Southeast Asian Bulletin of Mathematics © SEAMS. 2024

Nil-Extensions of Simple and π -Inverse Ordered Semigroups

Kalyan Hansda Department of Mathematics, Visva-Bharati University, Santiniketan, Bolpur-731235, West Bengal, India Email: kalyanh4@gmail.com

Amlan Jamadar Department of Mathematics, Rampurhat College, Rampurhat-731224, West Bengal, India Email: amlanjamadar@gmail.com

Received 22 August 2021 Accepted 30 July 2022

Communicated by Nguyen Van Sanh

AMS Mathematics Subject Classification(2020): 20M10, 06F05

Abstract. This paper is an attempt to study ordered semigroups which are nil-extensions of simple and π -inverse ordered semigroups. Different characterizations of complete semilattice decomposition of nil-extensions of ordered semigroups have been given here.

Keywords: *l*-Archimedean; π -Regular; Nil-Extension; Ordered idempotent; Simple ordered semigroup; π -Inverse ordered semigroup.

1. Introduction and Preliminaries

A semigroup (S, \cdot) with an order relation \leq is called an ordered semigroup if for all $a, b, x \in S, a \leq b$ implies $xa \leq xb$ and $ax \leq bx$. It is denoted by (S, \cdot, \leq) . Let (S, \cdot, \leq) be an ordered semigroup. For a subset A of S, the downward closure of A is given by $(A] = \{x \in S : x \leq a, \text{ for some } a \in A\}$. An element a of S is said to be regular (resp. intra-regular) if $a \in (aSa]$ (resp. $a \in (Sa^2S]$). We denote set of regular and intra-regular elements by $Reg_{\leq}(S)$ and $Intra_{\leq}(S)$ respectively. An element $b \in S$ is called ordered inverse [3] of a if $a \leq aba$ and $b \leq bab$. The set of all ordered inverses of an element $a \in S$ is denoted by $V_{\leq}(a)$. Throughout this paper, a', a'' are the ordered inverses of a unless otherwise stated. An element $e \in S$ is said to be ordered idempotent if $e \leq e^2$. The set of all ordered idempotents of S is denoted by $E_{\leq}(S)$.

An ordered semigroup S is called Archimedean [2] if for every $a, b \in S$ there is $m \in \mathbb{N}$ such that $b^m \in (SaS]$. S is called r(l or t)-Archimedean [2] if for every $a, b \in S$, there exists $m \in \mathbb{N}$ such that $b^m \in (aS]$ ($b^m \in (Sa]$ or $b^m \in (aSa]$).

A nonempty subset A of S is called a left (right) ideal of S, if $SA \subseteq A$ ($AS \subseteq A$) and (A] = A (see [5]). A nonempty subset A is called a (two-sided) ideal of S if it is both a left and a right ideal of S. An left (right) ideal I of S is proper if $I \neq S$. S is left (right) simple if it does not contain proper left (right) ideals. An ordered semigroup S is called simple if for every ideal I of S, we have I = S. S is called t-simple if it is both left and right simple.

The principal [5] left ideal, right ideal, ideal and bi-ideal generated by $a \in S$ are denoted by L(a), R(a), I(a) and B(a) respectively and defined by

 $L(a) = (a \cup Sa], R(a) = (a \cup aS], I(a) = (a \cup Sa \cup aS \cup SaS] \text{ and } B(a) = (a \cup aSa].$

Kehayopulu [5] defined Greens relations \mathcal{L} , \mathcal{R} , \mathcal{J} and \mathcal{H} on an ordered semigroup S as follows:

 $a\mathcal{L}b \text{ if } L(a) = L(b), \ a\mathcal{R}b \text{ if } R(a) = R(b), \ a\mathcal{J}b \text{ if } I(a) = I(b) \text{ and } \mathcal{H} = \mathcal{L} \cap \mathcal{R}.$

These four relations are equivalence relations on S.

An ordered semigroup S is called π -regular (resp. intra π -regular) [2] if for every $a \in S$ there is $m \in \mathbb{N}$ such that $a^m \in (a^m S a^m]$ (resp. $a^m \in (S a^{2m} S]$). We denote set of all π -regular and intra π -regular elements by $\pi Reg_{\leq}(S)$ and $\Pi Intra_{\leq}(S)$ respectively. A π -regular ordered semigroup S is called π -inverse [4] if for every $a \in S$, there is $m \in \mathbb{N}$ such that any two inverses of a^m are \mathcal{H} -related.

