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Abstract. The notion of an action σ of a locale L on a join semilattice J with bottom

element 0J is developed and utilized to form the entity (σ, J), which we call L-slice, has

properties that could be studied algebraically as well as topologically. In this study,

the existence of a contravariant functor from a subcategory of the category L-slice, of

L-slices and L-slice homomorphisms, into the category TopWMod, of topological weak

modules and continuous weak module homomorphisms, has been established.
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topological weak modules.

1. Introduction

From 1914 onwards, topology on a topological space was known as lattice of
open subsets. The interrelation between topology and lattice theory was first
studied by M.H. Stone in [12, 13, 14]. After his work on topological representa-
tion of Boolean algebras and distributive lattices , the relation between topology
and lattice theory began to be explored. In [4], complete lattice satisfying infi-
nite distributive law is expressed as pointless topology. Afterwards most of the
topological ideas were studied in the localic background. Dual to the notion of
theory of locales, we have theory of frames. The study using frame theory is
more algebraic and those in localic background are topological.
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The action of residuated structure on posets has been studied by many au-
thors, especially in connection with mathematical logic. Such structures are
involved in the development of several interesting theories including image pro-
cessing [9]. In this paper, we have introduced the concept of action of a locale L
on a join semilattice J , so that J will inherit some topological properties from
the locale L.

Given a complete semiring (L,+, ., 0L, 1L), where finite product · distributes
over infinite sum + and a monoid (M, ∗, 0M), a weak L-module is introduced to
be an action of L on (M, ∗, 0M ). We have defined weak L-module homomorphism
between two weak L-modules (δ,M) and (γ,N). It is proved that if (N, ∗′) is
commutative, then the collection of all weak L-module homomorphisms from
(δ,M) to (γ,N) is a weak L-module.

It is known that there is a contravariant functor from the category of join
semilattices with 0 and semilattice homomorphisms, to the category of idem-
potent topological monoids and continuous monoid homomorphisms. This is a
matter of interest to investigate that to which algebraic structure the category
of L-slices and L-slice homomorphisms can be associated. In this paper, we have
proved that there is a contravarient functor from a subcategory of the category
L-slice of L-slices to the category TopWMod of weak topological L-modules.

2. Preliminaries

In this section, we mainly introduce some notions, notations and basic properties
which will be used in the rest of the paper.

Definition 2.1. [7] A frame is a complete lattice L satisfying the infinite distribu-
tivity law a u

⊔
B =

⊔
{a u b; b ∈ B} for all a ∈ L and B ⊆ L.

Example 2.2. [7]

(i) The lattice of open subsets of topological space.

(ii) The Boolean algebra B of all open subsets U of real line R such that
U=int(cl(U)).

Definition 2.3. [7] A map f : L → M between frames L,M preserving all
finite meets (including the top 1) and all joins (including the bottom 0) is called
a frame homomorphism. A bijective frame homomorphism is called a frame
isomorphism.

Remark 2.4. The category of frames and frame homomorphisms is denoted by
Frm. The opposite of category Frm is the category Loc of locales. We can
represent the morphism in Loc as the infima -preserving f : L → M such that
the corresponding left adjoint f∗ : M → L preserves finite meet.
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Definition 2.5. [5] A subset I of a locale L is said to be an ideal if

(i) I is a sub-join-semilattice of L; that is 0L ∈ I and a ∈ I, b ∈ I implies
a t b ∈ I; and

(ii) I is a lower set; that is a ∈ I and b v a imply b ∈ I.

Definition 2.6. A semiring is a triple (S,+, ·), where S is a set and + and ·
are binary operations, such that + is commutative, both (S,+) and (S, ·) are
semigroups and the following distributive laws hold for all x, y, z ∈ S.

(i) x.(y + z) = x.y + x.z

(ii) (x+ y).z = (x.z) + (y.z)

If (S, ·) is a monoid, then (S,+, ·) is a semiring with 1.

Definition 2.7. A complete semiring is a semiring for which the addition monoid
is a complete monoid and the following infinitary distributive laws hold Σ(a.ai) =
a.Σai and Σ(ai.a) = (Σai).a.

Definition 2.8. A topological semiring is a semiring S togather with a topology
under which the semiring operations are continuous.

