Group Algebras of Lie Nilpotency Index 15

Ashutosh Mishra and Harish Chandra
Department of Mathematics and Scientific Computing, M. M. M. University of Technology, Gorakhpur, India
Email: ashutoshmishragkp980@gmail.com; hcmsc@mmmut.ac.in

Suchi Bhatt
Department of Mathematics, G. L. A. University, Mathura, U.P. India
Email: suchi.bhatt@gla.ac.in

Received 30 June 2021
Accepted 6 December 2021
Communicated by Xiuyun Guo
AMS Mathematics Subject Classification(2020): 16S34, 17B30

Abstract. Let $K G$ be the group algebra of a group G over a field K of characteristic $p>0$. The classification of group algebras $K G$ with upper Lie nilpotency index $t^{L}(K G)$ up to 14 has already been done. In this paper, we classify the group algebras $K G$ having upper Lie nilpotency index 15 , for $G^{\prime}=\gamma_{2}(G)$ as an abelian group.

Keywords: Group algebras; Lie nilpotency index; Lie dimension subgroup.

1. Introduction

Let $K G$ be the group algebra of a group G over a field K of characteristic $p>0$ and by defining the Lie product $[x, y]=x y-y x$, for all $x, y \in K G$ we have $K G$ considered as a Lie algebra, called the associated Lie algebra of $K G$ and denoted by $L(K G)$. Now inductively, $\left[x_{1}, \ldots, x_{n}\right]=\left[\left[x_{1}, \ldots, x_{n-1}\right], x_{n}\right]$, as $x_{1}, x_{2}, \ldots, x_{n} \in K G$. Also, the nth lower Lie power $K G^{[n]}$ of $K G$ is an associated ideal generated by all the Lie commutators $\left[x_{1}, \ldots, x_{n}\right]$. It is easy to see that $K G^{[1]}=K G$ and nth strong Lie power $K G^{(n)}$ is an associated ideal generated by $[x, y]$, where $x \in K G^{(n-1)}$ and $y \in K G, K G^{(1)}=K G$. Also, the group algebra $K G$ is called the Lie nilpotent if $K G^{[n]}=0$, for some $n \in N$ and
called strongly Lie nilpotent if $K G^{(n)}=0$, for some $n \in N$. The least positive integer n, for which $K G^{[n]}=0$ and $K G^{(n)}=0$ is called the Lie nilpotency index (denoted by $t_{L}(K G)$) and strong Lie nilpotency index (denoted by $t^{L}(K G)$) of $K G$ respectively.

The notations and basic definitions are same as discussed in [2]. Bhandari and Passi in [1], proved that for a Lie nilpotent group algebra $K G$, if $p \geq 5$, then $t_{L}(K G)=t^{L}(K G)$. But the question whether $t_{L}(K G)=t^{L}(K G)$ is still open in general. In [14], it has been proved that if $K G$ is Lie nilpotent, then $t_{L}(K G) \leq t^{L}(K G) \leq\left|G^{\prime}\right|+1$. Thus $\left|G^{\prime}\right|+1$ is the maximal Lie nilpotency index. Shalev [13], proved that if G is a finite p-group and CharK $=p \geq 5$, then $t_{L}(K G)=\left|G^{\prime}\right|+1$ if and only if G^{\prime} is cyclic. Some other interesting results are given in $[3,4,5,7,8,9,10,11,12]$.

Chandra and Sahai [6] classified the strong Lie nilpotent group algebras with $t^{L}(K G)$ up to 8. Further, strong Lie nilpotency index $t^{L}(K G)$ up to 13 was characterized by Sharma, Siwach and Sahai in [16, 15]. Recently, Bhatt et al. [2] characterized the group algebras with $t^{L}(K G)$ equal to 14 . In this paper, we have classified the group algebras having upper Lie nilpotency index 15 , for G^{\prime} as an abelian group.

Lemma 1.1. [12] Let K be a field with Char $K=p>0$ and G be a nilpotent group such that $\left|G^{\prime}\right|=p^{n}$ and $\exp \left(G^{\prime}\right)=p^{l}$. Then the following statements hold:
(i) If $d_{(l+1)}=0$ for some $l<p m$, then $d_{(p m+1)} \leq d_{(m+1)}$.
(ii) If $d_{(m+1)}=0$, then $d_{(s+1)}=0$ for all $s \geq m$ with $\vartheta_{p^{\prime}}(s) \geq \vartheta_{p^{\prime}}(m)$ where $\vartheta_{p^{\prime}}(x)$ is the maximal divisor of x which is relatively prime to p.

