ⊃
U \ L}.

Proof. (i) By Theorem 4.4, we have F
′ ∈ G(A/B)F, i.e. F

′

is a soft int-group
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of G(A/B). Now,

α ∈ F
′

U\K ⇔ F
′

(α) ⊇ U \K
⇔ U \

⋃

a∈Aα

F (a) ⊇ U \K, (by Definition 4.3)

⇔
⋃

a∈Aα

F (a) ⊆ K

⇔ F (a) ⊆ K, for all a ∈ Aα

⇔ F (a) ⊆ K for a ∈ A such that α(a) 6= a.

Therefore a ∈ A,α(a) 6= a ⇒ F (a) ⊆ K.

Since contrapositive of a true statement is also true, we have

a ∈ A,F (a) ⊃ K ⇒ α(a) = a.

Hence a ∈ FK? ⇒ α(a) = a. This implies α ∈ G(A/FK?). Therefore F
′

U\K ⊆
G(A/FK?).

Similarly, it can be shown that G(A/FK?) ⊆ F
′

U\K . Therefore F ′
U\K =

G(A/FK?). Proofs of (ii)–(iv) are similar to that of (i).

Theorem 4.12. Let A/B be a finite Galois extension. Then the following state-
ments hold:

(i) Define a pair of maps (f, h), where f : (A/B)♣ → G(A/B)F is given by
f(F ) = F

′

, for all F ∈ (A/B)♣ and h : G(A/B)F → (A/B)♣ is given by
h(H) = H

′′

, for all H ∈ G(A/B)F. Then f, h are both bijective inclusion
reversing correspondence between (A/B)♣ and G(A/B)F such that f, h are
inverses of one another.

(ii) If H is a soft normal int-group of G(A/B) then [G(A/B) : H ] = [AHL : B],
where L = H(id) and id ∈ G(A/B) is the identity map.

(iii) Let F ∈ (A/B)♣. Then F is soft normal over B if and only if F
′

is soft
normal int-group of G(A/B).

(iv) Let F ∈ (A/B)♣ such that F is soft normal over B. If Im(F ) =
{K1,K2, · · · ,Kn} such that K1 ⊂ K2 ⊂ · · · ⊂ Kn, where n ∈ N, then
[G(A/B) : F

′

] = [FK1 : B].

Moreover, G(A/B)/F
′

is isomorphic to G(FK1/B).

Proof. (i) It is clear from Theorems 4.4 and 4.6 that the maps f, h are well-
defined. Let F1, F2 ∈ (A/B)♣. Then by Proposition 4.7,

F1⊆̃F2 ⇒ F
′

1⊇̃F
′

2, i.e. f(F1)⊇̃f(F2).

Now, let H1, H2 ∈ G(A/B)F. Again by Proposition 4.7,

H1⊆̃H2 ⇒ H
′′

1 ⊇̃H
′′

2 , i.e. h(H1)⊇̃h(H2).
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Therefore the maps f, h are inclusion reversing.

To prove f, h are inverses of one another, it is only to prove that hf(F ) = F,
for all F ∈ (A/B)♣ and fh(H) = H, for all H ∈ G(A/B)F. Let F ∈ (A/B)♣.
Then f(F ) = F

′ ∈ G(A/B)F. Hence hf(F ) = h(f(F )) = h(F
′

) = (F
′

)
′′ ∈

(A/B)♣. By part (iii) of Proposition 4.7, we have

hf(F )⊇̃F. (2)

Now, we shall prove that

[hf(F )]K = FK for any K ⊆ U. (3)

Using Fundamental Theorem of Galois Theory and Proposition 4.11, we have

[hf(F )]K = [(F
′

)
′′

]K = AF
′

(U\K)? = AG(A/FK) = FK .

Suppose there exists a ∈ A such that hf(F )(a) ⊃ F (a). Let hf(F )(a) = L
and F (a) = M. Hence L ⊃ M. Now, we have

hf(F )(a) = L ⇒ a ∈ hf(F )L = FL (by Eq. (3))

⇒ F (a) ⊇ L ⇒ M ⊇ L.