Definition 2.9. [3] A category C consist of:

(i) A class Ob C of objects (notation: A,B,C, ...).

(ii) A class Mor C of morphisms (notation: f, g, h...). Each morphism f has
a domain or source A (notation: dom(f)) and a codomain or target B
(notation: codom(f)) which are objects of C; this is indicated by writing
f : A → B.

(iii) A composition law that assign to each pair (f, g) of morphisms satisfying
dom(g) = codom(f), a morphism g ◦ f : dom(f) → codom(g) satisfying

(a) h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever the compositions are defined.

(b) For each object A of C there is an identiy idA : A → A such that f◦idA = f
and idA ◦ g = g whenever the composition is defined.

Definition 2.10. [3] A category B is said to be a subcategory of the category C
provided that the following conditions are satisfied:

(i) Ob(B) ⊆ Ob(C).

(ii) Mor(B) ⊆ Mor(C).

(iii) The domain, codomain and composition functions of B are restriction of
the corresponding functions of C.

(iv) Every B-identity is a C-identity.

Definition 2.11. [3] A morphism f : A → B in a category C is said to be
section in C provided that there exists some C-morphism g : B → A such that
g ◦ f = idA.
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Definition 2.12. [3] A morphism f : A → B in a category C is said to be a
retraction in C provided that there exists some C -morphism g : B → A such
that f ◦ g = idB.

Definition 2.13. [3] A C-morphism is said to be an isomorphism in C provided
that it is both C-section and C-retraction.

Definition 2.14. [3] Let C be a category and A,B ∈ Obj(C). A morphism
f : A → B is epimorphism if f ◦ g = f ◦ h implies g = h for all morphisms
g, h : B → C.

Definition 2.15. [3] A C -morphism f : A → B is said to be a monomorphism in
C provided that for all C-morphisms h and k such that f ◦ h = f ◦ k, it follows
that h = k.

3. L-Slices

This section discusses the concept of L-slice and some of its properties.

Definition 3.1. [10] Let L be a locale and (J,∨) be join semilattice with bottom
element 0J . By the “action of L on J ” we mean a function σ : L×J → J such
that the following conditions are satisfied:
(i) σ(a, x1 ∨ x2) = σ(a, x1) ∨ σ(a, x2) for all a ∈ L, x1, x2 ∈ J .

(ii) σ(a, 0J) = 0J for all a ∈ L.

(iii) σ(a u b, x) = σ(a, σ(b, x)) = σ(b, σ(a, x)) for all a, b ∈ L, x ∈ J .

(iv) σ(1L, x) = x and σ(0L, x) = 0J for all x ∈ J .

(v) σ(a t b, x) = σ(a, x) ∨ σ(b, x) for a, b ∈ L, x ∈ J .
If σ is an action of the locale L on a join semilattice J , then we call (σ, J)

as L-slice.

Proposition 3.2. [10] Let L be a locale and S a set of order preserving maps
L → L such that:
(i) The constant map 0 ∈ S (0 takes everything to 0).

(ii) If f, g ∈ S, then f ∨ g ∈ S.

(iii) For all a ∈ L and for all f ∈ S, the meet of the constant map a and f is
in S (i.e. f u a ∈ S).

Then the map σ : L×S → S defined by σ(a, f)(x) = f(x)u a is an action of
L on S.

Example 3.3. [10]
(i) Let L be a locale and I any ideal of L. Consider each x ∈ I as constant

map x : L → L. Then by Proposition 3.2, (σ, I) is an L-slice. In particular
(σ, L) is an L-slice.
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(ii) Let the locale L be a chain with Top and Bottom elements and J be any
join semilattice with bottom element. Define σ : L× J → J by σ(a, j) = j
for all a 6= 0 and σ(0L, j) = 0J . Then σ is an action of L on J and (σ, J)
is an L-slice.

Definition 3.4. [10] Let (σ, J) be an L-slice of a locale L. A subjoin semilattice
J ′ of J is said to be L-subslice of (σ, J) if J ′ is closed under action by elements
of L.

Example 3.5.