Nil-extensions of an ordered semigroup S with zero 0 are precisely the ideal extensions of an ideal I of S by the nilpotent ordered semigroup S/I [6]. The theory of nil-extensions in ordered semigroup have been studied by Cao and Xu [2], Kehayopulu and Tsingelis [7], Bhuniya and Hansda [1] and many others. Cao and Xu [2] studied ordered semigroups which are nil-extensions of t-simple ordered semigroups. These ordered semigroups are natural generalization of π -groups. Sadhya and Hansda [8] studied these ordered semigroups under the name of π -t-simple ordered semigroups.

The aim of this work is to describe nil-extensions of π -inverse, left π -inverse ordered semigroups. Our approach allows one to see the role of ordered inverses of an ordered semigroup in this characterization. Furthermore, complete semilattice decompositions of the nil-extensions of π -inverse, left π -inverse ordered semigroups have been given here. A congruence ρ on S is called semilattice if for all $a, b \in S \ a \ \rho \ a^2$ and $ab\rho ba$. A semilattice congruence ρ on S is called complete if $a \leq b$ implies $a\rho ab$. The ordered semigroup S is called complete semilattice of subsemigroup of type τ if there exists a complete semilattice congruence ρ such that $(x)_{\rho}$ is a type τ subsemigroup of S. Equivalently, there exists a semilattice Y and a family of subsemigroups $\{S\}_{\alpha \in Y}$ of type τ of S such that:

- (i) $S_{\alpha} \cap S_{\beta} = \phi$ for any $\alpha, \beta \in Y$ with $\alpha \neq \beta$,
- (ii) $S = \bigcup_{\alpha \in Y} S_{\alpha}$,
- (iii) $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ for any $\alpha, \beta \in Y$,
- (iv) $S_{\beta} \cap (S_{\alpha}] \neq \phi$ implies $\beta \preceq \alpha$, where \preceq is the order of the semilattice Y defined by $\preceq := \{(\alpha, \beta) \mid \alpha = \alpha \beta (\beta \alpha)\}$ (see [7]).

Let S be a π -regular ordered semigroup. Due to Sadhya and Hansda [9], the following equivalence relations \mathcal{L}^* , \mathcal{R}^* , \mathcal{J}^* and \mathcal{H}^* are given by:

$$\begin{aligned} a\mathcal{L}^*b &\Leftrightarrow a^m \mathcal{L}b^n, \\ a\mathcal{R}^*b &\Leftrightarrow a^m \mathcal{R}b^n, \\ a\mathcal{J}^*b &\Leftrightarrow a^m \mathcal{J}b^n, \\ \mathcal{H}^* &= \mathcal{L}^* \cap \mathcal{R}^*, \end{aligned}$$

where $a, b \in S$ and m, n are the smallest positive integers such that $a^m, b^n \in Reg_{\leq}(S)$.

For $a, b \in S$, a|b if and only if there exist $x, y \in S^1$ such that $b \leq xay$. For the sake of convenience of general reader we state following results.

Theorem 1.1. [4, Theorem 2.3] The following conditions are equivalent on an ordered semigroup S:

- (i) S is a π -inverse ordered semigroup;
- (ii) S is π -regular and for every $e, f \in E_{\leq}(S)$, there is $m \in \mathbb{N}$ such that $(ef)^m \in (fSe]$;
- (iii) S is π -regular and for every $e, f \in E_{\leq}(S)$, $e\mathcal{L}f(e\mathcal{R}f)$ implies $e\mathcal{H}f$.

Theorem 1.2. [2, Theorem 3.5] The following conditions are equivalent on a po-semigroup S:

- (i) S is a nil-extension of a simple po-semigroup;
- (ii) S is an Archimedean po-semigroup in which $Intra(S) \neq \phi$.

Corollary 1.3. [2, Corollary 5.2] The following conditions are equivalent on a po-semigroup S:

- (i) S is a nil-extension of a t-simple po-semigroup;
- (ii) S is a t-Archimedean po-semigroup in which $Intra(S) \neq \phi$.

