Southeast Asian Bulletin of Mathematics © SEAMS. 2024

Generalization of Condition (PWP)

M. R. Zamani, H. Mohammadzadeh Saany and P. Rezaei Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran Email: mrzamani1366@yahoo.com; hmsdm@math.usb.ac.ir; p_rezaei@math.usb.ac.ir

Received 15 February 2021 Accepted 9 December 2021

Communicated by Qaiser Mushtaq

AMS Mathematics Subject Classification(2020): 20M30, 20M50

Abstract. An act A_S satisfies Condition (PWP) if as = a's for $a, a' \in A_S, s \in S$ implies that there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vs. In this paper we introduce a generalization of Condition (PWP) called Condition (L_{PWP}) and will characterize monoids using this property. It can be seen easily that any right locally cyclic act satisfies Condition (L_{PWP}) .

Keywords: S-act; Condition (PWP); Locally cyclic; Condition (P).

1. Introduction

Recall that an act A_S satisfies Condition (PWP) if as = a's for $a, a' \in A_S, s \in S$ implies that there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vs. It is clear that Condition (PWP) implies torsion freeness.

Definition 1.1. The right S-act A_S satisfies Condition (L_{PWP}) if for $a, a' \in A_S, s \in S$, the equality as = a's implies that there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u and a' = a''v.

The above definition is equivalent to the following statement:

 $(\forall a, a' \in A_S)(\forall s \in S)[(as = a's) \Rightarrow (\exists a'' \in A_S)(aS \cup a'S \subseteq a''S)$

Clearly in Act – S, Condition (PWP) implies Condition (L_{PWP}) and also we have cyclic \implies locally cyclic \implies Condition (L_{PWP}).

The following example shows that Condition (L_{PWP}) does not imply Condition (PWP).

Example 1.2. Let $S = (\mathbb{N}, \cdot)$ and $K = 2\mathbb{N}$ which is a right ideal of S. Since S/K_S is cyclic, it satisfies Condition (L_{PWP}) . But S/K_S is not torsion free by [6, III, Proposition 8.10]. Indeed, the element $2 \in 2\mathbb{N}$ is right cancellabe and we have $3 \cdot 2 \in 2\mathbb{N}$ but $3 \notin 2\mathbb{N}$.

Let *I* be a proper right ideal of a monoid *S*. Suppose that *x*, *y* and *z* are different symbols that do not belong to *S*. Consider the right *S*-act $A(I) = S \coprod^{I} S = ((S \setminus I) \times \{x, y\}) \cup (I \times \{z\})$ with the *S*-action defined by

$$(t,u)s = \begin{cases} (ts,u) & \text{if } ts \in S \setminus I, \\ (ts,z) & \text{if } ts \in I, \end{cases}$$

where $u \in \{x, y\}$ and (t, z)s = (ts, z).

An act A_S is called *strongly faithful* if for $s, t \in S$, the equality as = at for some $a \in A_S$, implies that s = t. A_S is called *faithful* if for $s, t \in S$, the equality as = at for all $a \in A_S$, implies that s = t.

Lemma 1.3. For the right S-act A(I) the following statements holds:

- (1) A(I) does not satisfy Condition (L_{PWP}).
- (2) A(I) is not locally cyclic.
- (3) A(I) satisfies Condition (E).
- (4) A(I) is indecomposable and is generated by exactly two elements.
- (5) A(I) is faithful.

Proof. (1). The equality (1, x)s = (1, y)s holds in A(I) for $s \in I$. It can be easily checked that we cannot find $a \in A(I)$ and $s_1, s_2 \in S$ such that $(1, x) = as_1, (1, y) = as_2$. So A(I) does not satisfy Condition (L_{PWP}) .

(2). (1, x) and (1, y) are elements of A(I), but there is no cyclic subact of A(I) which contains these two elements.

(3). Note that $A(I) = (1, x)S \cup (1, y)S$. Obviously, $(1, x)S \cong S_S \cong (1, y)S$. So A(I) is the union of two subacts both of which satisfy Condition (E). Then A(I) satisfies Condition (E).