(i) Let L be a locale and O(L) denote the collection of all order preserving
maps on L. Then (σ,O(L)) is an L-slice, where σ : L × O(L) → O(L) is
defined by σ(a, f) = fa, and fa : L → L is defined by fa(x) = f(x) u a.
Let K = {f ∈ O(L) : f(x) v x, ∀x ∈ L}. Then (σ,K) is an L-subslice of
the L-slice (σ,O(L)).

(ii) Let (σ, J) be an L-slice and let x ∈ (σ, J). Define 〈x〉 = {σ(a, x); a ∈ L}.
Then (σ, 〈x〉) is an L-subslice of (σ, J) and it is the smallest L-subslice of
(σ, J) containing x.

Definition 3.6. [10] A subslice (σ, I) of an L-slice (σ, J) is said to be ideal of
(σ, J) if x ∈ (σ, I) and y ∈ (σ, J) are such that y ≤ x, then y ∈ (σ, I).

Definition 3.7. [10] An ideal (σ, I) of an L-slice(σ, J) is a prime ideal if it has
the following properties:

(i) If a and b are any two elements of L such that σ(a u b, x) ∈ I, then either
σ(a, x) ∈ I or σ(b, x) ∈ I.

(ii) (σ, I) is not equal to the whole slice (σ, J).

Definition 3.8. [10] Let (σ, J), (µ,K) be L-slices of a locale L. A map f :
(σ, J) → (µ,K) is said to be L-slice homomorphism if

(i) f(x1 ∨ x2) = f(x1) ∨
′ f(x2) for all x1, x2 ∈ (σ, J).

(ii) f(σ(a, x)) = µ(a, f(x)) for all a ∈ L and all x ∈ (σ, J).

Example 3.9. [10]

(i) Let (σ, J) be an L-slice and (σ, J ′) an L-subslice of (σ, J). Then the inclu-
sion map i : (σ, J ′) → (σ, J) is an L-slice homomorphism.

(ii) Let I =↓ (a), J =↓ (b) be principal ideals of the locale L. Then (σ, I), (σ, J)
are L-slices. Then the map f : (σ, I) → (σ, J) defined by f(x) = x u b is
an L-slice homomorphism.

Some simple properties of L-slice homomorphism are discussed in the follow-
ing propositions.



278 K.S. Sabna and N.R. Mangalambal

Proposition 3.10. If f : (σ, J) → (µ,K) is an L-slice homomorphism, then
f(0J) = 0K.

Proposition 3.11. The composition of two L-slice homomorphisms of a locale L
is an L-slice homomorphism.

Proposition 3.12. Let (σ, J), (µ,K) be L-slices of a locale L and let f : (σ, J) →
(µ,K) be an L-slice homomorphism. If (µ, I) is an ideal of (µ,K), then
(σ, f−1(I)) is an ideal of (σ, J). In particular if (µ, I) is prime, then (σ, f−1(I))
is also prime.

Proposition 3.13. Let (σ, I), (µ,K) be L-slices and let f : (σ, J) → (µ,K) be
a bijective L-slice homomorphism. Then the map f−1 : (µ,K) → (σ, J) is an
L-slice homomorphism.

Proposition 3.14. Let (σ, J), (µ,K) be L-slices of a locale L and let f : (σ, J) →
(µ,K) be an injective L-slice homomorphism. Then for any z ∈ (µ,K), f−1(↓
z) =↓ f−1(z).

Proof. Let y ∈ f−1(↓ z). Then f(y) ∈↓ z. So f(y) ≤ z or y ≤ f−1(z). Thus
y ∈↓ f−1(z). Hence f−1(↓ z) ⊆↓ f−1(z). Now let y ∈↓ f−1(z). Then y ≤ f−1(z)
or f(y) ≤ z. Hence f(y) ∈↓ z and so y ∈ f−1(↓ z). Hence f−1(↓ z) ⊆ f−1(↓ z).

Definition 3.15. [10] Let (σ, J), (µ,K) be L-slices of a locale L. A map f :
(σ, J) → (µ,K) is said to be isomorphism if
(i) f is one-one,

(ii) f is onto,

(iii) f is an L-slice homomorphism.

Proposition 3.16. [10] Let (σ, J), (µ,K) be L-slices of a locale L. Then the col-
lection L- Hom(J,K) of all L-slice homomorphisms from (σ, J) to (µ,K) is an
Lslice.

Let L-slice denote the category of L-slices and L-slice homomorphisms.

