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Instituto de f́ısica y matemáticas Universidad Tecnológica de la Mixteca Carretera a

Acatlima Km 2.5, Huajuapan de León, Oaxaca, Mexico. C.P. 69000

Email: tomas@mixteco.utm.mx

Hemen Bharali
Department of Mathematics, Assam Don Bosco University, Sonapur, Guwahati, Assam

782402, India

Email: hemen.bharali@dbuniversity.ac.in

Received 27 February 2020
Accepted 15 August 2021

Communicated by Peichu Hu

AMS Mathematics Subject Classification(2020): 26A39, 26A42

Abstract. We introduce Lr-Henstock-Kurzweil integral for finite dimensional Banach

spaces. We discuss its properties. In this study we discuss Lr-Henstock-Kurzweil

integral generalized Henstock-Kurzweil integral for finite dimensional Banach spaces.

Keywords: Lr-Henstock-Kurzweil integral; Banach valued Lr-Henstock-Kurzweil

integral.

1. Introduction

The Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals are the ex-
tension of Dunford, Pettis, and Bochner integrals respectively. These integrals
were defined and studied by Gordon [6]. Gordon showed that a Denjoy-Dunford
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(Denjoy-Bochner) integrable function on [a, b] is Dunford (Bochner) integrable
in some interval of [a, b] and that for the spaces that do not contain copy c0, a
Denjoy-Pettis integrable function on [a, b] is Pettis integrable on some sub inter-
val of [a, b]. H. Yoon et al. in [21] defined and studied the AP-Henstock extension
of Dunford, Pettis, and Bochner integrals of functions mapping [a, b] into Ba-
nach space X , respectively. Major and minor functions were first introduced by
de la Vallée Poussin in his study of the properties of the Lebesgue integral and
those of functions additive of a set (see [16]). Entirely equivalent notions were
introduced independently by O. Perron [14], based on them a new definition of
integral, which does not require the theory of measure were discussed. Calderón
and Zygmund first gave the notion of derivation in Lr. Unlike the idea of the
approximate derivative, it had proven to be quite effective in applications of par-
tial differential equation, area of surfaces, etc. (see [1]). L. Gordon defined the
notion of Dini derivatives in metric Lr (briefly Lr-derivatives). Also in his work,
he discussed Perron integral in Lr (see [5]). Gordon proved that AP-derivatives
are equivalent to Lr- derivatives. P.M. Musial and Y. Sagher introduced the Lr-
Henstock-Kurzweil integral in [11]. P. Musial and F. Tulone describe a norm on
the space ofHKr -integrable functions, as well as the dual and completion of this
space (see [13]). P. Musial define the class of Lr-variational integrable functions
and he had shown that it is equivalent to the class of Lr- Henstock-Kurzweil
integrable functions. They also defined the class of functions of Lr-bounded
variation (see [12]). L.D. Piazza et al. in [15] shows that variational Henstock-
Kurzweil integral is equivalent to Kuzweil-Henstock integral for Banach space
valued functions. In this paper we define Lr- Henstock-Kurzweil integral of finite
dimensional Banach space valued functions define in [a, b].

2. Preliminaries

In this paper, X denotes a real Banach space and X∗ its dual. B(X∗) = {x∗ ∈
X∗ : ||x∗|| ≤ 1} is the unit ball in X∗.

To make our presentation reasonably self-contained, we recall a few defini-
tions and results in this section that will be used in our main section.

Definition 2.1. [9, Definition 2.1] A function f : [a, b] → X is said to be Henstock
integrable on [a, b] if there exists A ∈ X with the following property: given ε > 0
there exists a gauge δ on [a, b] such that
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< ε

for each δ−fine P−partition {(Ii, ξi)}Pi=1 of [a, b]. We write A as H
∫

[a,b]
f.

Recall the family of all compact sub intervals J, L ⊂ I = [a, b], a function
F : I → X is additive if F (J ∪ L) = F (J) + F (L) for any non overlapping
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J, L ∈ I such that J ∪ L ∈ I.