2. Nil-Extensions of Simple and π -Inverse Ordered Semigroups

This section is aiming to characterize all ordered semigroups which are nilextensions of inverse, simple and π -inverse, left simple and π -inverse ordered semigroups. We define the sets $\mathbf{V}_{\leq}(S)$ and $\Pi\mathbf{V}_{\leq}(S)$ as follows:

$$\mathbf{V}_{\leq}(S) = \{ a \in S \mid \text{for any } x, \ y \in V_{\leq}(a) \text{ implies } x\mathcal{H}y \}, \\ \Pi \mathbf{V}_{\leq}(S) = \{ a \in S \ (\exists m \in \mathbb{N}) \mid \text{for any } x, \ y \in V_{\leq}(a^m) \text{ implies } x\mathcal{H}y \}$$

Lemma 2.1. Let S be an ordered semigroup. Then the following conditions are equivalent on S:

- (i) For every $a \in S$ and $c \in V_{\leq}(S)$, $a \mid c$ implies $a^2 \mid c$;
- (ii) for every $a, b \in S$ and $c \in V_{\leq}(S)$, $a \mid c \text{ and } b \mid c$ implies $ab \mid c$.

Proof. (i) \Rightarrow (ii): Let $a, b \in S$ and $c \in \mathbf{V}_{\leq}(S)$ be such that $a \mid c$ and $b \mid c$. Then there are $x, y, z, w \in S$ such that $c \leq xay$ and $c \leq zbw$. Now $c \in \mathbf{V}_{\leq}(S)$ implies that there exists $t \in S$ such that $c \leq ctc \leq zbwtxay$. Thus $bwtxa \mid c$, and so by the given condition $(bwtxa)^2 \mid c$. That is, $c \in (SbwtxabwtxaS] \subseteq (SabS]$. Hence $ab \mid c$.

(ii) \Rightarrow (i): This is obvious.

Theorem 2.2. Let an ordered semigroup S be a complete semilattice Y of subsemigroups $\{S_{\alpha}\}_{\alpha \in Y}$. Then the following statements hold:

- (i) $V_{\leq}(S) = \bigcup_{\alpha \in Y} V_{\leq}(S_{\alpha}).$
- (ii) S is inverse if and only if S_{α} is inverse for all $\alpha \in Y$.
- (iii) S is π -inverse if and only if S_{α} is π -inverse for all $\alpha \in Y$.

Proof. (i): It is obvious that $\mathbf{V}_{\leq}(S) \supseteq \bigcup_{\alpha \in Y} \mathbf{V}_{\leq}(S_{\alpha})$. Let $a \in S_{\alpha} \cap \mathbf{V}_{\leq}(S)$. Then exist $x \in S_{\beta}$, $y \in S_{\gamma}$ such that for any $x, y \in V_{\leq}(a)$ implies $x\mathcal{H}y$. Now $a \leq axa$ implies that $\alpha \leq \alpha\beta\alpha$. From $\alpha\beta\alpha \leq \alpha\beta \leq \alpha$, we obtained $\alpha = \alpha\beta$. Now $x \leq xax$ implies $\beta \leq \beta\alpha\beta$, which implies that $\alpha = \alpha\beta = \beta\alpha = \beta$. Hence $x \in S_{\alpha}$. Similarly $y \in S_{\alpha}$. Thus $a \in \mathbf{V}_{\leq}(S_{\alpha})$. Therefore we have $\mathbf{V}_{\leq}(S) = (\bigcup_{\alpha \in Y} \mathbf{V}_{\leq}(S_{\alpha})) \cap \mathbf{V}_{\leq}(S) \subseteq \bigcup_{\alpha \in Y} \mathbf{V}_{\leq}(S_{\alpha})$. Therefore, the first equality holds.

Both (ii) and (iii) are immediate consequences of (i).

Lemma 2.3. Let an ordered semigroup S be a nil-extension of a semigroup K of type τ and $\mathbf{V}_{\leq}(S) \neq \phi$. Then the following statements hold in S:

- (i) For every $a \in \mathbf{V}_{\leq}(S), a \in K$.
- (ii) For every *L*-class of S that contains an element a ∈ V_≤(S) is a subset of K.