(4). If A(I) is decomposable, then there exist $B_S, C_S \leq A(I)$ such that $A(I) = B_S \cup C_S, B_S \cap C_S = \emptyset$. Let $(1, x) \in B_S$. Since $A(I) = (1, x)S \cup (1, y)S$, we have $(1, y) \in C_S$. But $(1, x)S \cap (1, y)S = I \subseteq B_S \cap C_S$ which shows that $B_S \cap C_S \neq \emptyset$, a contradiction. Hence A(I) is indecomposable.

The equality $A(I) = (1, x)S \cup (1, y)S$ shows that A(I) is generated by exactly two elements.

(5). It was mentioned that $A(I) = (1, x)S \cup (1, y)S$ and $(1, x)S \cong S_S \cong (1, y)S$. Since S_S is faithful, A(I) has a faithful subact. Therefore, A(I) is faithful.

2. Classification of Monoids by Condition (L_{PWP}) of their Acts

Recall that an act A_S satisfies Condition (E') if for all $a \in A_S, s, t, z \in S$, as = atand sz = tz imply that there exist $a' \in A_S, u \in S$ such that a = a'u and us = ut. A_S satisfies Condition (E'P) if for all $a \in A_S, s, t, z \in S$, as = at and sz = tzimply that there exist $a' \in A_S, u, v \in S$ such that a = a'u = a'v and us = vt.

Theorem 2.1. The following statements are equivalent:

- (1) All right S-acts satisfy Condition (L_{PWP}) .
- (2) All right S-acts satisfying Condition (E'P), satisfy Condition (L_{PWP}) .
- (3) All right S-acts satisfying Condition (EP), satisfy Condition (L_{PWP}) .
- (4) All right S-acts satisfying Condition (E'), satisfy Condition (L_{PWP}) .
- (5) All right S-acts satisfying Condition (E), satisfy Condition (L_{PWP}) .
- (6) All faithful right S-acts satisfy Condition (L_{PWP}) .
- (7) All indecomposable right S-acts satisfy Condition (L_{PWP}) .
- (8) S is a group.

Proof. Since $(E) \Rightarrow (E') \Rightarrow (E'P)$ and $(E) \Rightarrow (EP) \Rightarrow (E'P)$, the implications $(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (5), (2) \Rightarrow (3) \Rightarrow (5), (1) \Rightarrow (6)$ and $(1) \Rightarrow (7)$ are obvious.

 $(5) \Rightarrow (8)$. Take $s \in S$ such that $sS \neq S$. Lemma 1.3 implies that A(sS) satisfies Condition (E). By assumption, A(sS) satisfies Condition (L_{PWP}) which is not possible by Lemma 1.3. Thus sS = S for any $s \in S$ and S is a group.

(8) \Rightarrow (1). If S is a group, then any right S-act satisfies Condition (L_{PWP}) . To see this, let A_S be an arbitrary right S-act such that for $a, a' \in A_S$ and $s \in S$ we have as = a's. Then we can write $a = a'ss^{-1}$ and a' = a'.1. Thus A_S satisfies Condition (L_{PWP}) .

 $(6) \Rightarrow (8)$. Take $s \in S$ such that $sS \neq S$. By Lemma 1.3, A(sS) is faithful, so by assumption A(sS) satisfies Condition (L_{PWP}) which is impossible by Lemma 1.3. Then for any $s \in S$, sS = S which means that S is a group.

 $(7) \Rightarrow (8)$. Let $s \in S$ be such that $sS \neq S$. The right S-act A(sS) is indecomposable by Lemma 1.3. So A(sS) should satisfy Condition (L_{PWP}) and this is impossible. Hence sS = S for any $s \in S$ which shows that S is a group.

As we see in Example 1.2, $Condition(L_{PWP})$ does not imply torsion freeness.

Theorem 2.2. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) , are torsion free.
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) are torsion free.
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are torsion free.
- (4) All right cancellable elements are right invertible.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4). By assumption any cyclic right S-act satisfies Condition (L_{PWP}), is torsion free, and so by [6, IV, Theorem 6.1] every right cancellable element is right invertible.

(4) \Rightarrow (1). If (4) holds, then by [6, IV, Theorem 6.1] all right S-acts are torsion free, and so any right S-act satisfying Condition (L_{PWP}) is torsion free.

Condition (PWP_E) is defined in [2].