Proposition 3.17. Let f : (σ, J) → (µ,K) be an injective L-slice homomorphism.
If image imf =↓ z, where z ∈ (µ,K) is a maximal element of (µ,K), then f is
a section in the category L-slice.

Proof. Define g : (µ,K) → (σ, J) as follows. Let y ∈ (µ,K). If y ∈ imf ,
then y = f(x) for a unique x ∈ (σ, J). Then define g(y) = x. If y /∈ imf ,
define g(y) = 0J . Then g : (µ,K) → (σ, J) is an L-slice homomorphism and
(g ◦ f)(x) = x, for all x ∈ (σ, J). Hence f is a section in the category L-slice.
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Proposition 3.18. Let f : (σ, J) → (µ,K) be an L-slice homomorphism. Then f
is a retraction in the category L-slice if and only if f is onto.

Proof. Let f : (σ, J) → (µ,K) be a retraction in the category L-slice. Let
y ∈ (µ,K). Since f : (σ, J) → (µ,K) is a retraction, there is an L-slice homo-
morphism g : (µ,K) → (σ, J) such that (f ◦ g) = I. Hence f(g(y)) = y and so
f is onto.

Conversely let f : (σ, J) → (µ,K) be an onto L-slice homomorphism. For
each y ∈ (µ,K), there is some x ∈ (σ, J) such that y = f(x). Define g :
(µ,K) → (σ, J) by g(f(x)) = x. Then we have g is an L-slice homomorphism
and (f ◦ g)(y) = y, for all y ∈ (µ,K). Hence f is a retraction in the category
L-slice.

In a similar manner we can show the following propositions.

Proposition 3.19. Let f : (σ, J) → (µ,K) be an L-slice homomorphism. Then f
is a monomorphism in the category L-slice if and only if f is injective.

Proposition 3.20. Let f : (σ, J) → (µ,K) be an L-slice homomorphism. Then f
is an epimorphism in the category L-slice if and only if f is surjective.

Proposition 3.21. [10] Let (σ, J) be an L-slice of a locale L. For each a ∈ L,
let σa : (σ, J) → (σ, J) be defined by σa(x) = σ(a, x). Then σa is an L-slice
homomorphism.

Proposition 3.22. [10]

(i) σa(x) ≤ x for all x ∈ J .

(ii) If I is an ideal in (σ, J), then σa(I) is a subslice of (σ, J) and σa(I) ⊆ I.

4. Weak L-module

Definition 4.1. Let (L,+, ., 0L, 1L) be a complete semiring where finite . distribute
over infinite + and let (M, ∗, 0M) be a monoid. By an action of L on M , we
mean a function δ :L×M → M such that the following conditions are satisfied:

(i) δ(r + s, x) = δ(r, x) ∗ δ(s, x) for all r, s ∈L, x ∈ M .

(ii) δ(r, x ∗ y) = δ(r, x) ∗ δ(r, y).

(iii) δ(r, 0M ) = 0M .

(iv) δ(r.s, x) = δ(r, δ(s, x)).

(v) δ(0L, x) = 0M and δ(1L, x) = x.

If δ is an action of L on M , we call (δ,M) as a weak L-module.
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Note 4.2. If (L, ·) is commutative, then δ(r.s, x) = δ(r, δ(s, x)) = δ(s, δ(r, x)).

Every L-slice is an example for weak L-module.

Definition 4.3. Let (δ,M) be a weak L-module. A submonoid M ′ of M is said
to be a weak L-submodule of (δ,M) if M ′ is closed under action by elements of
L.

Definition 4.4. A weak L-module homomorphism between weak L-modules
(δ,M), (γ,N) is a map g : (δ,M) → (γ,N) such that

(i) g(x ∗ y) = g(x) ∗′ g(y).

(ii) g(δ(r, x)) = γ(r, g(x)) for all x, y ∈ M, r ∈ L.

Proposition 4.5. Composition of two weak L-module homomorphisms is a weak
L-module homomorphism.

Proposition 4.6. Let (δ,M), (γ,N) be two weak L-modules. Then the following
statements hold:

(i) The map 0 : (δ,M) → (γ,N) defined by 0(x) = 0N for all x ∈ (δ,M) is a
weak L-module homomorphism.