Proof. (i): Consider $a \in \mathbf{V}_{\leq}(S)$. Then for all $n \in \mathbb{N}$, $a \leq a(xa)^n$ for some $x \in S$. Since S is a nil-extension of K, there is some $m \in \mathbb{N}$ such that $(xa)^m \in K$. Now since K is an ideal of S, $a(xa)^m \in K$ and so $a \in K$. (ii): Let L be an \mathcal{L} -class of S that contains an element $a \in \mathbf{V}_{\leq}(S)$. Now for some $y \in L$, there is some $s \in S$ such that $y \leq sa$. Then by (i), it follows that $y \in K$ and hence $L \subseteq K$. This completes the proof.

In the next theorem we describe ordered semigroups which are nil-extensions of both left simple and π -inverse ordered semigroups and show that S is a nilextension of a left simple and π -inverse ordered semigroup if and only if S is a nil-extension of a t-simple and π -inverse ordered semigroup.

Theorem 2.4. The following conditions on an ordered semigroup S are equivalent:

- (i) S is a nil-extension of a left simple and π -inverse ordered semigroup;
- (ii) S is π -inverse and l-Archimedean ordered semigroup;
- (iii) S is π -inverse and $a\mathcal{L}^*b$ for every $a, b \in S$;
- (iv) S is π -inverse and $e\mathcal{L}^*f$ for every $e, f \in E_{\leq}(S)$;
- (v) S is π -regular and $e\mathcal{H}^*f$ for every $e, f \in E_{\leq}(S)$;
- (vi) S is π -regular and $a\mathcal{H}^*b$ for every $a, b \in S$;
- (vii) S is π -inverse and t-Archimedean ordered semigroup;
- (viii) S is a nil-extension of t-simple and π -inverse ordered semigroup.

Proof. (i) \Rightarrow (ii): Let S be a nil-extension of a left simple and π -inverse ordered semigroup K. Choose $a \in S$. Then there exists $k \in \mathbb{N}$ such that $a^k \in K$. Since K is π -inverse, for a^k there exists $r \in \mathbb{N}$ such that for any $x, y \in V_{\leq}(a^m) \subseteq K$ it gives $x \mathcal{H}y$, where m = kr. Hence S is a π -inverse ordered semigroup.

Now for every $b \in S$, as K is an ideal of S, we have $a^k b^n \in KS \subseteq K$ for every $n \in \mathbb{N}$. But K is left simple, so for $a^m, a^k b^n \in K$ there exists $z \in K$ such that $a^m \leq za^k b^n$. Now $a^m \leq a^m x a^m \leq a^m x za^k b^n$, that is $a^m \in (a^m Sb^n]$ for every $n \in \mathbb{N}$. Hence S is *l*-Archimedean.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$: These implications are obvious.

(iv) \Rightarrow (v): Since S is π -inverse, so S is π -regular and $e\mathcal{L}f$ implies $e\mathcal{H}f$ for any $e, f \in E_{\leq}(S)$, by Theorem 1.1. Hence $e\mathcal{H}^*f$.

 $(\mathbf{v})\Rightarrow(\mathbf{v})$: Let $a, b \in S$. Since S is π -regular, we let $m, n \in \mathbb{N}$ be the smallest positive integers such that $a^m, b^n \in \operatorname{Reg}_{\leq}(S)$. Then there exist $x, y \in S$ such that $a^m \leq a^m x a^m$ and $b^n \leq b^n y b^n$. Clearly $a^m x, x a^m, b^n y, y b^n \in E_{\leq}(S)$. Now $a^m \leq a^m x a^m \leq b^n y z a^m$ for some $z \in S$. So $a^m \leq b^n s_1$, where $s_1 = y z a^m$. Also $a^m \leq s_2 b^n$ for some $s_2 \in S$. Similarly there exists $s_3, s_4 \in S$ such that $b^n \leq s_3 a^m$ and $b^n \leq a^m s_4$. Hence $a\mathcal{H}^*b$.

(vi) \Rightarrow (vii): Let $a, b \in S$ and $a', a'' \in V_{\leq}(a^m)$ for some $m \in \mathbb{N}$. Hence from (vi), $a'a^m \mathcal{H}^* a''a^m$ and so $a'a^m \mathcal{H}a''a^m$. Now $a' \leq a'a^m a' \leq a''a^m t_1a' = a''t_2$, where $t_2 = a^m t_1 a'$. Similarly $a'' \leq a't_3$ for some $t_3 \in S$. Hence $a'\mathcal{R}a''$. Similarly $a'\mathcal{L}a''$, thus $a'\mathcal{H}a''$. Also $a^m \in (b^n Sb^n]$. Hence S is π -inverse and t-Archimedean.