Theorem 2.3. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (PWP_E) .
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (PWP_E) .
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , satisfy Condition (PWP_E) .
- (4) All right S-acts satisfying Condition (L_{PWP}) are principally weakly flat.
- (5) All finitely generated right S-acts satisfying Condition (L_{PWP}) are principally weakly flat.
- (6) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are principally weakly flat.
- (7) S is a regular monoid.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5) \Rightarrow (6)$ are obvious. By [2, Theorem 2.3] Condition (PWP_E) implies principal weak flatness, and so we have the implications $(1) \Rightarrow (4)$ and $(3) \Rightarrow (6)$.

 $(6) \Rightarrow (7)$. Since all cyclic right *S*-acts satisfy Condition (L_{PWP}) , by assumption all cyclic right *S*-acts are principally weakly flat. Then by [6, IV, Theorem 6.6] *S* is regular.

 $(7) \Rightarrow (1)$. By [2, Theorem 3.1], all right *S*-acts satisfy Condition (PWP_E) and consequently all right *S*-acts satisfying Condition (L_{PWP}) satisfy Condition (PWP_E) .

Condition (P_E) was introduced in [4].

Theorem 2.4. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (P_E) .
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (P_E) .
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , satisfy Condition (P_E) .
- (4) All right S-acts satisfying Condition (L_{PWP}) are weakly flat.

288

- (5) All finitely generated right S-acts satisfying Condition (L_{PWP}) are weakly flat.
- (6) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are weakly flat.
- (7) S is regular and satisfies the following condition:
 - (R) For any elements $s, t \in S$, there exists $w \in Ss \cap St$ such that $w\rho(s, t)s$ $(\rho(s, t) \text{ is the smallest right congruence on } S \text{ containing } (s, t)).$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5) \Rightarrow (6)$ are obvious. By [4, Theorem 2.3] Condition (P_E) implies weak flatness, and so we have the implications $(1) \Rightarrow (4)$ and $(3) \Rightarrow (6)$.

(6) \Rightarrow (7). Since all cyclic right *S*-acts satisfy Condition (L_{PWP}), by assumption all cyclic right *S*-acts are weakly flat. Then by [6, IV, Theorem 7.5] *S* is regular and satisfies Condition (*R*).

 $(7) \Rightarrow (1)$. By [6, IV, Theorem 7.5] all right *S*-acts are weakly flat. It follows from [4, Theorem 2.5] that all right *S*-acts satisfy Condition (P_E) , and so all right *S*-acts satisfying Condition (L_{PWP}) satisfy Condition (P_E) .

Theorem 2.5. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (P).
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (P).
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , satisfy Condition (P).
- (4) S is a group or a group with a zero adjoined.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$. Since all cyclic right *S*-acts satisfy Condition (L_{PWP}) , by assumption we can deduce that all cyclic right *S*-acts satisfy Condition (P). By [8, Theorem 2.1], $S = G^0$ or S = G, where *G* is a group.

 $(4) \Rightarrow (1)$. If S = G, then by [9, Theorem 3.10] all right S-acts satisfy Condition (P). Therefore, all right S-acts satisfying Condition (L_{PWP}), satisfy Condition (P). Suppose that $S = G^0$ and let A_S be a right S-act which satisfies Condition (L_{PWP}). We show that A_S satisfies Condition (P). Take $a, a' \in A_S$ and $s, t \in S$ such that as = a't. There are three cases as follows:

Case 1: If $s, t \in G$, then we have $a = a'ts^{-1}, a' = a'1$ and $(ts^{-1})s = 1t$.

Case 2: If $t = 0, s \in G$, then as = a'0 implies that $(as)s^{-1} = (a'0)s^{-1}$. So a = a'0, a' = a'1 and 0s = 10.

Case 3: If s = t = 0, then a0 = a'0. Since A_S satisfies Condition (L_{PWP}) , there exist $a'' \in A_S, u, v \in S$ such that a = a''u, a' = a''v and clearly u0 = v0.

We deduce from the above Theorem that whenever $S \neq G^0$ and $S \neq G$ (G is a group), then there exists at least one (finitely generated) right S-act that satisfies Condition (L_{PWP}) but does not satisfy Condition (P).

Recall that a monoid S is called left collapsible if for every $s, s' \in S$, there exists $u \in S$ such that us = us'. S is called weakly left collapsible if for every $s, s', z \in S$, sz = s'z implies the existence of $u \in S$ such that us = us'.

