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Abstract. An act AS satisfies Condition (PWP ) if as = a′s for a, a′
∈ AS, s ∈ S implies

that there exist a′′
∈ AS and u, v ∈ S such that a = a′′u, a′ = a′′v and us = vs. In

this paper we introduce a generalization of Condition (PWP ) called Condition (LPWP )

and will characterize monoids using this property. It can be seen easily that any right

locally cyclic act satisfies Condition (LPWP ).
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1. Introduction

Recall that an act AS satisfies Condition (PWP ) if as = a′s for a, a′ ∈ AS , s ∈ S
implies that there exist a′′ ∈ AS and u, v ∈ S such that a = a′′u, a′ = a′′v and
us = vs. It is clear that Condition (PWP ) implies torsion freeness.

Definition 1.1. The right S-act AS satisfies Condition (LPWP ) if for a, a′ ∈
AS , s ∈ S, the equality as = a′s implies that there exist a′′ ∈ AS and u, v ∈ S
such that a = a′′u and a′ = a′′v.

The above definition is equivalent to the following statement:

(∀a, a′ ∈ AS)(∀s ∈ S)[(as = a′s) ⇒ (∃a′′ ∈ AS)(aS ∪ a′S ⊆ a′′S)

Clearly in Act − S, Condition (PWP ) implies Condition (LPWP ) and also
we have cyclic =⇒ locally cyclic =⇒ Condition (LPWP ).



286 M.R. Zamani et al.

The following example shows that Condition (LPWP ) does not imply Condi-
tion (PWP ).

Example 1.2. Let S = (N, ·) and K = 2N which is a right ideal of S. Since
S/KS is cyclic, it satisfies Condition (LPWP ). But S/KS is not torsion free by
[6, III, Proposition 8.10]. Indeed, the element 2 ∈ 2N is right cancellabe and we
have 3 · 2 ∈ 2N but 3 /∈ 2N.

Let I be a proper right ideal of a monoid S. Suppose that x, y and z are
different symbols that do not belong to S. Consider the right S-act A(I) =

S
∐I

S = ((S \ I)× {x, y}) ∪ (I × {z}) with the S-action defined by

(t, u)s =

{

(ts, u) if ts ∈ S \ I,
(ts, z) if ts ∈ I,

where u ∈ {x, y} and (t, z)s = (ts, z).

An act AS is called strongly faithful if for s, t ∈ S, the equality as = at for
some a ∈ AS , implies that s = t. AS is called faithful if for s, t ∈ S, the equality
as = at for all a ∈ AS , implies that s = t.

Lemma 1.3. For the right S-act A(I) the following statements holds:

(1) A(I) does not satisfy Condition (LPWP ).

(2) A(I) is not locally cyclic.

(3) A(I) satisfies Condition (E).

(4) A(I) is indecomposable and is generated by exactly two elements.

(5) A(I) is faithful.

Proof. (1). The equality (1, x)s = (1, y)s holds in A(I) for s ∈ I. It can be
easily checked that we cannot find a ∈ A(I) and s1, s2 ∈ S such that (1, x) =
as1, (1, y) = as2. So A(I) does not satisfy Condition (LPWP ).

(2). (1, x) and (1, y) are elements of A(I), but there is no cyclic subact of
A(I) which contains these two elements.

(3). Note that A(I) = (1, x)S ∪ (1, y)S. Obviously, (1, x)S ∼= SS
∼= (1, y)S.

So A(I) is the union of two subacts both of which satisfy Condition (E). Then
A(I) satisfies Condition (E).

(4). If A(I) is decomposable, then there exist BS , CS ≤ A(I) such that
A(I) = BS ∪ CS , BS ∩ CS = ∅. Let (1, x) ∈ BS . Since A(I) = (1, x)S ∪ (1, y)S,
we have (1, y) ∈ CS . But (1, x)S ∩ (1, y)S = I ⊆ BS ∩ CS which shows that
BS ∩ CS 6= ∅, a contradiction. Hence A(I) is indecomposable.

The equality A(I) = (1, x)S∪(1, y)S shows that A(I) is generated by exactly
two elements.

