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Abstract. We prove several norm and numerical radius inequalities for linear operators
in Hilbert spaces. In particular, it is proved that if A is a bounded linear operator on
a complex Hilbert space, then

ω
2 (A) ≤

1

2

(

ω (|A∗| |A|) + ‖A‖2
)

,

where ω (A), ‖A‖, and |A| are the numerical radius, the usual operator norm, and the

absolute value of A, respectively.
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1. Introduction

Let B (H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space H with inner product 〈·, ·〉. For A ∈ B (H), let ω (A) and ‖A‖
denote the numerical radius and the operator norm of A, respectively. Recall
that ω (A) = supx∈H,‖x‖=1 |〈Ax, x〉| and ‖A‖ = supx∈H,‖x‖=1 ‖Ax‖. It is well-
known that if A ∈ B (H) and f is a non-negative increasing function on [0,∞),

then ‖f (|A|)‖ = f (‖A‖). Here |A| stands for the positive operator (A∗A)
1

2 .

It is easy to check that ω (·) defines a norm on B (H), which is equivalent to
the operator norm ‖·‖. In fact, for every A ∈ B (H),

1

2
‖A‖ ≤ ω (A) ≤ ‖A‖ . (1)

The inequalities in (1) are sharp. The first inequality becomes an equality if
A2 = 0. The second inequality becomes an equality if A is normal.

The numerical radius and the usual operator norm satisfy the following well-
known inequalities

∥

∥A2
∥

∥ ≤ ‖A‖2 and ω
(

A2
)

≤ ω2 (A) .

In [7], Kittaneh improved the second inequality in (1), and obtained the
following result:

ω (A) ≤ 1

2

(

‖A‖ +
∥

∥A2
∥

∥

1

2

)

. (2)

He also showed the following estimate, which is stronger than (2),

ω (A) ≤ 1

2
‖|A|+ |A∗|‖ . (3)

Another refinement of the second inequality in (1) has been established in [10].
This refinement asserts that if A ∈ B (H), then

ω2 (A) ≤ 1

2

∥

∥

∥|A|2 + |A∗|2
∥

∥

∥ . (4)

Also, in the same paper, the author proved that

1

4

∥

∥

∥|A|2 + |A∗|2
∥

∥

∥ ≤ ω2 (A) . (5)

It can be easily seen that (5) improves the first inequality in (1). It should be
mentioned here that upper bounds obtained in (2) and (4) are not comparable.

Recently, many mathematicians have obtained different numerical radius in-
equalities of Hilbert space operators, the interested readers are invited to see
[5, 11, 12, 13, 14, 15, 16] and references therein. Here, we obtain several new
inequalities for the numerical radius of the Hilbert space operators. The bounds
obtained here improve on the existing bounds.
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2. Numerical Radius Inequalities

Lemma 2.1. [2] Let x, y, z ∈ H. Then

|〈z, x〉| |〈z, y〉| ≤ ‖z‖2
2

(|〈x, y〉|+ ‖x‖ ‖y‖) .

Our first result is stated as follows.

Theorem 2.2. Let A ∈ B (H). Then

ω2 (A) ≤ 1

2











1
∫

0

∥

∥

∥(1− v) |A|2 + v|A∗|2
∥

∥

∥

1

2





2

+ ω
(

A2
)






. (6)

Proof. By using Lemma 2.1, the logarithmic-mean, and the Young inequality,
we have

|〈Ax, x〉|2

≤1

2

(

‖Ax‖ ‖A∗x‖ +
∣

∣

〈

A2x, x
〉∣

∣

)

≤1

2











1
∫

0

‖Ax‖1−v‖A∗x‖vdv





2

+
∣

∣

〈

A2x, x
〉∣

∣







=
1

2











1
∫

0

〈

|A|2x, x
〉

1−v

2

〈

|A∗|2x, x
〉

v

2

dv





2

+
∣

∣

〈

A2x, x
〉∣

∣







=
1

2











1
∫

0

(

〈

|A|2x, x
〉1−v〈

|A∗|2x, x
〉v
)