(vii) \Rightarrow (viii): Suppose that S is π -inverse and t-Archimedean ordered semigroup. Since S is t-Archimedean, S is a nil-extension of a t-simple ordered semigroup K, by Corollary 1.3. So K is left simple. Let $a \in K$. Since S is π -inverse, for $a \in S$ there exists $m \in \mathbb{N}$ such that for every $a', a'' \in V_{\leq}(a^m) \subseteq S$ implies $a'\mathcal{H}a''$. Now as K is an ideal, $a'a^ma' \in K$. Hence $a' \leq a'a^ma'$ implies that $a' \in K$. Similarly $a'' \in K$. So $a'\mathcal{H}a''$ in K. Hence K is a π -inverse ordered semigroup.

 $(viii) \Rightarrow (i)$: This is obvious.

Corollary 2.5. The following conditions on an ordered semigroup S are equivalent:

- (i) S is a nil-extension of a simple and π -inverse ordered semigroup;
- (ii) S is π -inverse and $e\mathcal{J}^*f$ for all $e, f \in E_{\leq}(S)$;
- (iii) S is π -inverse and $a\mathcal{J}^*b$ for all $a, b \in S$;
- (iv) S is π -inverse and for all $a, b \in S$, there exists $m \in \mathbb{N}$ such that $a^m \in (SbS]$;
- (v) S is π -inverse and Archimedean ordered semigroup.

Proof. (i) \Rightarrow (ii): Let S be a nil-extension of a simple and π -inverse ordered semigroup K. Choose $a \in S$. Then there exists $k \in \mathbb{N}$ such that $a^k \in K$. Since K is π -inverse, for a^k there exists $r \in \mathbb{N}$ such that for any $x, y \in V_{\leq}(a^m) \subseteq K$ implies $x\mathcal{H}y$, where m = kr. Hence S is a π -inverse ordered semigroup.

Now for every $e, f \in E_{\leq}(S)$, as K is an ideal of S, we have $e, f \in K$. But K is simple, so for $e, f \in K$ there exists $u, v \in K$ such that $e \leq ufv$. Similarly $f \leq wez$ for some $w, z \in S$. So $e\mathcal{J}f$. Hence $e\mathcal{J}^*f$.

(ii) \Rightarrow (iii): Since S is π -inverse, S is π -regular. Let m, n be the smallest positive integers such that $a^m, b^n \in Reg_{\leq}(S)$. So there exist $x, y \in S$ such that $a^m \leq a^m x a^m$ and $b^n \leq b^n y b^n$. Clearly $a^m x, x a^m, b^n y, y b^n \in E_{\leq}(S)$. Now $a^m \leq a^m x a^m \leq s_1 y b^n s_2 a^m$ for some $s_1, s_2 \in S$. So $a^m \in (Sb^n S]$. Similarly $b^n \in (Sa^m S]$. Hence $a\mathcal{J}^*b$.

 $(iii) \Rightarrow (iv)$ and $(iv) \Rightarrow (v)$: These implications are obvious.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$: Clearly $Intra(S) \neq \phi$. Since S is an Archimedean ordered semigroup with $Intra(S) \neq \phi$, so S is a nil-extension of a simple ordered semigroup K, by Theorem 1.2. Let $a \in K$. Since S is π -inverse, for $a \in S$ there exists $m \in \mathbb{N}$ such that for any $a', a'' \in V_{\leq}(a^m) \subseteq S$ implies that $a'\mathcal{H}a''$. Now since K is an ideal, $a'a^ma' \in K$. Hence $a' \leq a'a^ma'$ implies $a' \in K$. Similarly $a'' \in K$. So $a'\mathcal{H}a''$ holds in K. Hence K is a π -inverse ordered semigroup.