(5). It was mentioned that A(I) = (1, x)S ∪ (1, y)S and (1, x)S ∼= SS
∼=

(1, y)S. Since SS is faithful, A(I) has a faithful subact. Therefore, A(I) is
faithful.
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2. Classification of Monoids by Condition (LPWP ) of their Acts

Recall that an act AS satisfies Condition (E′) if for all a ∈ AS , s, t, z ∈ S, as = at
and sz = tz imply that there exist a′ ∈ AS , u ∈ S such that a = a′u and us = ut.
AS satisfies Condition (E′P ) if for all a ∈ AS , s, t, z ∈ S, as = at and sz = tz
imply that there exist a′ ∈ AS , u, v ∈ S such that a = a′u = a′v and us = vt.

Theorem 2.1. The following statements are equivalent:

(1) All right S-acts satisfy Condition (LPWP ).

(2) All right S-acts satisfying Condition (E′P ), satisfy Condition (LPWP ).

(3) All right S-acts satisfying Condition (EP ), satisfy Condition (LPWP ).

(4) All right S-acts satisfying Condition (E′), satisfy Condition (LPWP ).

(5) All right S-acts satisfying Condition (E), satisfy Condition (LPWP ).

(6) All faithful right S-acts satisfy Condition (LPWP ).

(7) All indecomposable right S-acts satisfy Condition (LPWP ).

(8) S is a group.

Proof. Since (E)⇒(E′)⇒(E′P ) and (E)⇒(EP )⇒(E′P ), the implications
(1)⇒(2)⇒(4)⇒(5), (2)⇒(3)⇒(5), (1)⇒(6) and (1)⇒(7) are obvious.

(5)⇒(8). Take s ∈ S such that sS 6= S. Lemma 1.3 implies that A(sS)
satisfies Condition (E). By assumption, A(sS) satisfies Condition (LPWP ) which
is not possible by Lemma 1.3. Thus sS = S for any s ∈ S and S is a group.

(8) ⇒ (1). If S is a group, then any right S-act satisfies Condition (LPWP ).
To see this, let AS be an arbitrary right S-act such that for a, a′ ∈ AS and
s ∈ S we have as = a′s. Then we can write a = a′ss−1 and a′ = a′.1. Thus AS

satisfies Condition (LPWP ).

(6) ⇒ (8). Take s ∈ S such that sS 6= S. By Lemma 1.3, A(sS) is faithful, so
by assumption A(sS) satisfies Condition (LPWP ) which is impossible by Lemma
1.3. Then for any s ∈ S, sS = S which means that S is a group.

(7) ⇒ (8). Let s ∈ S be such that sS 6= S. The right S-act A(sS) is
indecomposable by Lemma 1.3. So A(sS) should satisfy Condition (LPWP ) and
this is impossible. Hence sS = S for any s ∈ S which shows that S is a group.

As we see in Example 1.2, Condition(LPWP ) does not imply torsion freeness.

Theorem 2.2. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ), are torsion free.

(2) All finitely generated right S-acts satisfying Condition (LPWP ) are torsion
free.

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are torsion free.

(4) All right cancellable elements are right invertible.
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Proof. Implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). By assumption any cyclic right S-act satisfies Condition (LPWP ),
is torsion free, and so by [6, IV, Theorem 6.1] every right cancellable element is
right invertible.

(4) ⇒ (1). If (4) holds, then by [6, IV, Theorem 6.1] all right S-acts are
torsion free, and so any right S-act satisfying Condition (LPWP ) is torsion free.

Condition (PWPE) is defined in [2].

Theorem 2.3. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ), satisfy Condition (PWPE).

(2) All finitely generated right S-acts satisfying Condition (LPWP ), satisfy
Condition (PWPE).

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ), satisfy Condition (PWPE).

(4) All right S-acts satisfying Condition (LPWP ) are principally weakly flat.

(5) All finitely generated right S-acts satisfying Condition (LPWP ) are prin-
cipally weakly flat.

(6) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are principally weakly flat.

(7) S is a regular monoid.

Proof. Implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) ⇒ (6) are obvious. By
[2, Theorem 2.3] Condition (PWPE) implies principal weak flatness, and so we
have the implications (1) ⇒ (4) and (3) ⇒ (6).

(6) ⇒ (7). Since all cyclic right S-acts satisfy Condition (LPWP ), by assump-
tion all cyclic right S-acts are principally weakly flat. Then by [6, IV, Theorem
6.6] S is regular.