This is a contradiction. Hence hf(F )(a) 6⊃ F (a), for all a ∈ A. Therefore from
Eq. (2), we get hf(F ) = F.

Similarly, we can prove that fh(H) = H, for all H ∈ G(A/B)F. From this,
it also follows that f, h are both bijective maps.

(ii) Let H be a soft normal int-group of the Galois group G(A/B). Then
by Theorem 2.10, G(A/B)/H forms a group and G(A/B)/H is isomorphic to
the group G(A/B)/HL, where L = H(id) and id ∈ G(A/B) is the identity
mapping. Therefore [G(A/B) : H ] = [G(A/B) : HL]. Since HL is a subgroup
of G(A/B), by Proposition 2.16, the fixed field of HL is AHL . Also, since A/B
is a Galois extension, the fixed field of G(A/B) is B. Then by Fundamental
Theorem of Galois Theory, we have [G(A/B) : HL] = [AHL : B]. Therefore
[G(A/B) : H ] = [AHL : B], where L = H(id).

(iii) Let F ∈ (A/B)♣. Since A/B is a finite Galois extension, the Galois
group G(A/B) is finite. Hence by Fundamental Theorem of Galois Theory
there exist finite number of intermediate fields of A/B. If Im(F ) is infinite,
then there will be infinitely many intermediate fields FK ,K ∈ Im(F ). This is a
contradiction. Hence Im(F ) is finite. Suppose Im(F ) = {K1,K2, · · · ,Kn} such
that K1 ⊂ K2 ⊂ · · · ⊂ Kn, where n ∈ N. Then

F is soft normal over B

⇔ FKi
is normal field extension of B, ∀Ki ∈ Im(F ), (by Theorem 3.6)

⇔ G(A/FKi
) is normal subgroup of G(A/B), for all Ki ∈ Im(F ),

(by Fundamental Theorem of Galois Theory)

⇔ F
′

is soft normal int-group of G(A/B), by Theorem 2.8

and the fact that the inclusion subsets of F
′

are G(A/B)

and G(A/FKi
), for all Ki ∈ Im(F ), (by Theorem 4.8).
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(iv) Let Im(F ) = {K1,K2, · · · ,Kn} such that K1 ⊂ K2 ⊂ · · · ⊂ Kn. Since
F is soft normal over B, by Part (iii), we have F

′

is soft normal int-group

of G(A/B). Hence by Part (ii), we get [G(A/B) : F
′

] = [AF
′

L : B], where
L = F

′

(id) and id ∈ G(A/B) is the identity map. Since K1 ⊂ K2 ⊂ · · · ⊂
Kn, A = FK1 ⊃ FK2 ⊃ · · · ⊃ FKn

. Hence G(A/FK1 ) = G(A/A) = {id}. By
Theorem 4.8, L = F

′

(id) = U and F
′

L = G(A/FK1). Therefore by Fundamental

Theorem of Galois Theory, we get [AF
′

L : B] = [AG(A/FK1 ) : B] = [FK1 : B].

Again by Theorem 2.10, G(A/B)/F
′

is isomorphic to G(A/B)/F
′

L. Also,

we have proved that F
′

L = G(A/FK1). Hence by Fundamental Theorem of

Galois Theory, G(A/B)/F
′

L = G(A/B)/G(A/FK1 )
∼= G(FK1/B). Therefore

G(A/B)/F
′

is isomorphic to G(FK1/B).

Note 4.13. The correspondence which has been studied in Theorem 4.12 will be
called Soft Galois Correspondence.

Example 4.14. In Example 4.10, A/B is a finite Galois extension and H ∈
G(A/B)F.We have already checked that (H

′′

)
′

= H, i.e., fh(H) = H. Since each
inclusion subgroups of H, viz., HU , HL1 , HL2 are normal subgroups of G(A/B).
Then by Theorem 2.8,H is a soft normal int-group ofG(A/B). By Theorem 4.12,
we have [G(A/B) : H ] = [AHU : B] = [Q(

√
3,
√
5) : Q] = 4.