(ii) If f, g : (δ,M) → (γ,N) are two weak L-module homomorphisms and
(N, ∗′) is commutative, then f ∗g : (δ,M) → (γ,N) defined by (f ∗g)(x) =
f(x) ∗′ g(x) is a weak L-module homomorphism.

(iii) If f : (δ,M) → (γ,N) is a weak L-module homomorphism, then for any
r ∈ S, the map η(r, f) : (δ,M) → (γ,N) defined by η(r, f)(x) = γ(r, f(x))
is a weak L-module homomorphism.

Proposition 4.7. Let (δ,M), (γ,N) be two weak L-modules, where (N, ∗′) is com-
mutative. Then the collection ∆ of all weak L-module homomorphisms from
(δ,M) to (γ,N) is weak L-module.

Proof. For any f, g ∈ ∆, define f∗g : (δ,M) → (γ,N) by (f∗g)(x) = f(x)∗′g(x).
Then (∆, ∗) is a monoid. Define η : L×∆ → ∆ as follows. For each r ∈ L, f ∈ ∆,
η(r, f) : (δ,M) → (γ,N) is a map defined by η(r, f)(x) = γ(r, f(x)). Then η is
an action of L on ∆. Let r, s ∈ L, x ∈ (δ,M). Then we have

(i) η(r + s, f)(x) = γ(r + s, f(x)) = γ(r, f(x)) ∗′ γ(s, f(x))
= η(r, f)(x) ∗′ η(s, f)(x) = (η(r, f) ∗ η(s, f))(x).

(ii) η(r, f ∗ g)(x) = γ(r, (f ∗ g)(x)) = γ(r, f(x) ∗′ g(x))
= γ(r, f(x)) ∗′ γ(r, g(x)) = (η(r, f) ∗ η(r, g))(x).

(iii) η(r,0)(x) = γ(r,0(x)) = γ(r, 0N) = 0N =0(x).
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(iv) η(r.s, f)(x) = γ(r.s, f(x)) = γ(r, γ(s, f(x)))
= γ(r, η(s, f)(x)) = η(r, η(s, f))(x).

(v) η(0L, f)(x) = γ(0L, f(x)) = 0N =0(x).

Hence (η,∆) is a weak L-module homomorphism.

Proposition 4.8. Let f : (δ,M) → (γ,N) be a weak L-module homomorphism.
Then the following statements hold:

(i) kerf = {x ∈ (δ,M) : f(x) = 0N} is a weak L-submodule of (δ,M).

(ii) imf = {y ∈ (γ,N) : y = f(x)for some x ∈ (δ,M)} is a weak L-
submodule of (γ,N).

Proposition 4.9. Let f : (δ,M) → (δ,M) be a weak L-module homomorphism.
Then F = {x ∈ (δ,M) : f(x) = x} is a weak L-submodule.

Proof. Let f : (δ,M) → (δ,M) be a weak L-module homomorphism. Since
f(0M ) = 0M , 0M ∈ F . Let x, y ∈ F . Then f(x ∗ y) = f(x) ∗ f(y) = x ∗ y.
Hence x ∗ y ∈ F . Thus (F, ∗) is a submonoid of (M, ∗). Let r ∈ L, x ∈ F .
Then f(δ(r, x)) = δ(r, f(x)) = δ(r, x). Thus δ(r, x) ∈ F . Hence (δ, F ) is a weak
L-submodule of (δ,M).

Definition 4.10. A topological weak L-module is a triplet (δ,M, τ), where τ is a
topology on (δ,M) such that

(i) ∗ : M ×M → M is continuous.

(ii) δa : M → M defined by δa(x) = δ(a, x) is continuous for every a ∈ L.

Definition 4.11. A morphism between topological weak L-module (δ,M, τ1),
(γ,N, τ2) is a map h : (δ,M, τ1) → (γ,N, τ2) such that

(i) h(x ∗ y) = h(x) ∗′ h(y) for all x, y ∈ M .

(ii) h(δ(a, x)) = γ(a, h(x)) for all x ∈ M,a ∈ L.

(iii) h is continuous.