Definition 2.2. [18, Definition 3.6.1] A function f : I = [a, b] → X is said to be
strongly Henstock-Kurzweil integrable on I = [a, b] if there is an additive function
F : I = [a, b] → X such that for every ε > 0 there exists a gauge δ on I = [a, b]
such that

k
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∣
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∣

∣

∣

∣

f(ti)|Ji| − F (Ji)
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∣

∣

∣

∣

∣

∣

X

< ε

for every δ-fine P-partition
{

(ti, Ji), i = 1, 2, ..., k
}

of I = [a, b].

Recall the space Lr, 1 ≤ r < ∞, as

Lr([a, b]) =

{

f :

(

1

h

∫ b

a

|f(x)− P (x)|rdx

)
1

r

< ε, 0 < h < ∞,

for some polynomial P (x)

}

.

More about Lr
(

[a, b]
)

, one can follow [1, 11, 19].

Definition 2.3. [11] Let f ∈ Lr(I) where 1 ≤ r < ∞ and I = (a, b). For all x ∈ I,

recalling the r- Dini derivatives. In all cases below h → 0+.

The upper-right Lr- derivative:

D+
r f(x) = inf

{

a :

(

1

h

∫ h

0

[f(x+ t)− f(x)− at]r+dt

)
1

r

= o(h)

}

.

The lower-right Lr- derivate:

D+,rf(x) = sup

{

a :

(

1

h

∫ h

0

[f(x+ t)− f(x)− at]r−dt

)
1

r

= o(h)

}

.

The upper-left Lr- derivate:

D−
r f(x) = inf

{

a :

(

1

h

∫ h

0

[−f(x− t) + f(x)− at]r+dt

)
1

r

= o(h)

}

and the lower-left Lr− derivate:

D−,rf(x) = sup

{

a :

(

1

h

∫ h

0

[−f(x− t) + f(x)− at]r−dt

)
1

r

= o(h)

}

.

Let 1 ≤ r < ∞. Then Lr-upper derivate of f at x, Drf(x), is defined by

Drf(x) = min

{

D−
r f(x), D

+
r f(x)

}

.
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The Lr- lower derivative of f at x, Drf(x), is defined by

Drf(x) = min

{

D−,rf(x), D+,rf(x)

}

.

If Drf(x) = Drf(x) then f has an Lr-derivative and it is denoted by f ′
r(x).

Remark 2.4. D+
r f(x) = inf

{

a :
∫ h

0

(

f(x+t)−f(x)
t

− a
)r

+
dt = o(h)

}

, with similar

results for the other r-Dini derivatives.

Definition 2.5. [11] For 1 ≤ r < ∞, a real valued function f is Lr- Henstock-
Kurzweil integrable (in short HKr− integrable) if there exists a function F ∈
Lr[a, b] so that for any ε > 0 there exists a gauge function δ so that for all finite
collections P = {(xi, [ci, di])} of non overlapping tagged intervals in [a, b] with

P < δ, (1)

we have:

n
∑

i=1

(

1

di − ci

∫ di

ci

|F (y)− F (xi)− f(xi)(y − xi)|
rdy

)
1

r

< ε. (2)

If (1) implies (2), then δ is HKr-appropriate for ε and f. F is an HKr-integral
of f. Recall that a gauge δ is HKr−appropriate for ε and for f if (2) holds for
any δ−fine tagged partition P.

Let χE be the characteristic function on E. Then the function f is said to
be Lr-Henstock-Kurzweil integrable on the set E ⊂ [a, b] if the function f.χE is
Lr-Henstock-Kurzweil integrable on [a, b]. We write

(Lr −H)

∫

I

f.χE = (Lr −H)

∫

E

f.

If f is HKr−integrable on [a, b], the following function is well defined for all
x ∈ [a, b] :

F (x) = (HKr)

x
∫

a

f(t)dt. (3)

Let f ∈ HKr[a, b]. The HKr norm of f is defined as follows:

||f ||HKr
= ||F ||r,

where F is the indefinite HKr integral of f as defined in (3).
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Definition 2.6. [11, Definition 11] Let 1 ≤ r < ∞. We say that F ∈ ACr(E) if
for all ε > 0 there exists ν > 0 and a gauge function δ(x) defined on E so that
for all P =

{

(xi, [ci, di])
}

< δE such that
∑q

i=1(di − ci) < ν we have

q
∑

i=1

(

1

di − ci

∫ di

ci

|F (y)− F (xi)|
rdy

)
1

r

< ε.