2. Main Results

Theorem 2.1. Let G be a group and K be a field of characteristics $p>0$ such that $K G$ is Lie nilpotent. Then $t^{L}(K G)=15$ if and only if $p=2$ and one of the following condition satisfied:
(i) $G^{\prime} \cong\left(C_{2}\right)^{13}, \gamma_{3}(G)=1$;
(ii) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{6}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(b) $C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{6}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong\left(C_{2}\right)^{6},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(iii) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{8}, \gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(iv) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$,
$\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$,
$\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{6}, \gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(v) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(vi) (a) $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{4}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=4$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{2}, \mid G^{\prime 2} \cap$ $\gamma_{3}(G) \mid=1$;
(c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1 ;$
(e) $G^{\prime} \cong\left(C_{2}\right)^{9}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(vii) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(viii) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{8}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(viii) (a) $G^{\prime} \cong\left(C_{4}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong C_{2}$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$
(d) $G^{\prime} \cong\left(C_{2}\right)^{6}, \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(e) $G^{\prime} \cong\left(C_{4}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(f) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=$ 1, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(g) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(h) $G^{\prime} \cong\left(C_{2}\right)^{6}, \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(ix) (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{3}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$ or $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{10}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(x) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2 ;$
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1 ;$
(d) $G^{\prime} \cong\left(C_{2}\right)^{6}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xi) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=$ 2 ;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=2$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=$ 1;
(d) $G^{\prime} \cong\left(C_{2}\right)^{8}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xii) (a) $G^{\prime} \cong C_{8} \times C_{4}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=4 ;$
(b) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$,
$\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$;
(c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$,
$\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$;
(d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$,
$\left|G^{2} \cap \gamma_{3}(G)\right|=1 ;$
(e) $G^{\prime} \cong\left(C_{2}\right)^{5}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xiii) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \mid G^{\prime 2} \cap$ $\gamma_{3}(G) \mid=2$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \mid G^{2} \cap$ $\gamma_{3}(G) \mid=1 ;$
(c) $G^{\prime} \cong\left(C_{2}\right)^{9}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xiv) (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong C_{2}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong C_{2}$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(e) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(f) $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(g) $C_{4} \times\left(C_{2}\right)^{5}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(h) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xv) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{7}, \gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{2}$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{9}, G^{2} \subseteq \gamma_{3}(\bar{G}) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=$ 1;
(c) $G^{\prime} \cong\left(C_{2}\right)^{11}, \gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xvi) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$; (b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2} ;$
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{7}, \gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xvii) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=2 ;$
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=2$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$,
$\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{5}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(e) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$;
(f) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$;
(g) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$;
(h) $G^{\prime} \cong\left(C_{2}\right)^{5}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xviii) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{6}, \gamma_{3}(G) \subseteq G^{\prime 2} \cong C_{4}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{2}$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{9}, \gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xix) (a) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{10}, G^{\prime 2}=\gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$;
(b) $G^{\prime} \cong\left(C_{2}\right)^{12}, G^{2} \cap \gamma_{3}(G)=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$;
(xx) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{2}$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{10}, \gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xxi) (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{8}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(e) $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(f) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(g) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$;
(h) $G^{\prime} \cong\left(C_{2}\right)^{8}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$;
(xxii) (a) $G^{\prime} \cong\left(C_{4}\right)^{3}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong C_{2}$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, \gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong$
$\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong C_{2}$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$,
$\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{6}, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$.

Proof. Let $t^{L}(K G)=15$. Since $p+1 \leq t^{L}(K G), p=3,5,7,11$ or 13 are not possible. So, we have only $p=2$.

Let $p=2$. Since $t^{L}(K G)=2+(p-1) \Sigma m d_{(m+1)}$, so $\Sigma m d_{(m+1)}=13$ and $d_{(k)}=0$ for all $k \geq 14$. Let $\left|G^{\prime}\right|=p^{n}$. If $d_{(3)}=0$, then $D_{(3), K}(G)=G^{2} \gamma_{3}(G)=$ 1. Hence, $d_{(2)}=13$ and $G^{\prime} \cong\left(C_{2}\right)^{13}$. Now let $d_{(3)} \neq 0$. Clearly $d_{(2)} \neq 0$ and $d_{(3)}<7$.