1

2

dv





2

+
∣

∣

〈

A2x, x
〉∣

∣







≤1

2











1
∫

0

(

(1− v)
〈

|A|2x, x
〉

+ v
〈

|A∗|2x, x
〉)

1

2

dv





2

+
∣

∣

〈

A2x, x
〉∣

∣







=
1

2











1
∫

0

〈(

(1− v) |A|2 + v|A∗|2
)

x, x
〉

1

2

dv





2

+
∣

∣

〈

A2x, x
〉∣

∣







≤1

2











1
∫

0

∥

∥

∥
(1− v) |A|2 + v|A∗|2

∥

∥

∥

1

2

dv





2

+ ω
(

A2
)






.
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This implies that

|〈Ax, x〉|2 ≤ 1

2











1
∫

0

∥

∥

∥(1− v) |A|2 + v|A∗|2
∥

∥

∥

1

2





2

+ ω
(

A2
)






.

By taking the supremum over all unit vector x ∈ H, we reach the desired result.

In [4], Dragomir proved the following inequality

ω2 (A) ≤ 1

2

(

‖A‖2 + ω
(

A2
)

)

. (7)

By the triangle inequality for the usual operator norm,





1
∫

0

∥

∥

∥(1− v) |A|2 + v|A∗|2
∥

∥

∥

1

2





2

≤ ‖A‖2,

we get

ω2 (A) ≤ 1

2











1
∫

0

∥

∥

∥(1− v) |A|2 + v|A∗|2
∥

∥

∥

1

2





2

+ ω
(

A2
)







≤ 1

2

(

‖A‖2 + ω
(

A2
)

)

and imply that our inequality (6) is an improvement of the Dragomir’s inequality
(7).

The following lemmas are also useful in the sequel.

Lemma 2.3. [3, (2.26)] Let x, y, z ∈ H. Then

|〈z, x〉|2 + |〈z, y〉|2 ≤ ‖z‖2
(

|〈x, y〉|+max
(

‖x‖2, ‖y‖2
))

.

Lemma 2.4. [9] Let A ∈ B (H) and let x, y ∈ H be any vector. If f, g are

nonnegative continuous functions on [0,∞) satisfying f (t) g (t) = t, (t ≥ 0), then

|〈Ax, y〉| ≤ ‖f (|A|)x‖ ‖g (|A∗|) y‖ .

In particular,

|〈Ax, y〉| ≤
√

〈

|A|2(1−v)
x, x
〉 〈

|A∗|2vy, y
〉

, (0 ≤ v ≤ 1) .
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A different upper bound for the numerical radius is incorporated in the fol-
lowing theorem.

Theorem 2.5. Let A ∈ B (H) and let 0 ≤ t ≤ 1. Then

ω2 (A) ≤ 1

2

(

ω
(

|A∗|2(1−t)|A|2t
)

+max
(

‖A‖4t, ‖A‖4(1−t)
))

.

Proof. Let 0 ≤ t ≤ 1. Put x = |A|2tx, y = |A∗|2(1−t)x, and z = x with ‖x‖ = 1,
in Lemma 2.3. Then

〈

|A|2tx, x
〉2

+
〈

|A∗|2(1−t)
x, x
〉2

≤
(

∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣
+max

(

∥

∥

∥
|A|2tx

∥

∥

∥

2

,
∥

∥

∥
|A∗|2(1−t)x

∥

∥

∥

2
))

.

On the other hand, by Lemma 2.4,

2|〈Ax, x〉|2 ≤ 2
〈

|A|2tx, x
〉〈

|A∗|2(1−t)
x, x
〉

≤
〈

|A|2tx, x
〉2

+
〈

|A∗|2(1−t)
x, x
〉2

.

Thus,

|〈Ax, x〉|2 ≤1

2

(

∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+max

(

∥

∥

∥|A|2tx
∥

∥

∥

2

,
∥

∥

∥|A∗|2(1−t)
x
∥

∥

∥

2
))

=
1

2

(∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+max
(〈

|A|4tx, x
〉

,
〈

|A∗|4(1−t)
x, x
〉))

≤1

2

(

ω
(

|A∗|2(1−t)|A|2t
)

+max
(

‖A‖4t, ‖A‖4(1−t)
))

.