Definition 2.7. [12] Let r ≥ 1, let f : [a, b] → R and let E be a measurable subset
of [a, b]. Then f is Lr− bounded variation on E (f ∈ BVr(E)) if there exists
M > 0 and a gauge δ > 0 defined on E so that if P =

{

(xi, [ci, di])
}n

i=1
is a

finite collection of δ- fine tagged sub-intervals of [a, b] having tags in E, such that

q
∑

i=1

(

1

di − ci

∫ di

ci

|F (y)− F (xi)|
rdy

)
1

r

< M.

In Definition 2.7 P. Musial missed the coherent concept of Lr[a, b]. We re-
write the definition of Lr-bounded variatioin as follows:

Definition 2.8. Let r ≥ 1, let f : [a, b] → R and let E be a measurable subset
of [a, b]. We say that f is Lr- bounded variation on E (f ∈ BVr(E)) if there
exists a function F ∈ Lr([a, b]) so that for any M > 0 and a gauge δ > 0 defined
on E so that if P =

{

(xi, [ci, di])
}n

i=1
is a finite collection of δ− fine tagged

sub-intervals of [a, b] having tags in E, such that

q
∑

i=1

(

1

di − ci

∫ di

ci

|F (y)− F (xi)|
rdy

)
1

r

< M.

P. Musial in [12] mention the sketch of proof of the following theorem. We
will complete the proof.

Theorem 2.9. [12, Theorem 2] If f ∈ BVr(E) then we can find {Ei}i≥1 so that
E =

⋃∞
i=1 Ei and f ∈ BV (Ei) for all i.

Proof. Let f ∈ BVr(E). Then for a function F ∈ Lr([a, b]) there exists M > 0
and a gauge δ > 0 defined on E so that P =

{

(xi, [ci, di])
}n

i=1
is a finite collection

of δ−fine tagged sub intervals of [a, b] having tags in E. Then

n
∑

i=1

(

1

di − ci

∫ di

ci

|F (y)− F (xi)|
rdy

)
1

r

< M. (4)

Assume that F ∈ BVr[a, b] and let ε > 0. Then for a gauge function δ defined
on [a, b] so that if P =

{

(xi, [ci, di])
}

< δ such that Eq. (4) holds.
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The function F is Lr-continuous and so clearly approximately continu-
ous. Using [11, Theorem 5], there exists Pi =

{

(xi,j , [ci,j , di,j ])
}

< δ where
[ci,j , di,j ] ⊆ [ci, di] for all i and j, so that

n
∑

i=1

1

di,j − ci,j

∫ di,j

ci,j

|F (y)− F (xi,j)|dy ≥ 1
2 |F (di)− F (ci)|.

Since P =
⋃n

i=1 Pi is sub-ordinates to δ, we have

n
∑

i=1

|F (di)− F (ci)| ≤
1

2

n
∑

i=1

n
∑

j

1

di,j − ci,j

∫ di,j

ci,j

|F (y)− F (xi,j)|dy <
1

2
ε.

So, F ∈ BV (Ei). Hence we can find f ∈ BV (Ei).

3. Lr-Henstock-Kurzweil Integral for Finite Dimensional Banach Spaces

In this section we define Lr-Henstock-Kurzweil integral for functions mapping
[a, b] into a Banach space X. Throughout the section our Banach space is finite
dimensional.

An Lr-neighbourhood (or r-nbd) of x ∈ [a, b] is a measurable set Sx ⊂ [a, b]
containing x as a point of density. For every x ∈ E ⊂ [a, b], choose a r-nbd
Sx ⊂ [a, b] of x. Then we say that ∇ = {Sx : x ∈ E} is a choice on E. A tagged
interval

(

x, [c, d]
)

is said to be sub-ordinate to the choice ∇ = {Sx} if c, d ∈ Sx.