If $d_{(3)}=6$, then by Lemma $1.1 d_{(2)}=1$ and $D_{(4), K}(G)=G^{4} \gamma_{3}(G)^{2} \gamma_{4}(G)=$ $1,\left|D_{(3), K}(G)\right|=2^{6}$ and $\left|G^{\prime}\right|=2^{7}$. In this case, G^{\prime} is abelian, we have the following possibilities: $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $C_{4} \times\left(C_{2}\right)^{5}$ or $\left(C_{2}\right)^{7}$. Now, if $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $D_{(3), K}(G)<2^{6}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{6}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $C_{4} \times\left(C_{2}\right)^{5}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{6}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{6}$.

Now if $d_{(3)}=5$, then by Lemma $1.1 d_{(2)}=3$ and thus $D_{(4), K}(G)=$ $G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{4}(G)=1,\left|D_{(3), K}(G)\right|=2^{5}$ and $\left|G^{\prime}\right|=2^{8}$. In this case G^{\prime} is abelain, so we have the following possibilities: $G^{\prime} \cong\left(C_{4}\right)^{4}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ or $C_{4} \times\left(C_{2}\right)^{6}$ or $\left(C_{2}\right)^{8}$. Let $G^{\prime} \cong\left(C_{4}\right)^{4}$ or $\left.C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$. Then $\mid D_{(3), K}(G)<2^{5}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then either $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}$.

Let $d_{(3)}=4$. Then $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}=5$. In view of Lemma 1.1, we have following cases: $d_{(5)}=d_{(2)}=1$ or $d_{(4)}=1, d_{(2)}=2$ or $d_{(2)}=5$.

If $d_{(2)}=d_{(5)}=1, d_{(3)}=4$, then $\left|G^{\prime}\right|=2^{6},\left|D_{(3), K}(G)\right|=2^{5}, D_{(4), K}(G)=$ $D_{(5), K}(G) \cong\left(C_{2}\right)$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is an abelian group, so we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{2}$ or $G^{\prime} \cong C_{8} \times$ $C_{4} \times C_{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong$ $C_{4} \times\left(C_{2}\right)^{4}$ or $G^{\prime} \cong\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{8}\right)^{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{2}\right| \leq 4$. Also, if $G^{\prime} \cong C_{8} \times C_{4} \times C_{2}$, then $\left|G^{2}\right|=8$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If
$G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}$.
If $d_{(2)}=2, d_{(4)}=1, d_{(3)}=4$, then $\left|G^{\prime}\right|=2^{7},\left|D_{(3), K}(G)\right|=2^{5},\left|D_{(4), K}(G)\right|=$ 2 and $D_{(5), K}(G)=G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1$. Thus $\gamma_{4}(G) \cong\left(C_{2}\right), 4 \leq\left|\gamma_{3}(G)\right| \leq 16$. If G^{\prime} is abelian, So we have the following possibilities: $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $C_{4} \times\left(C_{2}\right)^{5}$ or $\left(C_{2}\right)^{7}$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, here $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. Hence this case is not possible. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(\bar{G}) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}$.

Now, if $d_{(2)}=5, d_{(3)}=4$, then $\left|G^{\prime}\right|=2^{9},\left|D_{(3), K}(G)\right|=2^{4}$ and $D_{(4), K}(G)=$ $G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{4}(G)=1$. In this case G^{\prime} is abelian. So possibilities are: $G^{\prime} \cong\left(C_{4}\right)^{4} \times$ C_{2} or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$ or $C_{4} \times\left(C_{2}\right)^{7}$ or $\left(C_{2}\right)^{9}$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{4}$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong$ $C_{4} \times\left(C_{2}\right)^{7}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{9}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Let $d_{(3)}=3$. Then, $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}+7 d_{(8)}=7$.
Now, let $d_{(8)}=0$. Then $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}=7$. Thus we have following cases: $d_{(7)}=d_{(2)}=1$ or $d_{(6)}=1, d_{(2)}=2$ or $d_{(5)}=1, d_{(2)}=3$ or $d_{(5)}=1, d_{(4)}=1$ or $d_{(4)}=1, d_{(2)}=4$ or $d_{(4)}=2, d_{(2)}=1$ or $d_{(2)}=7$.