(7) ⇒ (1). By [2, Theorem 3.1], all right S-acts satisfy Condition (PWPE)
and consequently all right S-acts satisfying Condition (LPWP ) satisfy Condition
(PWPE).

Condition (PE) was introduced in [4].

Theorem 2.4. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ), satisfy Condition (PE).

(2) All finitely generated right S-acts satisfying Condition (LPWP ), satisfy
Condition (PE).

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ), satisfy Condition (PE).

(4) All right S-acts satisfying Condition (LPWP ) are weakly flat.
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(5) All finitely generated right S-acts satisfying Condition (LPWP ) are weakly
flat.

(6) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are weakly flat.

(7) S is regular and satisfies the following condition:

(R) For any elements s, t ∈ S, there exists w ∈ Ss∩St such that wρ(s, t)s
(ρ(s, t) is the smallest right congruence on S containing (s, t)).

Proof. Implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) ⇒ (6) are obvious. By
[4, Theorem 2.3] Condition (PE) implies weak flatness, and so we have the
implications (1) ⇒ (4) and (3) ⇒ (6).

(6) ⇒ (7). Since all cyclic right S-acts satisfy Condition (LPWP ), by as-
sumption all cyclic right S-acts are weakly flat. Then by [6, IV, Theorem 7.5] S
is regular and satisfies Condition (R).

(7) ⇒ (1). By [6, IV, Theorem7.5] all right S-acts are weakly flat. It follows
from [4, Theorem 2.5] that all right S-acts satisfy Condition (PE), and so all
right S-acts satisfying Condition (LPWP ) satisfy Condition (PE).

Theorem 2.5. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ), satisfy Condition (P ).

(2) All finitely generated right S-acts satisfying Condition (LPWP ), satisfy
Condition (P ).

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ), satisfy Condition (P ).

(4) S is a group or a group with a zero adjoined.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Since all cyclic right S-acts satisfy Condition (LPWP ), by as-
sumption we can deduce that all cyclic right S-acts satisfy Condition (P ). By
[8, Theorem 2.1], S = G0 or S = G, where G is a group.

(4) ⇒ (1). If S = G, then by [9, Theorem 3.10] all right S-acts satisfy
Condition (P ). Therefore, all right S-acts satisfying Condition (LPWP ), satisfy
Condition (P ). Suppose that S = G0 and let AS be a right S-act which satisfies
Condition (LPWP ). We show that AS satisfies Condition (P ). Take a, a′ ∈ AS

and s, t ∈ S such that as = a′t. There are three cases as follows:

Case 1: If s, t ∈ G, then we have a = a′ts−1, a′ = a′1 and (ts−1)s = 1t.

Case 2: If t = 0, s ∈ G, then as = a′0 implies that (as)s−1 = (a′0)s−1. So
a = a′0, a′ = a′1 and 0s = 10.

Case 3: If s = t = 0, then a0 = a′0. Since AS satisfies Condition (LPWP ),
there exist a′′ ∈ AS , u, v ∈ S such that a = a′′u, a′ = a′′v and clearly u0 = v0.

We deduce from the above Theorem that whenever S 6= G0 and S 6= G (G
is a group), then there exists at least one (finitely generated) right S-act that
satisfies Condition (LPWP ) but does not satisfy Condition (P ).
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Recall that a monoid S is called left collapsible if for every s, s′ ∈ S, there
exists u ∈ S such that us = us′. S is called weakly left collapsible if for every
s, s′, z ∈ S, sz = s′z implies the existence of u ∈ S such that us = us′.

Example 2.6. Let S be a monoid which is not weakly left collapsible. Then the
one-element right S-act ΘS = {θ} with multiplication θs = θ for all s ∈ S,
fails to satisfy Condition (E′) but it satisfies Condition (LPWP ). So Condition
(LPWP ) does not imply Condition (E′) ( as well as Condition (E), regularity,
strong faithfulness, equalizer flatness which are stronger properties).

Theorem 2.7. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ), satisfy Condition (E′).

(2) All finitely generated right S-acts satisfying Condition (LPWP ), satisfy
Condition (E′).

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ), satisfy Condition (E′).

(4) (∀s, t, z ∈ S), (sz = tz =⇒ (∃e ∈ E(S))(ρ(s, t) = kerλe))

Proof. (1) ⇒ (2) ⇒ (3). It is clear.