Example 2.6. Let S be a monoid which is not weakly left collapsible. Then the one-element right S-act $\Theta_S = \{\theta\}$ with multiplication $\theta_S = \theta$ for all $s \in S$, fails to satisfy Condition (E') but it satisfies Condition (L_{PWP}) . So Condition (L_{PWP}) does not imply Condition (E') (as well as Condition (E), regularity, strong faithfulness, equalizer flatness which are stronger properties).

Theorem 2.7. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (E').
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (E').
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , satisfy Condition (E').
- (4) $(\forall s, t, z \in S), (sz = tz \Longrightarrow (\exists e \in E(S))(\rho(s, t) = ker\lambda_e))$

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. It is clear.

 $(3) \Rightarrow (4)$. Since all cyclic right *S*-acts satisfy Conditon (L_{PWP}) , by assumption all cyclic right *S*-acts satisfy Condition (E'). By [3, Theorem 2.5] the result follows.

 $(4) \Rightarrow (1)$. By [3, Theorem 2.5], all right S-acts satisfy Condition (E'). Hence all right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (E').

Weak pullback flatness was defined by Laan [7]. He showed that a right S-act is pullback flat if and only if it satisfies both Conditions (P) and (E').

Theorem 2.8. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) are weakly pullback flat.
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) are weakly pullback flat.
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are weakly pullback flat.
- (4) S is a group or $S = \{0, 1\}$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. It is obvious.

 $(3) \Rightarrow (4)$. By assumption, since all cyclic right *S*-acts satisfy Condition (L_{PWP}) , one can deduce that all cyclic right *S*-acts are weakly pullback flat. So by [1, Proposition 25] the statement (4) holds.

 $(4) \Rightarrow (1)$. If S is a group, then by [1, Proposition 9] all right S-acts are weakly pullback flat and we are done. Now suppose that $S = \{0, 1\}$. Let A_S be a right S-act that satisfies Condition (L_{PWP}) . It suffices to show that A_S

satisfies Conditions (P) and (E'). Let $a, a' \in A_S$ and $s, t \in S$ be such that as = a't. To show that A_S satisfies Condition (P), we consider three cases:

Case 1: s = t = 1. Then we have a = a', and so we can write $a = a' \cdot 1, a' = a' \cdot 1$ and $1 \cdot s = 1 \cdot t$.

Case 2: s = 1, t = 0. Then we have $a = a' \cdot 0, a' = a' \cdot 1$ and $0 \cdot s = 1 \cdot t$.

Case 3: s = t = 0. Since A_S satisfies Condition (L_{PWP}) , the equality a0 = a'0 implies that there exist $a'' \in A_S, u, v \in S$ such that $a = a''u \wedge a = a''v$ and clearly $u \cdot 0 = v \cdot 0$.

So A_S satisfies Condition (P) in each case. It remains to show that A_S satisfies Condition (E'). Since $S = \{0, 1\}$, by [9, Theorem 2.4] all cyclic right S-acts satisfy Condition (E), and consequently satisfy Condition (E').

Theorem 2.9. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) are strongly flat.
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) are strongly flat.
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are strongly flat.
- (4) All right S-acts satisfying Condition (L_{PWP}) are equalizer flat.
- (5) All finitely generated right S-acts satisfying Condition (L_{PWP}) are equalizer flat.
- (6) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are equalizer flat.
- (7) All right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (E).
- (8) All finitely generated right S-acts satisfying Condition (L_{PWP}) , satisfy Condition (E).
- (9) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , satisfy Condition (E).
- (10) $S = \{0, 1\}$ or $S = \{1\}$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$, $(4) \Rightarrow (5) \Rightarrow (6)$ and $(7) \Rightarrow (8) \Rightarrow (9)$ are obvious.

Since we have strongly flat \Rightarrow equalizer flat \Rightarrow Condition (E), the implications (1) \Rightarrow (4) \Rightarrow (7) and (3) \Rightarrow (6) \Rightarrow (9) are valid.

 $(9) \Rightarrow (10)$. Since all cyclic right *S*-acts satisfy Condition (L_{PWP}) , by assumption, all cyclic right *S*-acts satisfy Condition (*E*). By [9, Theorem 2.4] we are done.