Let $d_{(2)}=d_{(7)}=1, d_{(3)}=3$. Then by Lemma 1.1, $d_{(3+1)}=0, \vartheta_{2}(6) \geq \vartheta_{2}(3)$ and so $d_{(7)}=0$. Thus this case is not possible.

Let $d_{(6)}=1, d_{(2)}=2, d_{(3)}=3$. Then by Lemma 1.1, $d_{(3+1)}=0, \vartheta_{2}(5) \geq$ $\vartheta_{2}(3)$ and so $d_{(6)}=0$. Thus this case is not possible.

Again by Lemma 1.1, $d_{(5)}=1, d_{(4)}=1, d_{(3)}=3$ is also not possible.
If $d_{(5)}=1, d_{(2)}=d_{(3)}=3$, then $\left|G^{\prime}\right|=2^{7},\left|D_{(3), K}(G)\right|=2^{4}$, $D_{(4), K}(G)=D_{(5), K}(G) \cong C_{2}$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. Let G^{\prime} be abelian. Thus we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2}$ or $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$ or $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{2}\right)^{7}$. If $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{2}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2}$, here $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{2}$, here $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, here $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Let $d_{(4)}=1, d_{(2)}=4, d_{(3)}=3$. Then $\left|G^{\prime}\right|=2^{8},\left|D_{(3), K}(G)\right|=2^{4}$, $\left|D_{(4), K}(G)\right|=2$ and $D_{(5), K}(G)=G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1$. So $\gamma_{4}(G) \cong C_{2}$ and $4 \leq\left|\gamma_{3}(G)\right| \leq 16$. If G^{\prime} is abelian, then possible choices for G^{\prime} are $\left(C_{4}\right)^{4}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ or $C_{4} \times\left(C_{2}\right)^{6}$ or $\left(C_{2}\right)^{8}$. If $G^{\prime} \cong\left(C_{4}\right)^{4}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$, then $\left|G^{\prime 2}\right|=8$ but
$\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Let $d_{(4)}=2, d_{(2)}=1, d_{(3)}=3$. Then $\left|G^{\prime}\right|=2^{6},\left|D_{(3), K}(G)\right|=2^{5}$, $\left|D_{(4), K}(G)\right|=2^{2}$ and $D_{(5), K}(G)=G^{4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1, \gamma_{4}(G) \cong C_{2}$ or $\left(C_{2}\right)^{2}$, $\left|\gamma_{3}(G)\right|=8$ or 16 or 32. If G^{\prime} is abelian, then possible choices for G^{\prime} are: $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{4}$ or $\left(C_{2}\right)^{6}$. Let $\left|\gamma_{4}(G)\right|=2$. Now if $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong C_{2}$. Now let $\left|\gamma_{4}(G)\right|=2^{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(2)}=7, d_{(3)}=3$. Then $\left|G^{\prime}\right|=2^{10},\left|D_{(3), K}(G)\right|=2^{3}, D_{(4), K}(G)=$ $G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{4}(G)=1$. In this case G^{\prime} is abelian. So we have the following possibilities: $G^{\prime} \cong\left(C_{4}\right)^{5}$ or $\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$ or $C_{4} \times\left(C_{2}\right)^{8}$ or $\left(C_{2}\right)^{10}$. Now, if $G^{\prime} \cong\left(C_{4}\right)^{5}$, here $\left|G^{2}\right|=32$ but $\left|G^{\prime 2}\right| \leq 8$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}$, here $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 8$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{3}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$ or $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong$ $C_{4} \times\left(C_{2}\right)^{8}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{10}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$.

Let $d_{(3)}=2$. Then, $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}+7 d_{(8)}+8 d_{(9)}+9 d_{(10)}=9$. If $d_{(10)}=0$, then $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}+7 d_{(8)}+8 d_{(9)}=9$. And we have following possibilities for $d_{(8)} \neq 0: d_{(9)}=1, d_{(2)}=1$ and $d_{(8)}=1, d_{(2)}=2$. But from the Lemma 1.1, these cases are not possible. Now, if $d_{(8)}=0$, then either $d_{(7)}=1, d_{(4)}=1$ or $d_{(7)}=1, d_{(2)}=3$. Again the above cases are discarded by Lemma 1.1.