(3) ⇒ (4). Since all cyclic right S-acts satisfy Conditon (LPWP ), by assump-
tion all cyclic right S-acts satisfy Condition (E′). By [3, Theorem 2.5] the result
follows.

(4) ⇒ (1). By [3, Theorem 2.5], all right S-acts satisfy Condition (E′). Hence
all right S-acts satisfying Condition (LPWP ), satisfy Condition (E′).

Weak pullback flatness was defined by Laan [7]. He showed that a right S-act
is pullback flat if and only if it satisfies both Conditions (P ) and (E′).

Theorem 2.8. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ) are weakly pullback flat.

(2) All finitely generated right S-acts satisfying Condition (LPWP ) are weakly
pullback flat.

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are weakly pullback flat.

(4) S is a group or S = {0, 1}.

Proof. (1) ⇒ (2) ⇒ (3). It is obvious.

(3) ⇒ (4). By assumption, since all cyclic right S-acts satisfy Condition
(LPWP ), one can deduce that all cyclic right S-acts are weakly pullback flat. So
by [1, Proposition 25] the statement (4) holds.

(4) ⇒ (1). If S is a group, then by [1, Proposition 9] all right S-acts are
weakly pullback flat and we are done. Now suppose that S = {0, 1}. Let AS

be a right S-act that satisfies Condition (LPWP ). It suffices to show that AS
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satisfies Conditions (P ) and (E′). Let a, a′ ∈ AS and s, t ∈ S be such that
as = a′t. To show that AS satisfies Condition (P ), we consider three cases:

Case 1: s = t = 1. Then we have a = a′, and so we can write a = a′ · 1, a′ =
a′ · 1 and 1 · s = 1 · t.

Case 2: s = 1, t = 0. Then we have a = a′ · 0, a′ = a′ · 1 and 0 · s = 1 · t.

Case 3: s = t = 0. Since AS satisfies Condition (LPWP ), the equality
a0 = a′0 implies that there exist a′′ ∈ AS , u, v ∈ S such that a = a′′u ∧ a = a′′v
and clearly u · 0 = v · 0.

So AS satisfies Condition (P ) in each case. It remains to show that AS

satisfies Condition (E′). Since S = {0, 1}, by [9, Theorem 2.4] all cyclic right
S-acts satisfy Condition (E), and consequently satisfy Condition (E′).

Theorem 2.9. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ) are strongly flat.

(2) All finitely generated right S-acts satisfying Condition (LPWP ) are strongly
flat.

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are strongly flat.

(4) All right S-acts satisfying Condition (LPWP ) are equalizer flat.

(5) All finitely generated right S-acts satisfying Condition (LPWP ) are equal-
izer flat.

(6) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are equalizer flat.

(7) All right S-acts satisfying Condition (LPWP ), satisfy Condition (E).

(8) All finitely generated right S-acts satisfying Condition (LPWP ), satisfy
Condition (E).

(9) All right S-acts generated by at most two elements satisfying Condition
(LPWP ), satisfy Condition (E).

(10) S = {0, 1} or S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6) and (7) ⇒ (8) ⇒ (9) are
obvious.

Since we have strongly flat⇒ equalizer flat⇒ Condition (E), the implications
(1) ⇒ (4) ⇒ (7) and (3) ⇒ (6) ⇒ (9) are valid.

(9) ⇒ (10). Since all cyclic right S-acts satisfy Condition (LPWP ), by as-
sumption, all cyclic right S-acts satisfy Condition (E). By [9, Theorem 2.4] we
are done.

(10) ⇒ (1). If S = {1}, then all right S-acts are strongly flat and (1) follows.
Suppose that S = {0, 1}. Then by Theorem 2.8 all right S-acts satisfying Con-
dition (LPWP ), are weakly pullback flat which is the combination of Conditions
(E′) and (P ). Since S = {0, 1}, Condition (E′) implies Condition (E). So, all
right S-acts satisfying Condition (LPWP ), are strongly flat.
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Recall that a monoid S satisfies Condition (K) if, every left collapsible sub-
monoid of S contains a left zero. The monoid S satisfies Condition A if any
right S-act satisfy the ascending chain condition for cyclic subacts.

Theorem 2.10. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ) are projective.