 $(10) \Rightarrow (1)$. If $S = \{1\}$, then all right S-acts are strongly flat and (1) follows. Suppose that $S = \{0, 1\}$. Then by Theorem 2.8 all right S-acts satisfying Condition (L_{PWP}) , are weakly pullback flat which is the combination of Conditions (E') and (P). Since $S = \{0, 1\}$, Condition (E') implies Condition (E). So, all right S-acts satisfying Condition (L_{PWP}) , are strongly flat. Recall that a monoid S satisfies Condition (K) if, every left collapsible submonoid of S contains a left zero. The monoid S satisfies Condition A if any right S-act satisfy the ascending chain condition for cyclic subacts.

Theorem 2.10. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) are projective.
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) are projective.
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are projective.
- (4) $S = \{1\}$ or $S = \{0, 1\}$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$. Since projectivity implies strong flatness, by assumption all right S-acts generated by at most two elements satisfying Condition (L_{PWP}) , are strongly flat. So by [8, Corollary 2.2], $S = \{1\}$ or $S = \{0, 1\}$.

 $(4) \Rightarrow (1)$. If $S = \{1\}$, then all right S-acts are projective. Now suppose that $S = \{0, 1\}$. By Theorem 2.9, all right S-acts satisfying Condition (L_{PWP}) are strongly flat. Assume that A_S is a right S-act and $\alpha_1 S \subseteq \alpha_2 S \subseteq \ldots$ be an ascending chain of cyclic subacts of A_S . Since $S = \{0, 1\}$, we have for all $i \in \mathbb{N}, 1 \leq |\alpha_i S| \leq 2$. If $|\alpha_i S| = 1$ for all $i \in \mathbb{N}$, then $\alpha_i S = \alpha_j S$, for every $i, j \in \mathbb{N}$ and we are done. Suppose that $|\alpha_k S| = 2$ for some $k \in \mathbb{N}$. So $|\alpha_i S| = 2$ for every $i \geq k$. This shows that for all $i \geq k, \alpha_i S = \alpha_{i+1} S$, which means that the above chain terminates. Thus the monoid S satisfies Condition (A). Obviously, the monoid S satisfies Condition (K), and so by Theorems 1.1 and 2.1 of [5], strong flatness implies projectivity.

Theorem 2.11. The following statements are equivalent:

- (1) All right S-acts satisfying Condition (L_{PWP}) are free.
- (2) All finitely generated right S-acts satisfying Condition (L_{PWP}) are free.
- (3) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are free.
- (4) All right S-acts satisfying Condition (L_{PWP}) are projective generator.
- (5) All finitely generated right S-acts satisfying Condition (L_{PWP}) are projective generator.
- (6) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are projective generator.
- (7) All right S-acts satisfying Condition (L_{PWP}) are generator.
- (8) All finitely generated right S-acts satisfying Condition (L_{PWP}) are generator.
- (9) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are generator.
- (10) All right S-acts satisfying Condition (L_{PWP}) are strongly faithful.

- (11) All finitely generated right S-acts satisfying Condition (L_{PWP}) are strongly faithful.
- (12) All right S-acts generated by at most two elements satisfying Condition (L_{PWP}) are strongly faithful.
- (13) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$, $(4) \Rightarrow (5) \Rightarrow (6)$, $(7) \Rightarrow (8) \Rightarrow (9)$, $(10) \Rightarrow (11) \Rightarrow (12)$, are obvious.

Since free \Rightarrow projective generator \Rightarrow generator, the implications $(1) \Rightarrow (4) \Rightarrow$ (7) and $(3) \Rightarrow (6) \Rightarrow (9)$ are easily obtained.

 $(12) \Rightarrow (13)$. Since the one element act Θ_S satisfy Condition (L_{PWP}) , by assumption Θ_S is strongly faithful. So $S = \{1\}$.

 $(13) \Rightarrow (1)$. If $S = \{1\}$, then all right S-acts are free.

 $(13) \Rightarrow (10)$. If $S = \{1\}$, then all right S-acts are strongly faithful.

 $(9) \Rightarrow (13)$. By assumption Θ_S is generator. So there exists an epimorphism $\pi : \Theta_S \to S_S$ and this implies that $S = \{1\}$.

For fixed elements $u, v \in S$, define a binary relation $P_{u,v}$ on S with

$$(x,y) \in P_{u,v} \iff ux = vy \ (x,y \in S).$$

Recall that for any right ideal I of S, Rees congruence ρ_I on S defined by $(x, y) \in \rho_I$ if x = y or $x, y \in I$.