5. Topological Weak L-module Associated with L-slice

Let (σ, J) be an L-slice with bottom element 0. Let Pt(J) = {↓ x : x ∈ (σ, J)}.
Define a binary operation ∗ on Pt(J) by ↓ x∗ ↓ y =↓ x∨ y. Then (Pt(J), ∗,0) is
a commutative monoid. Define δ : L × Pt(J) → Pt(J) by δ(a, ↓ x) =↓ σ(a, x).
In the next proposition, we will show that δ is an action of the semiring L on
the monoid (Pt(J), ∗,0).

Proposition 5.1. (δ, P t(J)) is a weak L-module.

Proof. δ : L× Pt(J) → Pt(J) is defined by δ(a, ↓ x) =↓ σ(a, x).
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(i) δ(a+ b, ↓ x) = δ(a t b, ↓ x) =↓ σ(a t b, x) =↓ (σ(a, x) ∨ σ(b, x))
=↓ σ(a, x)∗ ↓ σ(b, x) = δ(a, ↓ x) ∗ δ(b, ↓ x).

(ii) δ(a, ↓ x∗ ↓ y) = δ(a, ↓ x ∨ y) =↓ σ(a, x ∨ y) =↓ (σ(a, x) ∨ σ(a, y))
=↓ σ(a, x)∗ ↓ σ(a, y) = δ(a, ↓ x) ∗ δ(a, ↓ y).

(iii) δ(a,0) =↓ σ(a, 0) =↓ 0 = 0.

(iv) δ(a.b, ↓ x) = δ(a u b, x) =↓ σ(a u b, x) =↓ σ(a, σ(b, x))
= δ(a, ↓ σ(b, x)) = δ(a, δ(b, ↓ x)).

(v) δ(0, ↓ x) =↓ σ(0, x) =↓ 0 = 0
δ(1, ↓ x) =↓ σ(1, x) =↓ x.

Hence (δ, P t(J)) is a weak L-module.

For each x ∈ (σ, J) define λx = {↓ y ∈ Pt(J) : x ∈↓ y}.

Proposition 5.2. Let (σ, J) be an L-slice and x, y ∈ (σ, J). Then

(i) λ0 = Pt(J).

(ii) λx ∩ λy = λx∨y.

Proof. (i) λ0 = {↓ y ∈ Pt(J) : 0 ∈↓ y}. Since ideal of a slice is closed under
taking lower elements, 0 ∈↓ y, for every ↓ y ∈ Pt(J). Hence λ0 = Pt(J).

(ii) ↓ z ∈ λx ∩ λy ⇒↓ z ∈ λx and ↓ z ∈ λy

⇒ x ∈↓ z and y ∈↓ z
⇒ x ≤ z and y ≤ z
⇒ x ∨ y ≤ z
⇒↓ z ∈ λx∨y.

Hence λx ∩ λy ⊆ λx∨y. We have

↓ z ∈ λx∨y ⇒ x ∨ y ≤ z

⇒ x, y ≤ x ∨ y ≤ z

⇒ ↓ z ∈ λx and ↓ z ∈ λy

⇒ ↓ z ∈ λx ∩ λy.

Thus λx∨y ⊆ λx ∩ λy . Hence λx ∩ λy = λx∨y.

By Proposition 5.2, B = {λx : x ∈ J} is closed under finite intersection and
hence B is a base for a unique topology τ on Pt(J).

Proposition 5.3. (δ, P t(J), τ) is a topological weak L-module.
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Proof. We have (δ, P t(J)) is a weak L-module. Let f : Pt(J)× Pt(J) → Pt(J)
be defined by f(↓ x, ↓ y) =↓ x∗ ↓ y =↓ x ∨ y. We will show that f is continuous
with respect to the topology τ . Let U be any open set containing f(↓ x, ↓ y) =↓
x∗ ↓ y =↓ x∨y. Then there exists a basic open set λz such that ↓ x∨y ∈ λz and
λz ⊆ U . ↓ x ∨ y ∈ λz implies that x ∨ y ≥ z. By construction λx, λy are open
set containing ↓ x, ↓ y respectively. Now we will show that f(λx × λy) ⊆ U . Let
↓ a ∈ λx, ↓ b ∈ λy. Then x ≤ a, y ≤ b. f(↓ a, ↓ b) =↓ a∗ ↓ b =↓ a ∨ b. But
x ≤ a, y ≤ b implies that x∨y ≤ a∨b. Hence z ≤ x∨y ≤ a∨b or z ≤ a∨b. Hence
↓ a ∨ b ∈ λz. Thus f(λx × λy) ⊆ λz ⊆ U . Hence f : Pt(J) × Pt(J) → Pt(J)
is continuous with respect to the topology τ . Now we will show that for every
a ∈ L the map δa : Pt(J) → Pt(J) defined by δa(↓ x) = δ(a, ↓ x) =↓ σ(a, x) is
continuous. For any basic open set λx,