(2) All finitely generated right S-acts satisfying Condition (LPWP ) are projec-
tive.

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are projective.

(4) S = {1} or S = {0, 1}.

Proof. Implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Since projectivity implies strong flatness, by assumption all right
S-acts generated by at most two elements satisfying Condition (LPWP ), are
strongly flat. So by [8, Corollary 2.2], S = {1} or S = {0, 1}.

(4) ⇒ (1). If S = {1}, then all right S-acts are projective. Now suppose
that S = {0, 1}. By Theorem 2.9, all right S-acts satisfying Condition (LPWP )
are strongly flat. Assume that AS is a right S-act and α1S ⊆ α2S ⊆ ... be
an ascending chain of cyclic subacts of AS . Since S = {0, 1}, we have for all
i ∈ N, 1 ≤| αiS |≤ 2. If | αiS |= 1 for all i ∈ N, then αiS = αjS, for every
i, j ∈ N and we are done. Suppose that | αkS |= 2 for some k ∈ N. So | αiS |= 2
for every i ≥ k. This shows that for all i ≥ k, αiS = αi+1S, which means
that the above chain terminates. Thus the monoid S satisfies Condition (A).
Obviously, the monoid S satisfies Condition (K), and so by Theorems 1.1 and
2.1 of [5], strong flatness implies projectivity.

Theorem 2.11. The following statements are equivalent:

(1) All right S-acts satisfying Condition (LPWP ) are free.

(2) All finitely generated right S-acts satisfying Condition (LPWP ) are free.

(3) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are free.

(4) All right S-acts satisfying Condition (LPWP ) are projective generator.

(5) All finitely generated right S-acts satisfying Condition (LPWP ) are projec-
tive generator.

(6) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are projective generator.

(7) All right S-acts satisfying Condition (LPWP ) are generator.

(8) All finitely generated right S-acts satisfying Condition (LPWP ) are gener-
ator.

(9) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are generator.

(10) All right S-acts satisfying Condition (LPWP ) are strongly faithful.
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(11) All finitely generated right S-acts satisfying Condition (LPWP ) are strongly
faithful.

(12) All right S-acts generated by at most two elements satisfying Condition
(LPWP ) are strongly faithful.

(13) S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9),
(10) ⇒ (11) ⇒ (12), are obvious.

Since free ⇒ projective generator ⇒ generator, the implications (1) ⇒ (4) ⇒
(7) and (3) ⇒ (6) ⇒ (9) are easily obtained.

(12) ⇒ (13). Since the one element act ΘS satisfy Condition (LPWP ), by
assumption ΘS is strongly faithful. So S = {1}.

(13) ⇒ (1). If S = {1}, then all right S-acts are free.

(13) ⇒ (10). If S = {1}, then all right S-acts are strongly faithful.

(9) ⇒ (13). By assumption ΘS is generator. So there exists an epimorphism
π : ΘS → SS and this implies that S = {1}.

For fixed elements u, v ∈ S, define a binary relation Pu,v on S with

(x, y) ∈ Pu,v ⇐⇒ ux = vy (x, y ∈ S).

Recall that for any right ideal I of S, Rees congruence ρI on S defined by
(x, y) ∈ ρI if x = y or x, y ∈ I.

Recall that an act is called cofree if it is isomorphic to the act XS = {f |f
is a mapping from S to X} for some nonempty set X , where fs is defined by
fs(t) = f(st), t ∈ S, for every f ∈ XS , s ∈ S.

Theorem 2.12. The following conditions are equivalent:

(1) All fg-weakly injective right S-acts satisfy Condition (LPWP ).

(2) All weakly injective right S-acts satisfy Condition (LPWP ).

(3) All injective right S-acts satisfy Condition (LPWP ).

(4) All cofree right S-acts satisfy Condition (LPWP ).

(5) For any s ∈ S there exist u, v ∈ S such that:

(i) Pu,v ⊂ P1,s ◦ kerλs ◦ Ps,1.

(ii) kerλu ∪ kerλv ⊂ ρsS.

(iii) kerλus ∪ kerλvs ⊂ kerλs

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are clear.