This implies that

ω2 (A) ≤ 1

2

(

ω
(

|A∗|2(1−t)|A|2t
)

+max
(

‖A‖4t, ‖A‖4(1−t)
))

.

The following corollary is an immediate consequence of Theorem 2.5.

Corollary 2.6. Let A ∈ B (H). Then

ω (A) ≤
√

1

2

(

ω (|A∗| |A|) + ‖A‖2
)

≤
√

1

2

(

‖|A∗| |A|‖+ ‖A‖2
)

=

√

1

2

(

‖A2‖+ ‖A‖2
)

≤‖A‖ .
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Our last result is stated as follows.

Theorem 2.7. Let A ∈ B (H) and let 0 ≤ t ≤ 1. Then

ω2 (A) ≤ 1

2
ω
(

|A∗|2(1−t)|A|2t
)

+
1

4

∥

∥

∥|A|4t + |A∗|4(1−t)
∥

∥

∥ .

Proof. Let 0 ≤ t ≤ 1. Put x = |A|2tx, y = |A∗|2(1−t)
x, and z = x with ‖x‖ = 1,

in Lemma 2.3. Then
〈

|A|2tx, x
〉 〈

|A∗|2(1−t)
x, x
〉

≤ 1

2

(∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+
∥

∥

∥|A|2tx
∥

∥

∥

∥

∥

∥|A∗|2(1−t)
x
∥

∥

∥

)

.

Hence, by Lemma 2.4, we deduce that

|〈Ax, x〉|2 ≤ 1

2

(∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+
∥

∥

∥|A|2tx
∥

∥

∥

∥

∥

∥|A∗|2(1−t)
x
∥

∥

∥

)

.

So,

|〈Ax, x〉|2 ≤ 1

2

(∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+
∥

∥

∥|A|2tx
∥

∥

∥

∥

∥

∥|A∗|2(1−t)x
∥

∥

∥

)

=
1

2

(

∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+

√

〈

|A|4tx, x
〉〈

|A∗|4(1−t)
x, x
〉

)

≤ 1

2

(

∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+
1

2

(〈

|A|4tx, x
〉

+
〈

|A∗|4(1−t)
x, x
〉)

)

=
1

2

(

∣

∣

∣

〈

|A∗|2(1−t)|A|2tx, x
〉∣

∣

∣+
1

2

〈(

|A|4t + |A∗|4(1−t)
)

x, x
〉

)

≤ 1

2

(

ω
(

|A∗|2(1−t)|A|2t
)

+
1

2

∥

∥

∥|A|4t + |A∗|4(1−t)
∥

∥

∥

)

,

which implies,

ω2 (A) ≤ 1

2
ω
(

|A∗|2(1−t)|A|2t
)

+
1

4

∥

∥

∥|A|4t + |A∗|4(1−t)
∥

∥

∥ .

By taking t = 1/2 in Theorem 2.7 we get a recent result proved by Heydar-
beygi et al. in [6, Corollary 3.3].

3. Norm Inequalities

For any a, b ∈ R, we have

(

a+ b

2

)2

=
1

2

(

a2 + b2

2
+ ab

)

.
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If we assume g is non-negative nondecreasing convex function on [0,∞), then by
applying the arithmetic-geometric mean inequality, we can write

g

(

(

a+ b

2

)2
)

= g

(

a2+b2

2 + ab

2

)

≤ 1

2

(

g

(

a2 + b2

2

)

+ g (ab)

)

≤ g

(

a2 + b2

2

)

≤ g
(

a2
)

+ g
(

b2
)

2
.

Defining f (t) = g
(√

t
)

, we get

f

(

a+ b

2

)

≤ 1

2

(

f

(
√

a2 + b2

2

)

+ f
(√

ab
)

)

≤ f (a) + f (b)

2
. (8)

A straightforward extension of the inequality (8) to positive operators is given
in Theorem 3.3.

To achieve our goal, we need the following lemmas.

Lemma 3.1. [1, Corollary 2.6] Let A,B ∈ B (H) be two positive operators and let

f be a non-negative nondecreasing convex function on [0,∞). Then
∥

∥

∥

∥

f

(

A+B

2

)∥

∥

∥

∥

≤ 1

2
‖f (A) + f (B)‖ .