Now, if $d_{(7)}=0$, then $d_{(6)}=1, d_{(5)}=1$ or $d_{(6)}=1, d_{(2)}=1, d_{(4)}=1$ or $d_{(6)}=1, d_{(2)}=4$. The cases for $d_{(7)}=0$ is not possible in view of Lemma 1.1. Now, if $d_{(6)}=0, d_{(3)}=2$, then we have following possibilities: $d_{(5)}=d_{(4)}=1$, $d_{(2)}=2$ or $d_{(5)}=1, d_{(2)}=5$ or $d_{(5)}=2, d_{(2)}=1$.

Let $d_{(5)}=d_{(4)}=1, d_{(2)}=d_{(3)}=2$. Then $\left|G^{\prime}\right|=2^{6},\left|D_{(3), K}(G)\right|=2^{4}$, $\left|D_{(4), K}(G)\right|=2^{2},\left|D_{(5), K}(G)\right|=2$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{2}$ or $G^{\prime} \cong$ $C_{8} \times C_{4} \times C_{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or
$G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$ or $G^{\prime} \cong\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{8}\right)^{2}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times C_{4} \times C_{2}$, then $\left|G^{2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$, then, $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

If $d_{(5)}=1, d_{(2)}=5, d_{(3)}=2$, then $\left|G^{\prime}\right|=2^{8},\left|D_{(3), K}(G)\right|=2^{3},\left|D_{(4), K}(G)\right|=$ $\left|D_{(5), K}(G)\right|=2$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{4}$ or $G^{\prime} \cong\left(C_{8}\right)^{2} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2} \times C_{2}$ or $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{5}$ or $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$ or $G^{\prime} \cong\left(C_{2}\right)^{8}$. If $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{4}$, then $\left|G^{2}\right|=32$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{8}\right)^{2} \times\left(C_{2}\right)^{2}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2} \times C_{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{3}$, then $\left|G^{2}\right|=8$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \cong C_{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$.

If $d_{(2)}=1, d_{(5)}=d_{(3)}=2$, then $\left|G^{\prime}\right|=2^{5},\left|D_{(3), K}(G)\right|=2^{4},\left|D_{(4), K}(G)\right|=$ $\left|D_{(5), K}(G)\right|=4$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong C_{8} \times C_{4}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{2}\right)^{5}$. If $G^{\prime} \cong C_{8} \times C_{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4$. If $G^{\prime} \cong$ $C_{8} \times\left(C_{2}\right)^{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{5}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Now if $d_{(5)}=0$, then we have either $d_{(3)}=2, d_{(4)}=1, d_{(2)}=6$ or $d_{(4)}=2$, $d_{(2)}=3, d_{(3)}=2$ or $d_{(2)}=9, d_{(3)}=2$.

Let $d_{(4)}=1, d_{(2)}=6, d_{(3)}=2$. Then, $\left|G^{\prime}\right|=2^{9},\left|D_{(3), K}(G)\right|=2^{3}$, $\left|D_{(4), K}(G)\right|=2$ and $G^{4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1$. So $\gamma_{4}(G) \cong C_{2},\left|\gamma_{3}(G)\right|=4$ or 8. If G^{\prime} is abelian, then possible choices for G^{\prime} are $\left(C_{4}\right)^{4} \times C_{2}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$ or $C_{4} \times\left(C_{2}\right)^{7}$ or $\left(C_{2}\right)^{9}$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$, then either $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{9}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$.

Let $d_{(2)}=3, d_{(4)}=d_{(3)}=2$. Then, $\left|G^{\prime}\right|=2^{7}$ and $\left|D_{(3), K}(G)\right|=2^{4}$, $\left|D_{(4), K}(G)\right|=2^{2}$ and $D_{(5), K}(G)=G^{4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1, \gamma_{4}(G) \cong C_{2}$ or $\left(C_{2}\right)^{2}$, $\left|\gamma_{3}(G)\right|=4$ or 8 or 16. If G^{\prime} is abelian, then possible choices for G^{\prime} are: $G^{\prime} \cong$ $\left(C_{4}\right)^{3} \times C_{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $C_{4} \times\left(C_{2}\right)^{5}$ or $\left(C_{2}\right)^{7}$. First, let $\left|\gamma_{4}(G)\right|=2$. This implies $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{3} or 2^{4}. Now, if $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $G^{2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$,
then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$.