Definition 3.1. Let P =
{

(xi, [ci, di]) : 1 ≤ i ≤ n
}

be a finite non overlapping

tagged intervals. If
(

xi, [ci, di]
)

is sub-ordinate to the choice ∇ for each i, then
we say that P is sub-ordinate to the choice ∇. If P is sub-ordinate to ∇ and
[a, b] =

⋃n

i=1[ci, di]. We say that P is tagged partition of [a, b] that is sub-ordinate
to ∇.

Let E ⊂ [a, b]. If P is sub-ordinate to ∇ and each xi ∈ E, P is called E-sub-
ordinate to ∇. For a tagged partition P =

{

(xi, [ci, di]) : 1 ≤ i ≤ n
}

of [a, b].

We notate S
(

f,P
)

=
∑n

i=1 f(xi)(di − ci).

Since X is a finite dimensional Banach space, from the fundamental Stone-
Weierstrass theorem every continuous function on the unit ball BX can be uni-
formly approximated by polynomials. So, we can state our definition as follows:

Definition 3.2. For 1 ≤ r < ∞, a function f : [a, b] → X is called Lr−Henstock-
Kurzweil integrable if there exists a function F ∈ Lr[a, b] for any ε > 0 and there
exists a gauge function δ so that for all finite collections P =

{

(xi, [ci, di])
n
i=1

}

of non overlapping tagged integrals in [a, b] with P < δ such that

n
∑

i=1

(

1

di − ci

∫ di

ci

||F (y)− F (xi)− f(xi)(y − xi)||
r
Xdy

)
1

r

< ε.
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That is, a function f : [a, b] → X is Lr-Henstock-Kurzweil integrable on [a, b] if
there exists a vector A ∈ X with the following property:

For each ε > 0 there exists a gauge function δ so that for all finite collections
P =

{

(xi, [ci, di])
}

of non over-lapping tagged intervals in [a, b] with a choice

∇ < δ on [a, b] such that ||S
(

f,P
)

− A||X < ε whenever P is a tagged partition
of [a, b] that is sub-ordinate to ∇. Here A = F (y)− F (xi) where F ∈ Lr[a, b].

The vector A is called Lr-Henstock-Kurzweil integral of f on [a, b] and we

denote it by (Lr −AH)
∫ b

a
f. The function f is Lr-Henstock-Kurzweil integrable

on a measurable subset E of [a, b] if f.χE is Lr-Henstock integrable on [a, b].
The collection of all function that are Lr-Henstock-Kurzweil integrable on f :
I = [a, b] → X, will be denoted by AHr(I).

Remark 3.3. If X is infinite dimensional, then Stone-Weierstrass theorem will
not support us. So we can not state the definition of Lr-Henstock-Kurzweil
integral like Definition 3.2 for finite dimensional case.

To find Banach-valued Lr-Henstock-Kurzweil integral, we may have two pos-
sibilities:

(i) We need to construct X as Banach algebra or

(ii) We need to redefine Lr[a, b] as:

Lr([a, b]) =

{

f :
( 1

h

∫ b

a

|f(x)− P (x)|rdx
)

1

r < ε, 0 < h < ∞,

for some non zero vectors P (x)

}

,

for 1 ≤ r < ∞, where the dimension of P (x) < h.

Next we investigate in detailed about this.

4. Simple Properties

In this section we discuss a few basic properies of Lr-Henstock-Kurzweil inte-
grable functions for finite dimensional Banach spaces.

Theorem 4.1. If f : I → X is Lr-Henstock-Kurzweil integrable on I, then f is
Lr-Henstock-Kurzweil integrable on each subinterval I0 of I.

Theorem 4.2.

(i) If f, g ∈ AHr(I) then f + g ∈ AHr(I) and

(Lr −AH)

∫

I

(f + g) = (Lr −AH)

∫

I

f + (Lr −AH)

∫

I

g.
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(ii) If f ∈ AHr(I) and k ∈ R then kf ∈ AHr(I) and (Lr − AH)
∫

I
kf =

k(Lr −AH)
∫

I
f.