Theorem 2.6. An ordered semigroup S is a nil-extension of an inverse ordered semigroup if and only if the following conditions hold in S:

- (i) S is π -inverse;
- (ii) for $a \in S$ and $b \in \mathbf{V}_{\leq}(S)$ such that $a \leq ba$ implies that $a \in \mathbf{V}_{\leq}(S)$;
- (iii) for $a \in S$ and $b \in \mathbf{V}_{\leq}(S)$ such that $a \leq ab$ implies that $a \in \mathbf{V}_{\leq}(S)$;
- (iv) for $a \in S$ and $b \in \mathbf{V}_{\leq}(S)$ such that $a \leq b$ implies that $a \in \mathbf{V}_{\leq}(S)$.

Proof. First suppose that S is a nil-extension of an inverse ordered semigroup K.

(i). Let $a \in S$. Then there is $m \in \mathbb{N}$ such that $a^m \in K$. Since K is inverse, for every $x, y \in V_{\leq}(a^m) \subseteq K$ implies $x \mathcal{H} y$. Thus S is π -inverse.

(ii). Let $b \in \mathbf{V}_{\leq}(S)$ and $a \in S$ such that $a \leq ba$. Since $b \in Reg_{\leq}(S)$, there is $z \in S$ such that $b \leq b(zb)^n$ for all $n \in \mathbb{N}$. Let $n_1 \in \mathbb{N}$ be such that $(zb)^{n_1} \in K$. Then $b(zb)^{n_1} \in K$. This implies $b \in K$ and so $ba \in K$ and finally $a \in K$. Since K is an inverse ordered semigroup, $a \in \mathbf{V}_{\leq}(S)$.

(iii). This is similar to (ii).

(iv). Let $a \in S$ and $b \in \mathbf{V}_{\leq}(S)$ such that $a \leq b$. Clearly $b \in Reg_{\leq}(S)$, and so for some $z \in S$, $b \leq b(zb)^n$, for all $n \in \mathbb{N}$. Since S is a nil-extension of K, there is $m \in \mathbb{N}$ such that $(zb)^m \in K$ and so $b \in K$. Thus $a \in K$ and hence $a \in \mathbf{V}_{\leq}(S)$.

Conversely, assume that given conditions hold in S. Let $a \in S$ be arbitrary. Then by (i) there exists $m \in \mathbb{N}$ such that for any $x, y \in V_{\leq}(a^m) \subseteq S$ implies $x\mathcal{H}y$. So $\mathbf{V}_{\leq}(S) \neq \phi$. Say $T = \mathbf{V}_{\leq}(S)$. Thus for each $a \in S$, there exists $m \in \mathbb{N}$ such that $a^m \in T$. Now choose $s \in S$ and $a \in T$. Then $a \in \operatorname{Reg}_{\leq}(S)$, so there is $h \in S$ such that $a \leq a(ha)^n$ for all $n \in \mathbb{N}$. Let $m_1 \in \mathbb{N}$ be such that $(ha)^{m_1} \in T$. So $sa \leq sa(ha)^{m_1}$ implies that $sa \in \mathbf{V}_{\leq}(S) = T$, by (iii). Similarly $as \in T$ follows from (ii).

Now consider $a \in S$ and $b \in T$ such that $a \leq b$. Then by (iv) $a \in T$. Hence T is an ideal. Also T is an inverse ordered semigroup. Hence S is a nil-extension of an inverse ordered semigroup T.

In the following results we characterize ordered semigroups which are complete semilattice of nil-extensions of different ordered semigroups.

Theorem 2.7. Let S be an ordered semigroup. Then the following conditions are equivalent on S:

- (i) S is a complete semilattice of nil-extensions of simple and π-inverse ordered semigroups;
- (ii) S is a complete semilattice of nil-extensions of simple ordered semigroups and $\Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S);$
- (iii) S is π-inverse and is a complete semilattice of Archimedean ordered semigroups.

Proof. (i) \Rightarrow (ii): Let *S* be a complete semilattice of semigroups $\{S_{\alpha}\}_{\alpha \in Y}$ and ρ be the corresponding complete semilattice congruence on *S*. For $\alpha \in Y$, let S_{α} be a nil-extension of a simple and π -inverse ordered semigroup K_{α} . Here we need only to show that $\prod Intra_{\leq}(S) = \prod \mathbf{V}_{\leq}(S)$. For this, let $a \in \prod \mathbf{V}_{\leq}(S)$. Then there are $m \in \mathbb{N}$ and $\alpha \in Y$ such that $a^m \in K_{\alpha}$. Now the simplicity of K_{α} yields that $a^m \in (K_{\alpha}a^{2m}K_{\alpha}]$. Thus $a \in \prod Intra_{\leq}(S)$. Therefore $\prod \mathbf{V}_{\leq}(S) \subseteq \prod Intra_{\leq}(S)$.