Now, let $\left|\gamma_{4}(G)\right|=2^{2}$. This implies $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{4}. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $C_{4} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(2)}=9, d_{(3)}=2$. Then $\left|G^{\prime}\right|=2^{11},\left|D_{(3), K}(G)\right|=2^{2}, D_{(4), K}(G)=$ $G^{4} \gamma_{3}(G)^{2} \gamma_{4}(G)=1$. In this case G^{\prime} is abelian. So we have the following possibilities: $G^{\prime} \cong\left(C_{4}\right)^{5} \times C_{2}$ or $\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{3}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{5}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{7}$ or $C_{4} \times\left(C_{2}\right)^{9}$ or $\left(C_{2}\right)^{11}$. Now, if $G^{\prime} \cong\left(C_{4}\right)^{5} \times C_{2}$, then $\left|G^{\prime 2}\right|=32$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{3}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{5}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \subseteq G^{2} \cong$ $\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{9}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{11}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(3)}=1$. Then, $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}+7 d_{(8)}+8 d_{(9)}+9 d_{(10)}+$ $10 d_{(11)}+11 d_{(12)}=11$.

Let $d_{(12)}=0$. Then, $d_{(2)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}+7 d_{(8)}+8 d_{(9)}+$ $9 d_{(10)}+10 d_{(11)}=11$. Then, we have following possibilities: $d_{(11)}=1, d_{(2)}=1$. Now, if $d_{(11)}=0$, then $d_{(10)}=1, d_{(2)}=2$. Thus all these cases are discarded by Lemma 1.1. Let $d_{(10)}=0$. Then we have either $d_{(9)}=1, d_{(4)}=1$ or $d_{(9)}=1$, $d_{(2)}=3$. Then all the above cases are discarded by Lemma 1.1. Now if $d_{(9)}=0$, then we have $d_{(8)}=1, d_{(5)}=1$ or $d_{(8)}=1, d_{(2)}=d_{(4)}=1$ or $d_{(8)}=1, d_{(2)}=4$. Then all the above cases are discarded by Lemma 1.1. Now, if $d_{(8)}=0$, then we have $d_{(7)}=1, d_{(6)}=1$ or $d_{(7)}=1, d_{(2)}=d_{(5)}=1$ or $d_{(7)}=1, d_{(4)}=1, d_{(2)}=2$. Then all the above cases are discarded by Lemma 1.1. Now, if $d_{(7)}=0$, then we have $d_{(6)}=1, d_{(5)}=1, d_{(2)}=2$ or $d_{(6)}=d_{(4)}=1, d_{(2)}=3$ or $d_{(6)}=1$, $d_{(4)}=2$ or $d_{(6)}=1, d_{(2)}=6$ or $d_{(6)}=2, d_{(2)}=1$. Then, all the above cases are discarded by Lemma 1.1. Now, if $d_{(6)}=0$, then we have $d_{(5)}=d_{(4)}=1$, $d_{(2)}=4$ or $d_{(5)}=d_{(2)}=1, d_{(4)}=2$, or $d_{(5)}=1, d_{(2)}=7$ or $d_{(5)}=2, d_{(2)}=3$ or $d_{(5)}=2, d_{(4)}=1$.

Let $d_{(2)}=4, d_{(5)}=d_{(4)}=d_{(3)}=1$. Then $\left|G^{\prime}\right|=2^{7},\left|D_{(3), K}(G)\right|=2^{3}$, $\left|D_{(4), K}(G)\right|=2^{2},\left|D_{(5), K}(G)\right|=2$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2}$ or $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$ or $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{2}\right)^{7}$. If $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{2}$, then $\left|G^{\prime 2}\right|=16$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times C_{4} \times\left(C_{2}\right)^{2}$, here $\left|G^{2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \cong C_{4} \times C_{2}$.