(4) ⇒ (5). Suppose that s ∈ S and S1 and S2 are two sets such that
|S1| = |S| = |S2|. Assume that α : S → S1 and β : S → S2 are bijections. Let
X = S/kerλs

∐

S1

∐

S2. Define the mappings f, g : S −→ X as follows:

f(x) =

{

[y]kerλs
if x ∈ sS(x = sy),

α(x) if x /∈ sS
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and

g(x) =

{

[y]kerλs
if x ∈ sS(x = sy),

β(x) if x /∈ sS.

If y1, y2 ∈ S are such that sy1 = sy2, then (y1, y2) ∈ kerλs which implies
that f(sy1) = [y1]kerλs

= [y2]kerλs
= f(sy2). So f is well-defined. By a similar

argument, g is well-defined.

Clearly fs = gs by definition. Since XS satisfies Condition (LPWP ), there
exist u, v ∈ S and the map h : S → X such that g = hv and f = hu. Now, we
show that the conditions (i)–(iii) are true.

(i). Let (l1, l2) ∈ Pu,v, l1, l2 ∈ S. Then ul1 = vl2, and so f(l1) = hu(l1) =
h(ul1) = h(vl2) = hv(l2) = g(l2). The equality f(l1) = g(l2) yields that there
exist y1, y2 ∈ S such that l1 = sy1, l2 = sy2, (y1, y2) ∈ kerλs. So (l1, y1) ∈
P1,s, (y1, y2) ∈ kerλs and (y2, l2) ∈ Ps,1. This implies that (l1, l2) ∈ P1,s ◦
kerλs ◦ Ps,1.

(ii). Assume that the condition (ii) does not hold. Without loss of generality,
suppose that kerλu \ ρsS 6= ∅. So there exist p1, p2 ∈ S such that (p1, p2) ∈
kerλu \ ρsS . That is

(∃p1, p2 ∈ S)(up1 = up2 ∧ p1 6= p2 ∧ (p1 /∈ sS ∨ p2 /∈ sS)).

Hence f(p1) = hu(p1) = h(up1) = h(up2) = hu(p2) = f(p2). Since p1 6= p2 and
α is injective, p1, p2 ∈ sS which is a contradiction.

(iii). Suppose that (l1, l2) ∈ kerλus where l1, l2 ∈ S. So usl1 = usl2 and we
have f(sl1) = hu(sl1) = h(usl1) = h(usl2) = hu(sl2) = f(sl2). According to
the definition of f , we have sl1 = sl2 or [l1]kerλs

= [l2]kerλs
. If sl1 = sl2, then

(l1, l2) ∈ kerλs. If [l1]kerλs
= [l2]kerλs

, then (l1, l2) ∈ kerλs. So kerλus ⊆ kerλs.
Similar argument shows that kerλvs ⊆ kerλs. Consequently kerλus ∪ kerλvs ⊆
kerλs.

(5) ⇒ (1). Suppose that AS is fg-weakly injective and for a, a′ ∈ AS , s ∈
S, as = a′s. By assumption there exist u, v ∈ S such that the conditions (i)–(iii)
hold. Define ϕ : uS ∪ vS → AS by the rule that for each x in uS ∪ vS,

ϕ(x) =

{

ap if x ∈ uS(x = up),
a′r if x ∈ vS(x = vr).

To show that ϕ is well defined, we consider three cases as follows:

Case 1. If there exist p, r ∈ S such that up = vr, then by condition (i), there
exist y1, y2 ∈ S such that (p, y1) ∈ P1,s, (y1, y2) ∈ kerλs, (y2, r) ∈ Ps,1. Thus
p = sy1, r = sy2 and sy1 = sy2, and so ap = asy1 = a′sy1 = a′sy2 = a′r.

Case 2. Assume that there exist p1, p2 ∈ S such that up1 = up2. If p1 = p2,
then ap1 = ap2. If p1 6= p2, then by condition (ii), there exist y′1, y

′
2 ∈ S such

that p1 = sy′1 and p2 = sy′2. Then by (iii) we have

up1 = up2 ⇒ usy′1 = usy′2 ⇒ (y′1, y
′
2) ∈ kerλus ⊆ kerλs.