Lemma 3.2. [8, Corollary 1] Let A,B ∈ B (H) be two positive operators. Then

‖S − T ‖ ≤ ‖S + T ‖ .

Theorem 3.3. Let A,B ∈ B (H) be two positive operators and let f be a non-

negative and non-decreasing function on [0,∞) such that g (t) = f
(√

t
)

is con-

vex. Then

∥

∥

∥

∥

f

(

A+B

2

)∥

∥

∥

∥

≤ 1

2

∥

∥

∥

∥

∥

f

(

(

A2 +B2

2

)
1

2

)

+ f

(

(

AB +BA

2

)
1

2

)∥

∥

∥

∥

∥

≤ 1

2
‖f (A) + f (B)‖ .

(9)

In particular, it gives the following important result:

∥

∥

∥

∥

(

A+B

2

)r∥
∥

∥

∥

≤ 1

2

∥

∥

∥

∥

∥

(

A2 +B2

2

)
r

2

+

(

AB +BA

2

)
r

2

∥

∥

∥

∥

∥

≤ 1

2
‖Ar +Br‖ , (10)
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for any r ≥ 2.

Proof. It is easy to see that for positive operators A and B in B (H),
(

A+B

2

)2

=
1

2

[

A2 +B2

2
+

AB +BA

2

]

.

Since g is non-negative and convex on [0,∞), it follows that
∥

∥

∥

∥

∥

g

(

(

A+B

2

)2
)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

g

(

1

2

[

A2 +B2

2
+

AB +BA

2

])∥

∥

∥

∥

≤ 1

2

∥

∥

∥

∥

g

(

A2 +B2

2

)

+ g

(

AB +BA

2

)∥

∥

∥

∥

(11)

≤ 1

2

∥

∥

∥

∥

g

(

A2 +B2

2

)∥

∥

∥

∥

+
1

2

∥

∥

∥

∥

g

(

AB +BA

2

)∥

∥

∥

∥

(12)

≤ 1

4

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥+
1

2

∥

∥

∥

∥

g

(

AB +BA

2

)∥

∥

∥

∥

(13)

=
1

4

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥+
1

2
g

(∥

∥

∥

∥

AB +BA

2

∥

∥

∥

∥

)

(14)

≤ 1

4

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥+
1

2
g

(∥

∥

∥

∥

A2 +B2

2

∥

∥

∥

∥

)

(15)

=
1

4

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥+
1

2

∥

∥

∥

∥

g

(

A2 +B2

2

)∥

∥

∥

∥

(16)

≤ 1

2

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥ , (17)

where the inequalities (11), (13), and (17) follows from Lemma 3.1, the inequality
(12) obtained from the triangle inequality for the usual operator norm, and (15)
is an immediate consequence of Lemma 3.2. Indeed,

‖AB +BA‖ =
1

2

∥

∥(A+B)2 − (A−B)2
∥

∥

≤ 1

2

∥

∥(A+B)2 + (A−B)2
∥

∥

=
∥

∥A2 +B2
∥

∥ .

So, we have shown that
∥

∥

∥

∥

∥

g

(

(

A+B

2

)2
)∥

∥

∥

∥

∥

≤1

2

∥

∥

∥

∥

g

(

A2 +B2

2

)

+ g

(

AB +BA

2

)∥

∥

∥

∥

≤ 1

2

∥

∥g
(

A2
)

+ g
(

B2
)∥

∥ .

Now, since f (t) = g
(√

t
)

, we conclude (9).

Specializing the inequality (9) to the function f (t) = tr for r ≥ 2, we obtain
(10). This completes the proof of the theorem.
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[15] M. Sababheh, H.R. Moradi, I.H. Gümüş, Some new operator inequalities, Oper.
Matrices 14 (1) (2020) 105–115.

[16] S. Tafazoli, H.R. Moradi, S. Furuichi, P. Harikrishnan, Further inequalities for
the numerical radius of Hilbert space operators, J. Math. Inequal 13 (4) (2019)
955–967.