The following simple convergence theorem for the Lr-Henstock-Kurzweil in-
tegral is rather important to note.

Theorem 4.3. Let fn : [a, b] → X be a Lr-Henstock-Kurzweil integrable function
on [a, b], for each positive integer n and suppose that fn → f pointwise on [a, b].
If the sequence {fn} is uniformly Lr-Henstock-Kurzweil integrable on [a, b] then

f is Lr-Henstock-Kurzweil integrable on [a, b] and
∫ b

a
fn →

∫ b

a
f.

For each ε > 0 there exists a gauge function δ so that for all finite collections
P = {(xi, [ci, di])} of non over-lapping tagged intervals in [a, b] with a choice
∇ < δ on [a, b] such that ||S(f,P) − A||r < φ(di) − φ(ci) whenever P is a
tagged partition of [a, b] that is sub-ordinate to ∇ with a non-decreasing function
φ : [a, b] → R and a gauge δ > 0 so that φ(b)− φ(a) < ε.

Theorem 4.4. Let f : [a, b] → X be Lr-Henstock-Kurzweil integrable on [a, b].
Then the following statements hold:

(i) For each x∗ ∈ X∗ the function x∗f is Lr-Henstock-Kurzweil integrable on

[a, b] and (Lr −AH)
∫ b

a
x∗f = x∗(Lr −AH)

∫ b

a
f.

(ii) If T : X → Y is continuous linear operator then (Lr − AH)
∫ b

a
Tf =

T (Lr −AH)
∫ b

a
f.

Proof. (i) Let x∗ ∈ X∗. Since f : [a, b] → X is Lr-Henstock-Kurzweil integrable
on [a, b], for each ν > 0 there exists a choice ∇ on [a, b] such that

||S(f,P)− (Lr −AH)

∫ b

a

f ||X <
ν

||x∗||
,

whenvere P is a tagged partition of [a, b] that is sub-ordinate to ∇. Then,

||S(x∗f,P)− x∗(Lr −AH)

∫ b

a

f ||X ≤ ||x∗||||S(f,P)− (Lr −AH)

∫ b

a

f ||X

< ν.

Therefore x∗f is Lr-Henstock-Kurzweil integrable on [a, b] and (Lr −

AH)
∫ b

a
x∗f = x∗(Lr −AH)

∫ b

a
f.

(ii) We can use the similar technique as we have used in (i).

Theorem 4.5. If f = 0X (the zero of X) a.e. on [a, b] then f is Lr-Henstock-

Kurzweil integrable on [a, b] and (Lr −AH)
∫ b

a
f = 0X .
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Proof. Since ||f ||X = 0 a.e. on [a, b], ||f ||X is Lr-Henstock-Kurzweil integrable
on [a, b]. For any ε > 0 there is a choice ∇ on [a, b] such that ||f ||X(P) < ε

whenever P is a tagged partition of [a, b] that is sub-ordinate to ∇. Let P be a
tagged partition on [a, b] that is sub-ordinate to ∇. Then

||f(P)− 0X ||X = ||f(P)||X ≤ ||f ||X(P) < ε.

Therefore f is Lr−Henstock integrable on [a, b] and (Lr −AH)
∫ b

a
f = 0X .

Remark 4.6. Let f : [a, b] → X be Lr-Henstock-Kurzweil integrable on [a, b].
If f = g a.e. on [a, b] then g is Lr-Henstock-Kurzweil integrable on [a, b] and

(Lr −AH)
∫ b

a
f = (Lr −AH)

∫ b

a
g.

Theorem 4.7. Let f : I = [a, b] → X be (Lr −AH)-Henstock-Kurzweil integrable
on I = [a, b]. Then f is weakly measurable.

Proof. The proof is direct consequence of Theorem 4.5 and Remark 4.6.

Definition 4.8.
(i) A function f : [a, b] → X is said to be scalarly Lr-Henstock-Kurzweil

integrable on [a, b] if for each x∗ in X∗ the function x∗f is Lr-Henstock-
Kurzweil integrable on [a, b].