This means that sy′1 = sy′2. Hence ap1 = asy′1 = asy′2 = ap2.
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Case 3. If there exist r1, r2 ∈ S such that vr1 = vr2, then by a similar argu-
ment we get a′r1 = a′r2. Hence ϕ is well defined. Clearly ϕ is a homomorphism.
Since AS is fg-weakly injective, there exists a homomorphism ψ : SS → AS

which extends ϕ. Put a′′ = ψ(1). Then a = ϕ(u) = ψ(u) = ψ(1)u = a′′u and
a′ = ϕ(v) = ψ(v) = ψ(1)v = a′′v. Thus AS satisfies Condition (LPWP ).

Corollary 2.13. If S is a commutative monoid, then all cofree right S-acts satisfy
Condition (LPWP ) if and only if S is a group.

Proof. Let s ∈ S. By Theorem 2.12, there exist u, v ∈ S such that Pu,v ⊆
P1,s ◦ kerλs ◦ Ps,1. If l1, l2 ∈ S and ul1 = vl2, then there exist y1, y2 ∈ S
such that (l1, y1) ∈ P1,s, (y1, y2) ∈ kerλs, (y2, l2) ∈ Ps,1 which implies that
l1 = sy1, sy1 = sy2, sy2 = l2. So l1 = l2 and Pu,v ⊆ ∆S . Commutativity of S
implies that (v, u) ∈ Pu,v which yeilds u = v. So kerλu = Pu,v ⊆ P1,s ◦ kerλs ◦
Ps,1. Since u.1 = u.1, there exist y1, y2 ∈ S such that (1, y1) ∈ P1,s, (y1, y2) ∈
kerλs, (y2, 1) ∈ Ps,1. Hence 1 = sy1 = sy2 and S is a group.

Conversely, suppose that S is a group. By Theorem 2.1, all right S-acts
satisfy Condition (LPWP ). So all right cofree right S-acts satisfy Condition
(LPWP ).

Corollary 2.14. If S is a finite monoid, then all cofree right S-acts satisfy Con-
dition (LPWP ) if and only if S is a group.

Proof. By Theorem 2.12, for any s ∈ S there exist u, v ∈ S such that Pu,v ⊆
P1,s ◦kerλs ◦Ps,1, kerλu∪kerλv ⊆ ρsS and kerλus∪kerλvs ⊆ kerλs. If l1, l2 ∈ S
and ul1 = vl2, then there exist y1, y2 ∈ S such that (l1, y1) ∈ P1,s, (y1, y2) ∈
kerλs, (y2, l2) ∈ Ps,1 which means l1 = sy1, sy1 = sy2, sy2 = l2. So l1 = l2 and
Pu,v ⊆ ∆S . Suppose that l1, l2 ∈ S are such that ul1 = ul2 and l1 6= l2. Then
there exist y1, y2 ∈ S, l1 = sy1, l2 = sy2 which implies that usy1 = usy2. The last
equality shows that (y1, y2) ∈ kerλus ⊆ kerλs. So sy1 = sy2 that is l1 = l2 which
is a contradiction. Hence u is left cancellable. Let S = {1, x1, x2, ..., xn} (note
that the elements of S are distinct). It is clear that uS = {u, ux1, ux2, ..., uxn} =
S. So v ∈ uS. If there exists i ≤ n such that uxi = v, then (xi, 1) ∈ Pu,v ⊆ ∆S

which implies that xi = 1, a contradiction. Hence v = u and by a similar
argument to Corollary 2.13, we get that s has a right inverse. Thus S is a group.

The converse has been proved in Theorem 2.1.

Corollary 2.15. If S is an idempotent monoid, then all cofree right S-acts satisfy
Condition (LPWP ) if and only if S = {1}.

Proof. Suppose that all cofree S-acts satisfy Condition (LPWP ). We claim that
S = {1}. Assume that S 6= {1}. So there exists e ∈ S \ {1}. By Theorem 2.12,
there exist u, v ∈ S such that Pu,v ⊆ P1,e ◦ kerλe ◦ Pe,1, kerλu ∪ kerλv ⊆ ρeS .
Obviously, (u, 1) ∈ kerλu ⊆ ρeS , so u = 1 or there exist y1, y2 ∈ S such that
u = ey1 and 1 = ey2. Since e 6= 1, we get that u = 1 and similarly v = 1. By a
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similar argument to the Corollary 2.13, e has a right inverse. Hence e = 1 which
is a contradiction. Thus S = {1} and we are done.

The converse is a part of Theorem 2.1.
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