References

[1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59
(2010) 3458–3463.

[2] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007)
2726–2735.

[3] A.O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Com-
put. Math. Appl. 61 (2011) 592–601.

[4] A. Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Comput. Math.
Appl. 58 (2009) 1279–1286.

[5] J.R. Bastida, Field Extensions and Galois Theory, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1984.

[6] N. Cagman, F. Citak, H. Aktas, Soft int-group and its applications to group
theory, Neural Comput. Appl. 21 (2012) 151–158.

[7] N. Cagman and F. Citak, Soft int-rings and its algebraic applications, Journal of
Intelligent and Fuzzy Systems 28 (2015) 1225–1233.

[8] Y. Celik, C. Ekiz, S. Yamak, Applications of fuzzy soft sets in ring theory, Ann.
Fuzzy Math. Inform. 5 (3) (2013) 451–462.

[9] F. Feng, Y.B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621–
2628.

[10] J. Ghosh, B. Dinda, T.K. Samanta, Fuzzy soft rings and fuzzy soft ideals, Int. J.
Pure Appl. Sci. Technol. 2 (2) (2011) 66–74.

[11] J. Ghosh, D. Mandal, T.K. Samanta, Soft semiprimary int-ideals of a ring, Analele
Universitatii Oradea Fasc. Matematica 25 (1) (2018) 141–151.

[12] J. Ghosh, D. Mandal, T.K. Samanta, Soft prime and semiprime int-ideals of a
ring, AIMS Mathematics 5 (1) (2019) 732–745.



226 J. Ghosh et al.

[13] J. Ghosh, D. Mandal, T.K. Samanta, Soft maximal and irreducible int-ideals of a
ring, New Mathematics and Natural Computation 16 (1) (2020) 37–52.

[14] J. Ghosh, D. Mandal, T.K. Samanta, Soft direct sum of soft int-rings and soft
principal int-ideal, New Mathematics and Natural Computation 16 (3) (2020) 497–
515.

[15] J. Ghosh, D. Mandal, T.K. Samanta, Soft int-field extension, New Mathematics
and Natural Computation 17 (2) (2021) 361–385.

[16] T.W. Hungerford, Abstract Algebra - An Introduction, Saunders College Publish-
ing, 1990.

[17] K. Kaygisiz, On soft int-groups, Ann. Fuzzy Math. Inform. 4 (2) (2012) 365–375.

[18] F. Koyuncu and B. Tanay, Some soft algebraic structures, Journal of New Results
in Science 10 (2016) 38–51.

[19] P.K. Maji and A.R. Roy, An application of soft sets in a decision making problem,
Comput. Math. Appl. 44 (2002) 1077–1083.

[20] D.S. Malik, J.M. Mordeson, M.K. Sen, Fundamentals of Abstract Algebra, The
McGraw-Hill Companies Inc, 1997.

[21] D. Molodtsov, Soft set theory-first results, Comput Math Appl 37 (1999) 19–31.

[22] D. Pei and D. Miao, From soft sets to information systems, Proceedings of Gran-
ular Computing, IEEE 2 (2005) 617–621.

[23] A.S. Sezer and A.O. Atagun, A new kind of vector space: Soft vector space,
Southeast Asian Bull. Math. 40 (2016) 753–770.

[24] A.S. Sezer, N. Cagman, A.O. Atagun, M.I. Ali, E. Turkmen, Soft intersection
semigroups, ideals and bi-ideals; a new application on semigroup theory I, Filomat
29 (5) (2015) 917–946.

[25] Q.M. Sun, Z.L. Zhang, J. Liu, Soft sets and soft modules, Lecture Notes in Com-
put. Sci. 5009 (2008) 403–409.