Now let $b \in \prod Intra_{\leq}(S)$. Then there are $x, y \in S$ and $\gamma \in Y$ such that $b^m \leq xb^{2m}y$ and $b \in S_{\gamma}$. Let S_{γ} be a nil-extension of a simple and π -inverse ordered semigroup K_{γ} . Now $b^m \leq (xb^m)^n b^m y^n$, for all $n \in \mathbb{N}$. Also by completeness of ρ we have that $(b^m)_{\rho} = (b^m x b^{2m} y)_{\rho} = (xb^m x b^m y)_{\rho} = (xb^m)_{\rho} (xb^m y)_{\rho} = (xb^m)_{\rho} (b^m)_{\rho}$. Thus $xb^m \in S_{\gamma}$. So there is $m_1 \in \mathbb{N}$ such that $(xb^m)^{m_1} \in \mathbb{N}$

 K_{γ} . Thus $(b^m)^{m_1} \in K_{\gamma}$. Since K_{γ} is π -inverse, it follows that $b \in \Pi \mathbf{V}_{\leq}(S)$. Therefore $\Pi Intra_{\leq}(S) \subseteq \Pi \mathbf{V}_{\leq}(S)$. Hence $\Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S)$.

(ii) \Rightarrow (iii): Suppose *S* is a complete semilattice of semigroups $S_{\alpha}(\alpha \in Y)$, where S_{α} is a nil-extension of a simple ordered semigroup K_{α} and $\Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S)$. Let $a \in S$. Then there are $m \in \mathbb{N}$ and $\alpha \in Y$ such that $a^m \in K_{\alpha}$. Since each K_{α} is simple, for $a^m \in K_{\alpha}$, $(a^m)^r \in (K_{\alpha}(a^m)^{2r}K_{\alpha}] \subseteq (S(a^m)^{2r}S]$, for all $r \in \mathbb{N}$. Thus $a \in \Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S)$. Hence *S* is a π -inverse ordered semigroup. Also *S* is a complete semilattice of Archimedean ordered semigroups, by Theorem 1.2.

(iii) \Rightarrow (i): Suppose that the condition (iii) holds. Then S is a complete semilattice of nil-extensions of simple ordered semigroups, by Theorem 1.2. Suppose that S is a complete semilattice of semigroups $S_{\alpha}(\alpha \in Y)$, where S_{α} is a nilextension of a simple ordered semigroup K_{α} . Let $a \in K_{\alpha}$. Since S is π -inverse, there is $m \in \mathbb{N}$ such that for every $z, y \in V_{\leq}(a^m)$ in S implies that $z\mathcal{H}y$. By completeness of ρ , it gives $(a^m)_{\rho} = (za^m)_{\rho}$ and so $a^m, za^m \in S_{\alpha}$. Now $a^m \leq a^m za^m$ implies that $a^m \leq a^m(za^m z)a^m$. Since S_{α} is a nil-extension of K_{α}, K_{α} is an ideal of S_{α} . Thus $za^m z \in K_{\alpha}$. Now by completeness of $\rho, z \leq za^m z$ gives $(z)_{\rho} = (za^m z)_{\rho}$. So $z \in K_{\alpha}$. Similarly $y \in K_{\alpha}$. Hence K_{α} is π -inverse and so S is a complete semilattice of nil-extensions of simple and π -inverse ordered semigroups.

Corollary 2.8. Let S be an ordered semigroup. Then the following conditions are equivalent on S:

- (i) S is a complete semilattice of nil-extensions of left simple and π -inverse ordered semigroups;
- (ii) S is a complete semilattice of nil-extensions of left simple ordered semigroups and ∏Intra≤(S) = ∏V≤(S);
- S is π-inverse and is a complete semilattice of l-Archimedean ordered semigroups.