(ii) A family B ⊂ (Lr−AH)
(

[a, b], X
)

is Lr-Henstock-Kurzweil equi-integrable
on [a, b] if for each ε > 0, there exists a gauge function δ so that for all
finite collections P =

{

(xi, [ci, di])
}

of non over-lapping tagged intervals
in [a, b] with a choice ∇ < δ on [a, b] such that

sup
f∈B

||S
(

f,P
)

− (Lr −AH)

∫ b

a

f ||X < ε.

Proposition 4.9. If the function f : [a, b] → X is scalarly Lr-Henstock-Kurzweil
integrable on [a, b], then there is a sequence {Xk} of closed subsets such that
Xk ⊂ Xk+1 for all k,

⋃∞
k=1 Xk = [a, b]. Then f is Dunford integrable on each

Xk and

lim
k→∞

(Dunford)

∫

Xk∩[a,x]

f = (Lr −AH)

∫ x

a

f (scalarly).

Proof. The function f : [a, b] → X is scalarly Lr-Henstock-Kurzweil integrable
on [a, b] if x∗f is Lr-Henstock-Kurzweil integrable on [a, b]. Now using [10,
Lemma 1] in the similar way, if x∗f is Lr-Henstock-Kurzweil integrable on [a, b],
then there is a sequence {Xk} of closed subsets such that Xk ⊂ Xk+1 for all
k,

⋃∞
k=1 Xk = [a, b], x∗f is Lebesgue integrable on each Xk and

lim
k→∞

(L)

∫

Xk∩[a,x]

x∗f = (Lr −AH)

∫ x

a

x∗f
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uniformly on [a, b] for each x∗ ∈ X∗. This gives f is Dunford integrable on each
Xk and

lim
k→∞

(Dunford)

∫

Xk∩[a,x]

f = (Lr −AH)

∫ x

a

f (scalarly).

Theorem 4.10. Suppose that X contains no copy of c0 and f : [a, b] → X. If
the function f is Lr- scalarly Henstock-Kurzweil integrable on [a, b], then each
perfect set in [a, b] contains a portion on which f is Pettis integrable.

Proof. Since the function f : [a, b] → X is Lr- scalarly Henstock-Kurzweil in-
tegrable on [a, b], by the definition of scalar Henstock-Kurzweil integral, x∗f is
Lr-Henstock-Kurzweil integrable on [a, b]. Then Theorem 4.7 implies that x∗f

is weakly measurable on [a, b], and so f is Dunford integrable on [a, b]. Using [3,
Theorem 7], f is Pettis integrable on [a, b].

Theorem 4.11. Suppose that X contains no copy of c0 and f : [a, b] → X is
a measurable. If the function f : [a, b] → X is scalarly Lr-Henstock-Kurzweil
integrable on [a, b], then there exists a sequence {Xk} of closed sets with Xk ↑
[a, b] such that for each x∗ ∈ X∗, f is Pettis integrable on each Xk and

lim
k→∞

(Pettis)

∫

Xk

f = (Lr −AH)

∫ b

a

f (scalarly).

Proof. Since f is scalarly Lr-Henstock-Kurzweil integrable on [a, b], from Propo-
sition 4.7, f is Dunford integrable on [a, b]. Remaining part of the proof is anal-
ogous to that of Theorem 4.10.

Corollary 4.12. Suppose that X contains no copy of c0. If the function f :
[a, b] → X is weakly Lr-Henstock-Kurzweil integrable on [a, b], then there exists
a sequence {Xk} of closed sets,

⋃∞
k=1 Xk = [a, b], f is Pettis integrable on each

Xk.

Using the notion of Lr-Henstock-Kurzweil equi-integrability, we may charac-
terize the vector valued Lr-Henstock-Kurzweil integrable functions.

Theorem 4.13. A function f : [a, b] → X is Lr-Henstock-Kurzweil integrable on
[a, b] if and only if the family

{

x∗f : x∗ ∈ B(X∗)
}

is Lr-Henstock-Kurzweil
equi-integrable on [a, b].