Recall that an act is called cofree if it is isomorphic to the act $X^S = \{f | f$ is a mapping from S to X for some nonempty set X, where fs is defined by $fs(t) = f(st), t \in S$, for every $f \in X^S, s \in S$.

Theorem 2.12. The following conditions are equivalent:

- (1) All fg-weakly injective right S-acts satisfy Condition (L_{PWP}) .
- (2) All weakly injective right S-acts satisfy Condition (L_{PWP}) .
- (3) All injective right S-acts satisfy Condition (L_{PWP}) .
- (4) All cofree right S-acts satisfy Condition (L_{PWP}) .
- (5) For any $s \in S$ there exist $u, v \in S$ such that:
 - (i) $P_{u,v} \subset P_{1,s} \circ ker \lambda_s \circ P_{s,1}$.
 - (ii) $ker\lambda_u \cup ker\lambda_v \subset \rho_{sS}$.
 - (iii) $ker\lambda_{us} \cup ker\lambda_{vs} \subset ker\lambda_s$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are clear.

(4) \Rightarrow (5). Suppose that $s \in S$ and S_1 and S_2 are two sets such that $|S_1| = |S| = |S_2|$. Assume that $\alpha : S \to S_1$ and $\beta : S \to S_2$ are bijections. Let $X = S/ker\lambda_s \coprod S_1 \coprod S_2$. Define the mappings $f, g: S \longrightarrow X$ as follows:

$$f(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if } x \in sS(x=sy), \\ \alpha(x) & \text{if } x \notin sS \end{cases}$$

and

$$g(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if } x \in sS(x = sy), \\ \beta(x) & \text{if } x \notin sS. \end{cases}$$

If $y_1, y_2 \in S$ are such that $sy_1 = sy_2$, then $(y_1, y_2) \in ker\lambda_s$ which implies that $f(sy_1) = [y_1]_{ker\lambda_s} = [y_2]_{ker\lambda_s} = f(sy_2)$. So f is well-defined. By a similar argument, g is well-defined.

Clearly fs = gs by definition. Since X^S satisfies Condition (L_{PWP}) , there exist $u, v \in S$ and the map $h : S \to X$ such that g = hv and f = hu. Now, we show that the conditions (i)–(iii) are true.

(i). Let $(l_1, l_2) \in P_{u,v}$, $l_1, l_2 \in S$. Then $ul_1 = vl_2$, and so $f(l_1) = hu(l_1) = h(ul_1) = h(vl_2) = hv(l_2) = g(l_2)$. The equality $f(l_1) = g(l_2)$ yields that there exist $y_1, y_2 \in S$ such that $l_1 = sy_1, l_2 = sy_2, (y_1, y_2) \in ker\lambda_s$. So $(l_1, y_1) \in P_{1,s}, (y_1, y_2) \in ker\lambda_s$ and $(y_2, l_2) \in P_{s,1}$. This implies that $(l_1, l_2) \in P_{1,s} \circ ker\lambda_s \circ P_{s,1}$.

(ii). Assume that the condition (ii) does not hold. Without loss of generality, suppose that $ker\lambda_u \setminus \rho_{sS} \neq \emptyset$. So there exist $p_1, p_2 \in S$ such that $(p_1, p_2) \in ker\lambda_u \setminus \rho_{sS}$. That is

$$(\exists p_1, p_2 \in S)(up_1 = up_2 \land p_1 \neq p_2 \land (p_1 \notin sS \lor p_2 \notin sS)).$$

Hence $f(p_1) = hu(p_1) = h(up_1) = h(up_2) = hu(p_2) = f(p_2)$. Since $p_1 \neq p_2$ and α is injective, $p_1, p_2 \in sS$ which is a contradiction.