Proof. (i) \Rightarrow (ii): Let *S* be a complete semilattice of semigroups $\{S_{\alpha}\}_{\alpha \in Y}$ and ρ be the corresponding complete semilattice congruence on *S*. Let $\alpha \in Y$ and S_{α} be a nil-extension of a left simple and π -inverse ordered semigroup K_{α} . Here we need only to show that $\prod Intra_{\leq}(S) = \prod \mathbf{V}_{\leq}(S)$. For this, let $a \in \prod \mathbf{V}_{\leq}(S)$. Then there is $m \in \mathbb{N}$ such that $a^m \in K_{\alpha}$. Now the left simplicity of K_{α} yields that $a^m \in (a^{3m}K_{\alpha}]$, that is, $a^m \leq a^{3m}s_1 = a^m a^{2m}s_1$ for some $s_1 \in K_{\alpha}$. Thus $a \in \prod Intra_{\leq}(S)$. Therefore $\prod \mathbf{V}_{\leq}(S) \subseteq \prod Intra_{\leq}(S)$.

Now let $b \in \Pi Intra_{\leq}(S)$. Then clearly $b \in \mathbf{V}_{\leq}(S)$. Therefore $\Pi Intra_{\leq}(S) \subseteq \Pi \mathbf{V}_{\leq}(S)$. Hence $\Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S)$.

(ii) \Rightarrow (iii): Suppose S is a complete semilattice of semigroups $S_{\alpha}(\alpha \in Y)$, where S_{α} is a nil-extension of a left simple ordered semigroup K_{α} and $\prod Intra_{\leq}(S) = \prod \mathbf{V}_{\leq}(S)$. Let $a \in S$. Then there are $m \in \mathbb{N}$ and $\alpha \in Y$ such that $a^m \in K_{\alpha}$. Since each K_{α} is left simple, for $a^m \in K_{\alpha}$ there exists $r \in \mathbb{N}$ such that $(a^m)^r \leq (a^m)^{3r}s_2 = a^m a^{2r}s_2$ for some $s_2 \in K_{\alpha}$. Thus

 $a \in \Pi Intra_{\leq}(S) = \Pi \mathbf{V}_{\leq}(S)$. Hence S is a π -inverse ordered semigroup. Also S is a complete semilattice of *l*-Archimedean ordered semigroup by [2, Corollary 4.2]..

(iii) \Rightarrow (i): Suppose that the condition (iii) holds. Then S is a complete semilattice of nil-extensions of left simple ordered semigroups by [2, Corollary 4.2]. Suppose that S is a complete semilattice of semigroups $S_{\alpha}(\alpha \in Y)$, where S_{α} is a nil-extension of a left simple semigroup K_{α} . Clearly K_{α} is π -inverse, by Theorem 2.7 and so S is a complete semilattice of nil-extensions of left simple and π -inverse ordered semigroups.

References

- A.K. Bhuniya and K. Hansda, Nil extensions of simple regular ordered semigroups, Asian-Eur J. Math. 14 (3) (2021), 2150044, 15 pages. doi: 10.1142/S1793557121500443
- [2] Y.L. Cao and X.Z. Xu, Nil extensions of simple po-semigroups, Communication in Algebra 28 (5) (2000) 2477–2496.
- [3] K. Hansda and A. Jamadar, Characterization of inverse ordered semigroups by their ordered idempotents and bi-ideals, *Quasigroups and Related Systems* 28 (2020) 77–88.
- [4] A. Jamadar, π-inverse ordered semigroups, Discussiones Mathematicae General Algebra and Applications (to appear). https://doi.org/10.7151/dmgaa.1430
- [5] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, International Journal of Mathematics and Mathematical Sciences (2006), Art. ID 61286, 8 pages.
- [6] N. Kehayopulu and M. Tsingelis, Ideal extensions of ordered semigroups, Comm. Algebra 31 (10) (2003) 4939–4969.
- [7] N. Kehayopulu and M. Tsingelis, Semilattices of Archimedean ordered semigroups, Algera Colloquium 15 (3) (2008) 527–540.
- [8] S. Sadhya and K. Hansda, Characterizations of π -t-simple ordered semigroups by their ordered idempotents, *Quasigroups and Related Systems* **27** (2019) 119–126.
- [9] S. Sadhya and K. Hansda, On Green's relations in GV ordered semigroups, Quasigroups and Related Systems 30 (2022) 161–168.