Proof. Let f : [a, b] → X be Lr-Henstock-Kurzweil integrable on [a, b]. Then for
each ε > 0 there exists a choice ∇ < δ on [a, b] such that:

∣

∣

∣

∣

∣

∣

∣

∣

S(f,P)− (Lr −AH)

∫ b

a

f

∣

∣

∣

∣

∣

∣

∣

∣

r

< ε,



Lr-Henstock-Kurzweil Integral 257

whenever P is a tagged partition of [a, b] that is sub-ordinate to ∇.

Now,
∣

∣

∣

∣

∣

∣

∣

∣

S(f,P)− (Lr −AH)

∫ b

a

f

∣

∣

∣

∣

∣

∣

∣

∣

r

= sup
x∗∈B(X∗)

∣

∣

∣

∣

S(x∗f,P)− x∗(Lr −AH)

∫ b

a

f

∣

∣

∣

∣

.

Therefore
{

x∗f : x∗ ∈ B(X∗)
}

is Lr-Henstock-Kurzweil equi-integrable on
[a, b].

Conversely, suppose the family
{

x∗f : x∗ ∈ B(X∗)
}

is Lr-Henstock-Kurzweil
equi-integrable on [a, b]. We need to show that f : [a, b] → X is Lr-Henstock-
Kurzweil integrable on [a, b]. As

{

x∗f : x∗ ∈ B(X∗)
}

is Lr-Henstock-Kurzweil
equi-integrable on [a, b] then for each ε > 0, there exists a gauge function δ

so that for all finite collections P =
{

(xi, [ci, di])
}

of non-overlapping tagged
intervals in [a, b] with a choice ∇ < δ on [a, b] such that

sup
x∗∈B(X∗)

∣

∣

∣

∣

∣

∣

∣

∣

S(x∗f, P )− (Lr −AH)

∫ b

a

x∗f

∣

∣

∣

∣

∣

∣

∣

∣

r

< ε. (5)

By the definition of equi-integrability, Eq. (5) implies

sup
||x∗||≤1

∣

∣

∣

∣

(Lr −AH)

∫ b

a

x∗f − S(x∗f, P )

∣

∣

∣

∣

< ε, (6)

where P is a tagged partition of [a, b] which is sub-ordinate to ∇.

Define Tf : X∗ → R by Tf (x
∗) = (Lr − AH)

∫ b

a
x∗f, also for each a ∈ R

assume Q(a) = {x∗ ∈ X∗ : Tf(x
∗) ≤ a}. As Q(a) is convex, by Banach-

Dieudonne Theorem Q(a) ∩ B(X∗) is w∗-closed. Let x∗
0 be a w∗−closure point

of Q(a) ∩ B(X∗) and let (x∗
r)r∈I ⊂ Q(a) ∩ B(X∗) be a net converging to x∗

0

in the w∗−topology. Let the tagged partition P of [a, b] be defined as P =
{

(I1, t1), (I2, t2), ..., (Ip, tp)
}

which is sub-ordinate to ∇. Now the convergence of
(x∗

r)r∈I , for r0 ∈ I gives,

p
∑

i=1

∣

∣x∗
r0
f(ti)− x∗

0f(ti)
∣

∣ < ε. (7)

Since x∗
0 ∈ B(X∗), from Eqs. (6) and (7), we can find Tf (x

∗
0) < a+ ε. Therefore

Tf is w∗-continuous and as X is the w∗-dual of X∗, and there exists N ∈ X such

that x∗(N ) = Tf (x
∗). That is Tf : X∗ → R such that Tf(x

∗) = (Lr−AH)
∫ b

a
x∗f.

We see that the Lr-Henstock-Kurzweil integral generalised the Henstock-
Kurzweil integral for finite dimensional Banach spaces.

Theorem 4.14. Let 1 ≤ r < ∞, f ∈ HK[a, b] and F (x) = (HK)
∫ x

a
f . Then

f ∈ AHr[a, b],

F (x) = (Lr −AH)

∫ x

a

f.



258 H. Kalita et al.

Proof. The proof is analogous to that of [11, Theorem 9].
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