(iii). Suppose that $(l_1, l_2) \in ker\lambda_{us}$ where $l_1, l_2 \in S$. So $usl_1 = usl_2$ and we have $f(sl_1) = hu(sl_1) = h(usl_1) = h(usl_2) = hu(sl_2) = f(sl_2)$. According to the definition of f, we have $sl_1 = sl_2$ or $[l_1]_{ker\lambda_s} = [l_2]_{ker\lambda_s}$. If $sl_1 = sl_2$, then $(l_1, l_2) \in ker\lambda_s$. If $[l_1]_{ker\lambda_s} = [l_2]_{ker\lambda_s}$, then $(l_1, l_2) \in ker\lambda_{us} \subseteq ker\lambda_s$. Similar argument shows that $ker\lambda_{vs} \subseteq ker\lambda_s$. Consequently $ker\lambda_{us} \cup ker\lambda_{vs} \subseteq ker\lambda_s$.

 $(5) \Rightarrow (1)$. Suppose that A_S is fg-weakly injective and for $a, a' \in A_S, s \in S$, as = a's. By assumption there exist $u, v \in S$ such that the conditions (i)–(iii) hold. Define $\varphi : uS \cup vS \to A_S$ by the rule that for each x in $uS \cup vS$,

$$\varphi(x) = \begin{cases} ap & \text{if } x \in uS(x=up), \\ a'r & \text{if } x \in vS(x=vr). \end{cases}$$

To show that φ is well defined, we consider three cases as follows:

Case 1. If there exist $p, r \in S$ such that up = vr, then by condition (i), there exist $y_1, y_2 \in S$ such that $(p, y_1) \in P_{1,s}, (y_1, y_2) \in ker\lambda_s, (y_2, r) \in P_{s,1}$. Thus $p = sy_1, r = sy_2$ and $sy_1 = sy_2$, and so $ap = asy_1 = a'sy_1 = a'sy_2 = a'r$.

Case 2. Assume that there exist $p_1, p_2 \in S$ such that $up_1 = up_2$. If $p_1 = p_2$, then $ap_1 = ap_2$. If $p_1 \neq p_2$, then by condition (ii), there exist $y'_1, y'_2 \in S$ such that $p_1 = sy'_1$ and $p_2 = sy'_2$. Then by (iii) we have

$$up_1 = up_2 \Rightarrow usy'_1 = usy'_2 \Rightarrow (y'_1, y'_2) \in ker\lambda_{us} \subseteq ker\lambda_s$$

This means that $sy'_1 = sy'_2$. Hence $ap_1 = asy'_1 = asy'_2 = ap_2$.

Case 3. If there exist $r_1, r_2 \in S$ such that $vr_1 = vr_2$, then by a similar argument we get $a'r_1 = a'r_2$. Hence φ is well defined. Clearly φ is a homomorphism. Since A_S is fg-weakly injective, there exists a homomorphism $\psi : S_S \to A_S$ which extends φ . Put $a'' = \psi(1)$. Then $a = \varphi(u) = \psi(u) = \psi(1)u = a''u$ and $a' = \varphi(v) = \psi(v) = \psi(1)v = a''v$. Thus A_S satisfies Condition (L_{PWP}) .

Corollary 2.13. If S is a commutative monoid, then all cofree right S-acts satisfy Condition (L_{PWP}) if and only if S is a group.

Proof. Let $s \in S$. By Theorem 2.12, there exist $u, v \in S$ such that $P_{u,v} \subseteq P_{1,s} \circ ker\lambda_s \circ P_{s,1}$. If $l_1, l_2 \in S$ and $ul_1 = vl_2$, then there exist $y_1, y_2 \in S$ such that $(l_1, y_1) \in P_{1,s}, (y_1, y_2) \in ker\lambda_s, (y_2, l_2) \in P_{s,1}$ which implies that $l_1 = sy_1, sy_1 = sy_2, sy_2 = l_2$. So $l_1 = l_2$ and $P_{u,v} \subseteq \Delta_S$. Commutativity of S implies that $(v, u) \in P_{u,v}$ which yields u = v. So $ker\lambda_u = P_{u,v} \subseteq P_{1,s} \circ ker\lambda_s \circ P_{s,1}$. Since u.1 = u.1, there exist $y_1, y_2 \in S$ such that $(1, y_1) \in P_{1,s}, (y_1, y_2) \in ker\lambda_s, (y_2, 1) \in P_{s,1}$. Hence $1 = sy_1 = sy_2$ and S is a group.

Conversely, suppose that S is a group. By Theorem 2.1, all right S-acts satisfy Condition (L_{PWP}) . So all right cofree right S-acts satisfy Condition (L_{PWP}) .