Let $d_{(4)}=2, d_{(2)}=d_{(5)}=d_{(3)}=1$. Then $\left|G^{\prime}\right|=2^{5},\left|D_{(3), K}(G)\right|=2^{4}$,
$\left|D_{(4), K}(G)\right|=2^{3},\left|D_{(5), K}(G)\right|=2$ and $D_{(6), K}(G)=G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong C_{8} \times C_{4}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{2}\right)^{5}$. First, let $\left|\gamma_{4}(G)\right|=2^{2}$. This implies $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{4}. Now, if $G^{\prime} \cong C_{8} \times C_{4}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime} \cong C_{4} \times\left(\bar{C}_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$ or $\gamma_{3}(G) \cong C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $G^{\prime} \cong\left(C_{2}\right)^{5}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. Now, let $\left|\gamma_{4}(G)\right|=2^{3}$. This implies $\left|\gamma_{3}(G)\right|=2^{4}$. If $G^{\prime} \cong C_{8} \times C_{4}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{5}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Let $d_{(2)}=7, d_{(5)}=d_{(3)}=1$. Then $\left|G^{\prime}\right|=2^{9},\left|D_{(3), K}(G)\right|=2^{2}$, $\left|D_{(4), K}(G)\right|=\left|D_{(5), K}(G)\right|=2$ and $D_{(6), K}(G)=G^{8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$. If G^{\prime} is abelian, then we have the following possibilities: $G^{\prime} \cong\left(C_{8}\right)^{3}$ or $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{4} \times C_{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{3}$ or $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{6}$ or $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$ or $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$ or $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$ or $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$ or $G^{\prime} \cong\left(C_{2}\right)^{9}$. If $G^{\prime} \cong\left(C_{8}\right)^{3}$, then $\left|G^{\prime 2}\right|=64$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{8}\right)^{2} \times C_{4} \times C_{2}$, then $\left|G^{\prime 2}\right|=32$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{3}$, then $\left|G^{\prime 2}\right|=32$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{\prime 2}\right| \leq 4$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong C_{4}$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$, then $\gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{9}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(2)}=3, d_{(5)}=2, d_{(3)}=1$. Then, by Lemma 1.1 as $d_{(3+1)}=0$, $d_{(4+1)} \leq d_{(2+1)}$ implies $2 \leq 1$, which is not possible. Let $d_{(5)}=2, d_{(4)}=d_{(3)}=1$. By Lemma 1.1, this case is also not possible. Let $d_{(5)}=0$. Then we have $d_{(4)}=1$, $d_{(2)}=8$ or $d_{(4)}=2, d_{(2)}=5$ or $d_{(4)}=3, d_{(2)}=2$ or $d_{(2)}=11$.

Let $d_{(2)}=11, d_{(3)}=1$. Then, $\left|G^{\prime}\right|=2^{12},\left|D_{(3), K}(G)\right|=2, D_{(4), K}(G)=$ $G^{4} \gamma_{3}(G)^{2} \gamma_{4}(G)=1$ and exponent of G^{\prime} is at most 4 and $\left|G^{\prime 2}\right| \leq 2$. Now G^{\prime} is abelian in this case. Thus possible G^{\prime} are: $C_{4} \times\left(C_{2}\right)^{10}$ or $\left(C_{2}\right)^{12}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{10}$, then $G^{2}=\gamma_{3}(G) \cong C_{2}$ and $\gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{12}$, then $G^{2} \cap \gamma_{3}(G)=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$.

Let $d_{(2)}=8, d_{(4)}=d_{(3)}=1$. Then, $\left|G^{\prime}\right|=2^{10},\left|D_{(3), K}(G)\right|=2^{2}$, $\left|D_{(4), K}(G)\right|=2$ and $D_{(5), K}(G)=G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1$. So $\gamma_{4}(G) \cong C_{2}$, $\left|\gamma_{3}(G)\right|=4$. If G^{\prime} is abelian, then possible choices for G^{\prime} are $\left(C_{4}\right)^{5}$ or $\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$ or $C_{4} \times\left(C_{2}\right)^{8}$ or $\left(C_{2}\right)^{10}$. If $G^{\prime} \cong\left(C_{4}\right)^{5}$, then $\left|G^{\prime 2}\right|=32$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}$, then $\left|G^{2}\right|=16$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$, then $\left|G^{\prime 2}\right|=8$ but $\left|G^{2}\right| \leq 4$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{10}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(2)}=5, d_{(4)}=2, d_{(3)}=1$. Then $\left|G^{\prime}\right|=2^{8},\left|D_{(3), K}(G)\right|=2^{3}$, $\left|D_{(4), K}(G)\right|=2^{2}$ and $G^{\prime 4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1, \gamma_{4}(G) \cong C_{2}$ or $\left(C_{2}\right)^{2},\left|\gamma_{3}(G)\right|=4$ or 8. If G^{\prime} is abelian, then possible choices for G^{\prime} are: $G^{\prime} \cong\left(C_{4}\right)^{4}$ or $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$
or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ or $C_{4} \times\left(C_{2}\right)^{6}$ or $\left(C_{2}\right)^{8}$. First, let $\left|\gamma_{4}(G)\right|=2$. This implies $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3}. Now, if $G^{\prime} \cong\left(C_{4}\right)^{4}$, then this case is not possible. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$.