δ−1
a (λx) = {↓ z ∈ Pt(J) : δa(↓ z) = δ(a, ↓ z) ∈ λx}

= {↓ z ∈ Pt(J) :↓ σ(a, z) ∈ λx}

= {↓ z ∈ Pt(J) : x ≤ σ(a, z) ≤ z}

= λx.

Thus δa is continuous with respect to the topology τ . Hence (δ, P t(J), τ) is a
topological weak L-module.

Proposition 5.4. If f : (σ, J) → (µ,K) is an injective L-slice homomorphism,
then there is a morphism φ : (ρ, P t(K), τ2) → (δ, P t(J), τ1) in the category
TopWMod of topological weak L-modules.

Proof. Let f : (σ, J) → (µ,K) be an injective L-slice homomorphism. Define
φ : (ρ, P t(K), τ2) → (δ, P t(J), τ1) by φ(↓ y) =↓ f−1(y).

φ(↓ y∗′ ↓ z) = φ(↓ y ∨′ z) =↓ f−1(y ∨′ z) =↓ f−1(y) ∨ f−1(z)

= ↓ f−1(y)∗ ↓ f−1(z) = φ(↓ y) ∗ φ(↓ z)

φ(ρ(a, ↓ x)) = φ(↓ µ(a, x)) =↓ f−1(µ(a, x)) =↓ σ(a, f−1(x))

= δ(a, ↓ f−1(x)) = δ(a, φ(↓ x)).

Now we will show that the map φ is continuous. Let λz be an open set containing
φ(↓ x) =↓ f−1(x). Then ↓ f−1(x) ∈ λz and so z ≤ f−1(x). Thus f(z) ≤ x and
so ↓ x ∈ λf(z). Thus λf(z) is an open set containing ↓ x. We will show that
φ(λf(z)) ⊆ λz . Let ↓ a ∈ λf(z). Then f(z) ≤ a. Now φ(↓ a) =↓ f−1(a).
f(z) ≤ a implies that z ≤ f−1(a). Hence ↓ f−1(a) ∈ λz . Thus φ(λf(z)) ⊆ λz .
Hence φ is continuous. Thus φ is a morphism in the category TopWMod.

Remark 5.5. Let iL-slice denote the category whose objects are the collection of
all L-slices and whose morphisms are all injective L-slice homomorphisms. Then
iL-slice is a subcategory of L-slice.

Proposition 5.6. There is contravariant functor from the category iL-slice to the
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category TopWMod.

Proof. Define Ψ : Ob(iL−slice) → Ob(TopWMod) by Ψ(J) = Pt(J). Also
define Ψ : Mor(iL−slice) → Mor(TopWMod) as follows. Let f : (σ, J) →
(µ,K) be an injective L-slice homomorphism. Define Ψ(f) : (ρ, P t(K), τ2) →
(δ, P t(J), τ1) by Ψ(f)(↓ x) =↓ f−1(x). Then by above proposition Ψ(f) ∈
Mor(TopWMod). Let f : (σ, J) → (µ,K) and g : (µ,K) → (υ,K ′) be injective
L-slice homomorphisms. We have

Ψ(g ◦ f)(↓ x) = ↓ (g ◦ f)−1(x) =↓ f−1(g−1(x)) = Ψ(f)(↓ g−1(x))

= Ψ(f)(Ψ(g)(↓ x)) = Ψ(g) ◦Ψ(f)(↓ x).

Let id : (σ, J) → (σ, J) be an identity morphism in iL-slice. Then Ψ(id)(↓ x) =↓
id−1(x) =↓ x. Hence Ψ(id) is an identity morphism in TopWMod. This shows
that Ψ is a contravariant functor from the category iL-slice to the category
TopWMod.
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