Corollary 2.14. If S is a finite monoid, then all cofree right S-acts satisfy Condition (L_{PWP}) if and only if S is a group.

Proof. By Theorem 2.12, for any $s \in S$ there exist $u, v \in S$ such that $P_{u,v} \subseteq P_{1,s} \circ ker\lambda_s \circ P_{s,1}, ker\lambda_u \cup ker\lambda_v \subseteq \rho_{sS}$ and $ker\lambda_{us} \cup ker\lambda_{vs} \subseteq ker\lambda_s$. If $l_1, l_2 \in S$ and $ul_1 = vl_2$, then there exist $y_1, y_2 \in S$ such that $(l_1, y_1) \in P_{1,s}, (y_1, y_2) \in ker\lambda_s, (y_2, l_2) \in P_{s,1}$ which means $l_1 = sy_1, sy_1 = sy_2, sy_2 = l_2$. So $l_1 = l_2$ and $P_{u,v} \subseteq \Delta_S$. Suppose that $l_1, l_2 \in S$ are such that $ul_1 = ul_2$ and $l_1 \neq l_2$. Then there exist $y_1, y_2 \in S, l_1 = sy_1, l_2 = sy_2$ which implies that $usy_1 = usy_2$. The last equality shows that $(y_1, y_2) \in ker\lambda_{us} \subseteq ker\lambda_s$. So $sy_1 = sy_2$ that is $l_1 = l_2$ which is a contradiction. Hence u is left cancellable. Let $S = \{1, x_1, x_2, ..., x_n\}$ (note that the elements of S are distinct). It is clear that $uS = \{u, ux_1, ux_2, ..., ux_n\} = S$. So $v \in uS$. If there exists $i \leq n$ such that $ux_i = v$, then $(x_i, 1) \in P_{u,v} \subseteq \Delta_S$ which implies that $x_i = 1$, a contradiction. Hence v = u and by a similar argument to Corollary 2.13, we get that s has a right inverse. Thus S is a group.

The converse has been proved in Theorem 2.1.

Corollary 2.15. If S is an idempotent monoid, then all cofree right S-acts satisfy Condition (L_{PWP}) if and only if $S = \{1\}$.

Proof. Suppose that all cofree S-acts satisfy Condition (L_{PWP}) . We claim that $S = \{1\}$. Assume that $S \neq \{1\}$. So there exists $e \in S \setminus \{1\}$. By Theorem 2.12, there exist $u, v \in S$ such that $P_{u,v} \subseteq P_{1,e} \circ ker\lambda_e \circ P_{e,1}, ker\lambda_u \cup ker\lambda_v \subseteq \rho_{eS}$. Obviously, $(u, 1) \in ker\lambda_u \subseteq \rho_{eS}$, so u = 1 or there exist $y_1, y_2 \in S$ such that $u = ey_1$ and $1 = ey_2$. Since $e \neq 1$, we get that u = 1 and similarly v = 1. By a

similar argument to the Corollary 2.13, e has a right inverse. Hence e = 1 which is a contradiction. Thus $S = \{1\}$ and we are done.

The converse is a part of Theorem 2.1.

References

- S. Bulman-Fleming, M. Kilp, V. Laan, Pullbacks and flatness properties of acts II, Comm. Algebra 29 (2) (2001) 851–878.
- [2] A. Golchin, H. Mohammadzadeh, On condition (PWP_E) , Southeast Asian Bull. Math. **33** (2009) 245–256.
- [3] A. Golchin, H. Mohammadzadeh, On homological classification of monoids by condition (E') of right acts, Yokohama Math. J. 54 (2007) 79–88.
- [4] A. Golchin, J. Renshaw, A flatness property of acts over monoids, In: Conference on Semigroups (University of St. Andrews, July 1997), 1998.
- [5] M. Kilp, Perfect monoids revisited, Semigroup Forum 53 (1996) 225–229.
- [6] M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, Walter de-Gruyter, Berlin, 2000.
- [7] V. Laan, Pullbacks and flatness properties of acts I, Comm. Algebra 29 (2) (2001) 829–850.
- [8] Z. Liu, Characterization of monoids by condition (P) of cyclic left acts, Semigroup Forum 49 (1994) 31–39.
- [9] P. Normak, On equalizer-flat and pullback-flat acts, Semigroup Forum 36 (1987) 293–313.