Now, $\left|\gamma_{4}(G)\right|=2^{2}$ implies $\left|\gamma_{3}(G)\right|=2^{3}$. If $G^{\prime} \cong\left(C_{4}\right)^{4}$, then this case is not possible. If $\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong$ $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$.

Let $d_{(2)}=2, d_{(4)}=3, d_{(3)}=1$. Then $\left|G^{\prime}\right|=2^{6},\left|D_{(3), K}(G)\right|=2^{4}$, $\left|D_{(4), K}(G)\right|=2^{3}$ and $G^{4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1 . \quad \gamma_{4}(G) \cong C_{2}$ or $\left(C_{2}\right)^{2}$ or $\left(C_{2}\right)^{3}$, $\left|\gamma_{3}(G)\right|=4$ or 8 or 16. If G^{\prime} is abelian, then possible choices for G^{\prime} are: $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{4}$ or $\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=4$, $\gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong$ $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $\gamma_{3}(G) \subseteq G^{2} \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ and $\left|G^{2} \cap \gamma_{3}(G)\right|=1$.

Converse can be easily done by computing $d_{(m)}$'s in each case.

References

[1] A.K. Bhandari, I.B.S. Passi, Lie nilpotency indices of group algebras, Bull. London Math. Soc. 24 (1992) 68-70.
[2] S. Bhatt, H. Chandra, M. Sahai, Group algebras of Lie nilpotency index 14, Asian-Eur. J. Math. 13 (5) (2019), 18 pages. doi: 10.1142/S1793557120500886
[3] A.A. Bovdi, I.I. Khripta, Generalized Lie nilpotent group rings, Math. USSR Sbornik 57 (1) (1987) 165-169.
[4] A.A. Bovdi, J. Kurdics, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra 212 (1) (1999) 28-64.
[5] V. Bovdi, E. Spinelli, Modular group algebras with maximal Lie nilpotency indices, Publ. Math. Debrecen 65 (1-2) (2004) 243-252.
[6] H. Chandra, M. Sahai, Strongly Lie nilpotent group algebras of index atmost 8, J. Algebra Appl. 13 (7) (2014), Art. ID. 1450044, 9 pages.
[7] I.I. Khripta, The nilpotency of the multiplicative group of a group ring, Mat. Zametki 11 (1972) 191-200.
[8] F. Levin, S.K. Sehgal, Lie nilpotent group rings, J. Pure Appl. Algebra 37 (1985) 33-39.
[9] I.B.S. Passi, Group Rings and their Augmentation Ideals, Lecture notes in Mathematics 715, Springer Verlag, Berlin, 1979.
[10] I.B.S. Passi, D.S. Passman, S.K. Sehgal, Lie solvable group rings, Canad. J. Math. 25 (1973) 748-757.
[11] A. Shalev, Applications of dimension and Lie dimension subgroups to modular group algebras, In: Proceedings of Amitsur Conference in Ring Theory, 1989.
[12] A. Shalev, Lie dimension subgroups, Lie nilpotency indices and the exponent of the group of normalized units, J. London Math. Soc. 43 (1991) 23-36.
[13] A. Shalev, The nilpotency class of the unit group of a modular group algebra III, Arch. Math. 60 (1993) 136-145.
[14] R.K. Sharma, V. Bist, A note on Lie nilpotent group rings, Bull. Austral. Math. Soc. 45 (1992) 503-506.
[15] R.K. Sharma, R. Siwach, M. Sahai, Group algebras of Lie nilpotency index 12 and 13, Comm. Algebra 46 (4) (2018) 1428-1446.
[16] R. Siwach, R.K. Sharma, M. Sahai, Modular group algebras with small Lie nilpotency indices, Asian-Eur. J. Math 9 (4) (2016), Art. ID. 1650080, 15 pages.

